Pub Date : 2024-09-09DOI: 10.1038/s41422-024-01023-1
Yaxin Dai, Chia-Hsueh Lee
Urate is an endogenous product of purine metabolism in the liver. High urate levels in the blood lead to gout, a very common and painful inflammatory arthritis. Excreted urate is reabsorbed in the kidney mainly by URAT1 antiporter, a key target for anti-gout drugs. To uncover the mechanisms of urate transport and drug inhibition, we determined cryo-EM structures of human URAT1 with urate, counter anion pyrazinoate, or anti-gout drugs of different chemotypes — lesinurad, verinurad, and dotinurad. We captured the outward-to-inward transition of URAT1 during urate uptake, revealing that urate binds in a phenylalanine-rich pocket and engages with key gating residues to drive the transport cycle. In contrast to the single binding site for urate, pyrazinoate interacts with three distinct, functionally relevant sites within URAT1, a mechanism that has not yet been observed in other anion antiporters. In addition, we found that while all three drugs compete with substrates and halt the transport cycle, verinurad and dotinurad further hijack gating residues to achieve high potency. These insights advance our understanding of organic anion transport and provide a foundation for designing improved gout therapeutics.
{"title":"Transport mechanism and structural pharmacology of human urate transporter URAT1","authors":"Yaxin Dai, Chia-Hsueh Lee","doi":"10.1038/s41422-024-01023-1","DOIUrl":"10.1038/s41422-024-01023-1","url":null,"abstract":"Urate is an endogenous product of purine metabolism in the liver. High urate levels in the blood lead to gout, a very common and painful inflammatory arthritis. Excreted urate is reabsorbed in the kidney mainly by URAT1 antiporter, a key target for anti-gout drugs. To uncover the mechanisms of urate transport and drug inhibition, we determined cryo-EM structures of human URAT1 with urate, counter anion pyrazinoate, or anti-gout drugs of different chemotypes — lesinurad, verinurad, and dotinurad. We captured the outward-to-inward transition of URAT1 during urate uptake, revealing that urate binds in a phenylalanine-rich pocket and engages with key gating residues to drive the transport cycle. In contrast to the single binding site for urate, pyrazinoate interacts with three distinct, functionally relevant sites within URAT1, a mechanism that has not yet been observed in other anion antiporters. In addition, we found that while all three drugs compete with substrates and halt the transport cycle, verinurad and dotinurad further hijack gating residues to achieve high potency. These insights advance our understanding of organic anion transport and provide a foundation for designing improved gout therapeutics.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"34 11","pages":"776-787"},"PeriodicalIF":28.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-024-01023-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1038/s41422-024-01012-4
Bin Yan, Chunyan Liu, Jing Sun, Yang Mao, Can Zhou, Ji Li, Wei Liu, Shengdong Li, Wei Yan, Chenjian Fu, Peng Qin, Xingxue Fu, Xinghui Zhao, Xianwei Song, Jiawei Nie, Feng Gao, Yuanzhu Yang, Yuhang Chen, Xiaofeng Cao
Hybrid rice, widely planted in Asia, is pathogen resistant and has superior yields, making it a major contributor to global food security. The two-line hybrid rice system, which utilizes mutants exhibiting photo-/thermo-sensitive genic male sterility (P/TGMS), is the leading hybrid rice breeding technology. Mutations in THERMO-SENSITIVE GENIC MALE STERILE 5 (TMS5) accounts for over 95% of current TGMS lines. We previously found that tms5 carries a mutation in ribonuclease ZS1. Despite its importance for breeding robust rice lines, the mechanism underlying tms5-mediated TGMS remains elusive. Here, we demonstrate that TMS5 is a tRNA 2′,3′-cyclic phosphatase. The tms5 mutation leads to accumulation of 2′,3′-cyclic phosphate (cP)-ΔCCA-tRNAs (tRNAs without 3′ CCA ended with cP), which is exacerbated by high temperatures, and reduction in the abundance of mature tRNAs, particularly alanine tRNAs (tRNA-Alas). Overexpression of tRNA-Alas in the tms5 mutant restores male fertility to 70%. Remarkably, male fertility of tms5 mutant is completely restored at high temperatures by knocking out OsVms1 which encodes the enzyme for cP-ΔCCA-tRNA generation. Our study reveals the mechanism underlying tms5-mediated TGMS in rice and provides mechanistic insight into the further improvement of TGMS in hybrid crop development.
{"title":"Impaired 2′,3′-cyclic phosphate tRNA repair causes thermo-sensitive genic male sterility in rice","authors":"Bin Yan, Chunyan Liu, Jing Sun, Yang Mao, Can Zhou, Ji Li, Wei Liu, Shengdong Li, Wei Yan, Chenjian Fu, Peng Qin, Xingxue Fu, Xinghui Zhao, Xianwei Song, Jiawei Nie, Feng Gao, Yuanzhu Yang, Yuhang Chen, Xiaofeng Cao","doi":"10.1038/s41422-024-01012-4","DOIUrl":"10.1038/s41422-024-01012-4","url":null,"abstract":"Hybrid rice, widely planted in Asia, is pathogen resistant and has superior yields, making it a major contributor to global food security. The two-line hybrid rice system, which utilizes mutants exhibiting photo-/thermo-sensitive genic male sterility (P/TGMS), is the leading hybrid rice breeding technology. Mutations in THERMO-SENSITIVE GENIC MALE STERILE 5 (TMS5) accounts for over 95% of current TGMS lines. We previously found that tms5 carries a mutation in ribonuclease ZS1. Despite its importance for breeding robust rice lines, the mechanism underlying tms5-mediated TGMS remains elusive. Here, we demonstrate that TMS5 is a tRNA 2′,3′-cyclic phosphatase. The tms5 mutation leads to accumulation of 2′,3′-cyclic phosphate (cP)-ΔCCA-tRNAs (tRNAs without 3′ CCA ended with cP), which is exacerbated by high temperatures, and reduction in the abundance of mature tRNAs, particularly alanine tRNAs (tRNA-Alas). Overexpression of tRNA-Alas in the tms5 mutant restores male fertility to 70%. Remarkably, male fertility of tms5 mutant is completely restored at high temperatures by knocking out OsVms1 which encodes the enzyme for cP-ΔCCA-tRNA generation. Our study reveals the mechanism underlying tms5-mediated TGMS in rice and provides mechanistic insight into the further improvement of TGMS in hybrid crop development.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"34 11","pages":"763-775"},"PeriodicalIF":28.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1038/s41422-024-01024-0
Ailong Song, Xudong Wu
{"title":"Mechanistic insights of substrate transport and inhibitor binding revealed by high-resolution structures of human norepinephrine transporter","authors":"Ailong Song, Xudong Wu","doi":"10.1038/s41422-024-01024-0","DOIUrl":"10.1038/s41422-024-01024-0","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"34 11","pages":"810-813"},"PeriodicalIF":28.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-024-01024-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The bacterial flagellar motor is a huge bidirectional rotary nanomachine that drives rotation of the flagellum for bacterial motility. The cytoplasmic C ring of the flagellar motor functions as the switch complex for the rotational direction switching from counterclockwise to clockwise. However, the structural basis of the rotational switching and how the C ring is assembled have long remained elusive. Here, we present two high-resolution cryo-electron microscopy structures of the C ring-containing flagellar basal body–hook complex from Salmonella Typhimurium, which are in the default counterclockwise state and in a constitutively active CheY mutant-induced clockwise state, respectively. In both complexes, the C ring consists of four subrings, but is in two different conformations. The CheY proteins are bound into an open groove between two adjacent protomers on the surface of the middle subring of the C ring and interact with the FliG and FliM subunits. The binding of the CheY protein induces a significant upward shift of the C ring towards the MS ring and inward movements of its protomers towards the motor center, which eventually remodels the structures of the FliG subunits and reverses the orientations and surface electrostatic potential of the αtorque helices to trigger the counterclockwise-to-clockwise rotational switching. The conformational changes of the FliG subunits reveal that the stator units on the motor require a relocation process in the inner membrane during the rotational switching. This study provides unprecedented molecular insights into the rotational switching mechanism and a detailed overall structural view of the bacterial flagellar motors.
细菌鞭毛马达是一个巨大的双向旋转纳米机械,可驱动鞭毛旋转,从而实现细菌的运动。鞭毛马达细胞质中的 C 环是旋转方向从逆时针到顺时针切换的开关复合物。然而,旋转切换的结构基础以及 C 环是如何组装的,长期以来一直是个谜。在这里,我们展示了两种来自鼠伤寒沙门氏菌的含C环的鞭毛基体-钩复合体的高分辨率冷冻电镜结构,它们分别处于默认的逆时针状态和组成型活性CheY突变诱导的顺时针状态。在这两种复合物中,C 环由四个子环组成,但有两种不同的构象。CheY 蛋白结合到 C 环中间亚环表面两个相邻原基之间的开放沟槽中,并与 FliG 和 FliM 亚基相互作用。CheY 蛋白的结合导致 C 环向 MS 环显著上移,其原生体向马达中心内移,最终重塑了 FliG 亚基的结构,扭转了 α 扭转螺旋的方向和表面静电势,引发了逆时针到顺时针的旋转切换。FliG 亚基的构象变化揭示出,在旋转切换过程中,马达上的定子单元需要在内膜上进行重新定位。这项研究为旋转切换机制提供了前所未有的分子见解,并为细菌鞭毛马达提供了详细的整体结构视图。
{"title":"Structural basis of the bacterial flagellar motor rotational switching","authors":"Jiaxing Tan, Ling Zhang, Xingtong Zhou, Siyu Han, Yan Zhou, Yongqun Zhu","doi":"10.1038/s41422-024-01017-z","DOIUrl":"10.1038/s41422-024-01017-z","url":null,"abstract":"The bacterial flagellar motor is a huge bidirectional rotary nanomachine that drives rotation of the flagellum for bacterial motility. The cytoplasmic C ring of the flagellar motor functions as the switch complex for the rotational direction switching from counterclockwise to clockwise. However, the structural basis of the rotational switching and how the C ring is assembled have long remained elusive. Here, we present two high-resolution cryo-electron microscopy structures of the C ring-containing flagellar basal body–hook complex from Salmonella Typhimurium, which are in the default counterclockwise state and in a constitutively active CheY mutant-induced clockwise state, respectively. In both complexes, the C ring consists of four subrings, but is in two different conformations. The CheY proteins are bound into an open groove between two adjacent protomers on the surface of the middle subring of the C ring and interact with the FliG and FliM subunits. The binding of the CheY protein induces a significant upward shift of the C ring towards the MS ring and inward movements of its protomers towards the motor center, which eventually remodels the structures of the FliG subunits and reverses the orientations and surface electrostatic potential of the αtorque helices to trigger the counterclockwise-to-clockwise rotational switching. The conformational changes of the FliG subunits reveal that the stator units on the motor require a relocation process in the inner membrane during the rotational switching. This study provides unprecedented molecular insights into the rotational switching mechanism and a detailed overall structural view of the bacterial flagellar motors.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"34 11","pages":"788-801"},"PeriodicalIF":28.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-024-01017-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1038/s41422-024-01015-1
Sten Eirik W Jacobsen
{"title":"Preservation of a youthful path to evergreen platelets?","authors":"Sten Eirik W Jacobsen","doi":"10.1038/s41422-024-01015-1","DOIUrl":"https://doi.org/10.1038/s41422-024-01015-1","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":" ","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1038/s41422-024-01018-y
George Hajishengallis, Triantafyllos Chavakis
{"title":"Stroke-induced trained immunity spells bad news for the heart","authors":"George Hajishengallis, Triantafyllos Chavakis","doi":"10.1038/s41422-024-01018-y","DOIUrl":"https://doi.org/10.1038/s41422-024-01018-y","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"95 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1038/s41422-024-01014-2
Ke Sun, Sicong Li, Bowen Zheng, Yanlei Zhu, Tongyue Wang, Mingfu Liang, Yue Yao, Kairan Zhang, Jizhong Zhang, Hongyong Li, Dongyang Han, Jishen Zheng, Brian Coventry, Longxing Cao, David Baker, Lei Liu, Peilong Lu
Abiotic d-proteins that selectively bind to natural l-proteins have gained significant biotechnological interest. However, the underlying structural principles governing such heterochiral protein–protein interactions remain largely unknown. In this study, we present the de novo design of d-proteins consisting of 50–65 residues, aiming to target specific surface regions of l-proteins or l-peptides. Our designer d-protein binders exhibit nanomolar affinity toward an artificial l-peptide, as well as two naturally occurring proteins of therapeutic significance: the D5 domain of human tropomyosin receptor kinase A (TrkA) and human interleukin-6 (IL-6). Notably, these d-protein binders demonstrate high enantiomeric specificity and target specificity. In cell-based experiments, designer d-protein binders effectively inhibited the downstream signaling of TrkA and IL-6 with high potency. Moreover, these binders exhibited remarkable thermal stability and resistance to protease degradation. Crystal structure of the designed heterochiral d-protein–l-peptide complex, obtained at a resolution of 2.0 Å, closely resembled the design model, indicating that the computational method employed is highly accurate. Furthermore, the crystal structure provides valuable information regarding the interactions between helical l-peptides and d-proteins, particularly elucidating a novel mode of heterochiral helix–helix interactions. Leveraging the design of d-proteins specifically targeting l-peptides or l-proteins opens up avenues for systematic exploration of the mirror-image protein universe, paving the way for a diverse range of applications.
选择性地与天然 L 蛋白结合的非生物 D 蛋白已引起生物技术的极大兴趣。然而,制约这种异手性蛋白-蛋白相互作用的基本结构原理在很大程度上仍不为人所知。在本研究中,我们从头开始设计了由 50-65 个残基组成的 D 蛋白,旨在靶向 L 蛋白或 L 肽的特定表面区域。我们设计的D蛋白结合剂对人工L肽以及两种具有治疗意义的天然蛋白(人肌钙蛋白受体激酶A(TrkA)的D5结构域和人白细胞介素-6(IL-6))具有纳摩尔级的亲和力。值得注意的是,这些 D 蛋白结合剂具有很高的对映体特异性和靶向特异性。在基于细胞的实验中,设计的 D 蛋白结合剂以高效力有效抑制了 TrkA 和 IL-6 的下游信号传导。此外,这些结合剂还具有显著的热稳定性和抗蛋白酶降解性。所设计的异手性 D 蛋白-L 肽复合物的晶体结构分辨率为 2.0 Å,与设计模型非常相似,表明所采用的计算方法非常精确。此外,该晶体结构还为螺旋 L 肽和 D 蛋白之间的相互作用提供了宝贵的信息,特别是阐明了一种新型的异螺旋-螺旋相互作用模式。利用专门针对 L 肽或 L 蛋白的 D 蛋白设计为系统探索镜像蛋白质宇宙开辟了途径,为各种应用铺平了道路。
{"title":"Accurate de novo design of heterochiral protein–protein interactions","authors":"Ke Sun, Sicong Li, Bowen Zheng, Yanlei Zhu, Tongyue Wang, Mingfu Liang, Yue Yao, Kairan Zhang, Jizhong Zhang, Hongyong Li, Dongyang Han, Jishen Zheng, Brian Coventry, Longxing Cao, David Baker, Lei Liu, Peilong Lu","doi":"10.1038/s41422-024-01014-2","DOIUrl":"10.1038/s41422-024-01014-2","url":null,"abstract":"Abiotic d-proteins that selectively bind to natural l-proteins have gained significant biotechnological interest. However, the underlying structural principles governing such heterochiral protein–protein interactions remain largely unknown. In this study, we present the de novo design of d-proteins consisting of 50–65 residues, aiming to target specific surface regions of l-proteins or l-peptides. Our designer d-protein binders exhibit nanomolar affinity toward an artificial l-peptide, as well as two naturally occurring proteins of therapeutic significance: the D5 domain of human tropomyosin receptor kinase A (TrkA) and human interleukin-6 (IL-6). Notably, these d-protein binders demonstrate high enantiomeric specificity and target specificity. In cell-based experiments, designer d-protein binders effectively inhibited the downstream signaling of TrkA and IL-6 with high potency. Moreover, these binders exhibited remarkable thermal stability and resistance to protease degradation. Crystal structure of the designed heterochiral d-protein–l-peptide complex, obtained at a resolution of 2.0 Å, closely resembled the design model, indicating that the computational method employed is highly accurate. Furthermore, the crystal structure provides valuable information regarding the interactions between helical l-peptides and d-proteins, particularly elucidating a novel mode of heterochiral helix–helix interactions. Leveraging the design of d-proteins specifically targeting l-peptides or l-proteins opens up avenues for systematic exploration of the mirror-image protein universe, paving the way for a diverse range of applications.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"34 12","pages":"846-858"},"PeriodicalIF":28.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-024-01014-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-07DOI: 10.1038/s41422-024-01011-5
Poonam S. Jadhav, Shreya Mahajan, Si Ming Man
{"title":"NLRC5 PANoptosome: Aquaman of the Dead Sea","authors":"Poonam S. Jadhav, Shreya Mahajan, Si Ming Man","doi":"10.1038/s41422-024-01011-5","DOIUrl":"10.1038/s41422-024-01011-5","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 1","pages":"9-10"},"PeriodicalIF":28.1,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-024-01011-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}