首页 > 最新文献

Cell Research最新文献

英文 中文
Structural basis of phosphate export by human XPR1.
IF 28.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-28 DOI: 10.1038/s41422-025-01081-z
Yifei Wang, Yuechan Wang, Hui Yang, Ao Li, Dan Ma, Huaizong Shen
{"title":"Structural basis of phosphate export by human XPR1.","authors":"Yifei Wang, Yuechan Wang, Hui Yang, Ao Li, Dan Ma, Huaizong Shen","doi":"10.1038/s41422-025-01081-z","DOIUrl":"10.1038/s41422-025-01081-z","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":" ","pages":""},"PeriodicalIF":28.1,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: The rapid proximity labeling system PhastID identifies ATP6AP1 as an unconventional GEF for Rheb. 作者更正:快速近似标记系统 PhastID 将 ATP6AP1 鉴定为 Rheb 的非传统 GEF。
IF 28.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-28 DOI: 10.1038/s41422-025-01088-6
Ran Feng, Feng Liu, Ruofei Li, Zhifen Zhou, Zhuoheng Lin, Song Lin, Shengcheng Deng, Yingying Li, Baoting Nong, Ying Xia, Zhiyi Li, Xiaoqin Zhong, Shuhan Yang, Gang Wan, Wenbin Ma, Su Wu, Zhou Songyang
{"title":"Author Correction: The rapid proximity labeling system PhastID identifies ATP6AP1 as an unconventional GEF for Rheb.","authors":"Ran Feng, Feng Liu, Ruofei Li, Zhifen Zhou, Zhuoheng Lin, Song Lin, Shengcheng Deng, Yingying Li, Baoting Nong, Ying Xia, Zhiyi Li, Xiaoqin Zhong, Shuhan Yang, Gang Wan, Wenbin Ma, Su Wu, Zhou Songyang","doi":"10.1038/s41422-025-01088-6","DOIUrl":"https://doi.org/10.1038/s41422-025-01088-6","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":" ","pages":""},"PeriodicalIF":28.1,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TCR catch bonds nonlinearly control CD8 cooperation to shape T cell specificity.
IF 28.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-27 DOI: 10.1038/s41422-025-01077-9
Rui Qin, Yong Zhang, Jiawei Shi, Peng Wu, Chenyi An, Zhenhai Li, Nuo Liu, Ziyan Wan, Ting Hua, Xiaolong Li, Jizhong Lou, Weiwei Yin, Wei Chen

Naturally evolved T-cell receptors (TCRs) exhibit remarkably high specificity in discriminating non-self antigens from self-antigens under dynamic biomechanical modulation. In contrast, engineered high-affinity TCRs often lose this specificity, leading to cross-reactivity with self-antigens and off-target toxicity. The underlying mechanism for this difference remains unclear. Our study reveals that natural TCRs exploit mechanical force to form optimal catch bonds with their cognate antigens. This process relies on a mechanically flexible TCR-pMHC binding interface, which enables force-enhanced CD8 coreceptor binding to MHC-α1α2 domains through sequential conformational changes induced by force in both the MHC and CD8. Conversely, engineered high-affinity TCRs create rigid, tightly bound interfaces with cognate pMHCs of their parental TCRs. This rigidity prevents the force-induced conformational changes necessary for optimal catch-bond formation. Paradoxically, these high-affinity TCRs can form moderate catch bonds with non-stimulatory pMHCs of their parental TCRs, leading to off-target cross-reactivity and reduced specificity. We have also developed comprehensive force-dependent TCR-pMHC kinetics-function maps capable of distinguishing functional and non-functional TCR-pMHC pairs and identifying toxic, cross-reactive TCRs. These findings elucidate the mechano-chemical basis of the specificity of natural TCRs and highlight the critical role of CD8 in targeting cognate antigens. This work provides valuable insights for engineering TCRs with enhanced specificity and potency against non-self antigens, particularly for applications in cancer immunotherapy and infectious disease treatment, while minimizing the risk of self-antigen cross-reactivity.

{"title":"TCR catch bonds nonlinearly control CD8 cooperation to shape T cell specificity.","authors":"Rui Qin, Yong Zhang, Jiawei Shi, Peng Wu, Chenyi An, Zhenhai Li, Nuo Liu, Ziyan Wan, Ting Hua, Xiaolong Li, Jizhong Lou, Weiwei Yin, Wei Chen","doi":"10.1038/s41422-025-01077-9","DOIUrl":"https://doi.org/10.1038/s41422-025-01077-9","url":null,"abstract":"<p><p>Naturally evolved T-cell receptors (TCRs) exhibit remarkably high specificity in discriminating non-self antigens from self-antigens under dynamic biomechanical modulation. In contrast, engineered high-affinity TCRs often lose this specificity, leading to cross-reactivity with self-antigens and off-target toxicity. The underlying mechanism for this difference remains unclear. Our study reveals that natural TCRs exploit mechanical force to form optimal catch bonds with their cognate antigens. This process relies on a mechanically flexible TCR-pMHC binding interface, which enables force-enhanced CD8 coreceptor binding to MHC-α<sub>1</sub>α<sub>2</sub> domains through sequential conformational changes induced by force in both the MHC and CD8. Conversely, engineered high-affinity TCRs create rigid, tightly bound interfaces with cognate pMHCs of their parental TCRs. This rigidity prevents the force-induced conformational changes necessary for optimal catch-bond formation. Paradoxically, these high-affinity TCRs can form moderate catch bonds with non-stimulatory pMHCs of their parental TCRs, leading to off-target cross-reactivity and reduced specificity. We have also developed comprehensive force-dependent TCR-pMHC kinetics-function maps capable of distinguishing functional and non-functional TCR-pMHC pairs and identifying toxic, cross-reactive TCRs. These findings elucidate the mechano-chemical basis of the specificity of natural TCRs and highlight the critical role of CD8 in targeting cognate antigens. This work provides valuable insights for engineering TCRs with enhanced specificity and potency against non-self antigens, particularly for applications in cancer immunotherapy and infectious disease treatment, while minimizing the risk of self-antigen cross-reactivity.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":" ","pages":""},"PeriodicalIF":28.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hangry hairs: intermittent fasting linked to hair loss
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-25 DOI: 10.1038/s41422-025-01082-y
Carlos Galvan, William E. Lowry
{"title":"Hangry hairs: intermittent fasting linked to hair loss","authors":"Carlos Galvan, William E. Lowry","doi":"10.1038/s41422-025-01082-y","DOIUrl":"https://doi.org/10.1038/s41422-025-01082-y","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"12 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mimicking the TCR immune synapse for improved CAR-T cell function
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-25 DOI: 10.1038/s41422-025-01086-8
Tom Enbar, Li Tang
{"title":"Mimicking the TCR immune synapse for improved CAR-T cell function","authors":"Tom Enbar, Li Tang","doi":"10.1038/s41422-025-01086-8","DOIUrl":"https://doi.org/10.1038/s41422-025-01086-8","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"16 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grease, fuel and target — polyunsaturated lipids in metastasis
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-25 DOI: 10.1038/s41422-025-01089-5
Annemarie Schwab, Thomas Brabletz
{"title":"Grease, fuel and target — polyunsaturated lipids in metastasis","authors":"Annemarie Schwab, Thomas Brabletz","doi":"10.1038/s41422-025-01089-5","DOIUrl":"https://doi.org/10.1038/s41422-025-01089-5","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"65 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A force-sensitive adhesion GPCR is required for equilibrioception
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-18 DOI: 10.1038/s41422-025-01075-x
Zhao Yang, Shu-Hua Zhou, Qi-Yue Zhang, Zhi-Chen Song, Wen-Wen Liu, Yu Sun, Ming-Wei Wang, Xiao-Long Fu, Kong-Kai Zhu, Ying Guan, Jie-Yu Qi, Xiao-Hui Wang, Yu-Nan Sun, Yan Lu, Yu-Qi Ping, Yue-Tong Xi, Zhen-Xiao Teng, Lei Xu, Peng Xiao, Zhi-Gang Xu, Wei Xiong, Wei Qin, Wei Yang, Fan Yi, Ren-Jie Chai, Xiao Yu, Jin-Peng Sun

Equilibrioception (sensing of balance) is essential for mammals to perceive and navigate the three-dimensional world. A rapid mechanoelectrical transduction (MET) response in vestibular hair cells is crucial for detecting position and motion. Here, we identify the G protein-coupled receptor (GPCR) LPHN2/ADGRL2, expressed on the apical membrane of utricular hair cells, as essential for maintaining normal balance. Loss of LPHN2 specifically in hair cells impaired both balance behavior and the MET response in mice. Functional analyses using hair-cell-specific Lphn2-knockout mice and an LPHN2-specific inhibitor suggest that LPHN2 regulates tip-link-independent MET currents at the apical surface of utricular hair cells. Mechanistic studies in a heterologous system show that LPHN2 converts force stimuli into increased open probability of transmembrane channel-like protein 1 (TMC1). LPHN2-mediated force sensation triggers glutamate release and calcium signaling in utricular hair cells. Importantly, reintroducing LPHN2 into the hair cells of Lphn2-deficient mice restores vestibular function and MET response. Our data reveal that a mechanosensitive GPCR is required for equilibrioception.

{"title":"A force-sensitive adhesion GPCR is required for equilibrioception","authors":"Zhao Yang, Shu-Hua Zhou, Qi-Yue Zhang, Zhi-Chen Song, Wen-Wen Liu, Yu Sun, Ming-Wei Wang, Xiao-Long Fu, Kong-Kai Zhu, Ying Guan, Jie-Yu Qi, Xiao-Hui Wang, Yu-Nan Sun, Yan Lu, Yu-Qi Ping, Yue-Tong Xi, Zhen-Xiao Teng, Lei Xu, Peng Xiao, Zhi-Gang Xu, Wei Xiong, Wei Qin, Wei Yang, Fan Yi, Ren-Jie Chai, Xiao Yu, Jin-Peng Sun","doi":"10.1038/s41422-025-01075-x","DOIUrl":"https://doi.org/10.1038/s41422-025-01075-x","url":null,"abstract":"<p>Equilibrioception (sensing of balance) is essential for mammals to perceive and navigate the three-dimensional world. A rapid mechanoelectrical transduction (MET) response in vestibular hair cells is crucial for detecting position and motion. Here, we identify the G protein-coupled receptor (GPCR) LPHN2/ADGRL2, expressed on the apical membrane of utricular hair cells, as essential for maintaining normal balance. Loss of LPHN2 specifically in hair cells impaired both balance behavior and the MET response in mice. Functional analyses using hair-cell-specific <i>Lphn2</i>-knockout mice and an LPHN2-specific inhibitor suggest that LPHN2 regulates tip-link-independent MET currents at the apical surface of utricular hair cells. Mechanistic studies in a heterologous system show that LPHN2 converts force stimuli into increased open probability of transmembrane channel-like protein 1 (TMC1). LPHN2-mediated force sensation triggers glutamate release and calcium signaling in utricular hair cells. Importantly, reintroducing LPHN2 into the hair cells of <i>Lphn2</i>-deficient mice restores vestibular function and MET response. Our data reveal that a mechanosensitive GPCR is required for equilibrioception.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"47 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raptin, a novel brain hormone links sleep health to body weight gain 新型脑激素 Raptin 将睡眠健康与体重增加联系起来
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-17 DOI: 10.1038/s41422-025-01083-x
Leonie Cabot, Henning Fenselau
{"title":"Raptin, a novel brain hormone links sleep health to body weight gain","authors":"Leonie Cabot, Henning Fenselau","doi":"10.1038/s41422-025-01083-x","DOIUrl":"https://doi.org/10.1038/s41422-025-01083-x","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"133 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Halt aging? — functional HSCs lead the way
IF 28.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-06 DOI: 10.1038/s41422-025-01079-7
Rebecca T. Chu, Adam B. Schroer, Saul A. Villeda
{"title":"Halt aging? — functional HSCs lead the way","authors":"Rebecca T. Chu,&nbsp;Adam B. Schroer,&nbsp;Saul A. Villeda","doi":"10.1038/s41422-025-01079-7","DOIUrl":"10.1038/s41422-025-01079-7","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 3","pages":"157-158"},"PeriodicalIF":28.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-025-01079-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143192310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity
IF 28.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-01-29 DOI: 10.1038/s41422-025-01078-8
Ling-Qi Xie, Biao Hu, Ren-Bin Lu, Ya-Lun Cheng, Xin Chen, Jie Wen, Yao Xiao, Yu-Ze An, Ning Peng, Yu Dai, Genqing Xie, Qi Guo, Hui Peng, Xiang-Hang Luo
Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin. Raptin release is timed by the circuit from vasopressin-expressing neurons in the suprachiasmatic nucleus to RCN2-positive neurons in the paraventricular nucleus. Raptin levels peak during sleep, which is blunted by sleep deficiency. Raptin binds to glutamate metabotropic receptor 3 (GRM3) in neurons of the hypothalamus and stomach to inhibit appetite and gastric emptying, respectively. Raptin-GRM3 signaling mediates anorexigenic effects via PI3K-AKT signaling. Of note, we verify the connections between deficiencies in the sleeping state, impaired Raptin release, and obesity in patients with sleep deficiency. Moreover, humans carrying an RCN2 nonsense variant present with night eating syndrome and obesity. These data define a unique hormone that suppresses food intake and prevents obesity.
睡眠不足与肥胖有关,但这种联系的机制仍不清楚。在这里,我们在人类和小鼠体内发现了一种抑制肥胖的睡眠诱导下丘脑蛋白激素。这种激素是从网状钙化蛋白-2(RCN2)中裂解出来的,我们将其命名为 Raptin。Raptin的释放时间是由上丘脑核中表达血管加压素的神经元到室旁核中RCN2阳性神经元之间的回路决定的。Raptin水平在睡眠期间达到峰值,睡眠不足会使其减弱。Raptin与下丘脑和胃神经元中的谷氨酸代谢受体3(GRM3)结合,分别抑制食欲和胃排空。Raptin-GRM3 信号通过 PI3K-AKT 信号介导厌食效应。值得注意的是,我们验证了睡眠不足患者的睡眠状态缺陷、Raptin释放受损和肥胖之间的联系。此外,携带 RCN2 无义变体的人类也会出现夜食综合征和肥胖症。这些数据确定了一种抑制食物摄入和预防肥胖的独特激素。
{"title":"Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity","authors":"Ling-Qi Xie,&nbsp;Biao Hu,&nbsp;Ren-Bin Lu,&nbsp;Ya-Lun Cheng,&nbsp;Xin Chen,&nbsp;Jie Wen,&nbsp;Yao Xiao,&nbsp;Yu-Ze An,&nbsp;Ning Peng,&nbsp;Yu Dai,&nbsp;Genqing Xie,&nbsp;Qi Guo,&nbsp;Hui Peng,&nbsp;Xiang-Hang Luo","doi":"10.1038/s41422-025-01078-8","DOIUrl":"10.1038/s41422-025-01078-8","url":null,"abstract":"Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin. Raptin release is timed by the circuit from vasopressin-expressing neurons in the suprachiasmatic nucleus to RCN2-positive neurons in the paraventricular nucleus. Raptin levels peak during sleep, which is blunted by sleep deficiency. Raptin binds to glutamate metabotropic receptor 3 (GRM3) in neurons of the hypothalamus and stomach to inhibit appetite and gastric emptying, respectively. Raptin-GRM3 signaling mediates anorexigenic effects via PI3K-AKT signaling. Of note, we verify the connections between deficiencies in the sleeping state, impaired Raptin release, and obesity in patients with sleep deficiency. Moreover, humans carrying an RCN2 nonsense variant present with night eating syndrome and obesity. These data define a unique hormone that suppresses food intake and prevents obesity.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 3","pages":"165-185"},"PeriodicalIF":28.1,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-025-01078-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1