首页 > 最新文献

Cell Research最新文献

英文 中文
Lineage plasticity and histological transformation: tumor histology as a spectrum 谱系可塑性和组织学转化:肿瘤组织学作为一个光谱。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-09-30 DOI: 10.1038/s41422-025-01180-x
Xiaoling Li, Eric E. Gardner, Sonia Molina-Pinelo, Clare Wilhelm, Ping Mu, Álvaro Quintanal-Villalonga
Lineage plasticity, the ability of cells to transition to an alternative phenotype as a means for adaptation, is an increasingly recognized mechanism of tumor evolution and a driver of resistance to anticancer therapies. The most extensively described clinical settings impacted by such molecular phenomena include neuroendocrine transformation in androgen receptor-dependent prostate adenocarcinoma, and adenocarcinoma-to-neuroendocrine and adenocarcinoma-to-squamous transdifferentiation in epidermal growth factor receptor-driven lung adenocarcinoma, affecting 10%–20% of patients treated with targeted therapy. Recent analyses of human tumor samples and in vivo models of histological transformation have led to insights into the biology of lineage plasticity, including biomarkers predictive of high risk of transformation. However, no clinically available therapies aimed to prevent or revert plasticity are currently available. In the present review, we will provide a biological and therapeutic overview of the current understanding of common and divergent molecular drivers of neuroendocrine and squamous transdifferentiation in tumors from different origins, including descriptive analysis of previously known and recently described molecular events associated with histological transformation, and propose evidence-based alternative models of transdifferentiation. A clear definition of the commonalities and differences of transforming tumors in different organs and to different histological fates will be important to translate molecular findings to the clinical setting.
谱系可塑性,即细胞向另一种表型转变的能力,作为一种适应手段,是肿瘤进化的一种日益被认可的机制,也是对抗癌治疗产生耐药性的驱动因素。受这种分子现象影响的最广泛描述的临床情况包括雄激素受体依赖性前列腺癌的神经内分泌转化,以及表皮生长因子受体驱动的肺腺癌的腺癌向神经内分泌和腺癌向鳞状细胞的转分化,影响10%-20%接受靶向治疗的患者。最近对人类肿瘤样本和体内组织学转化模型的分析已经导致对谱系可塑性生物学的深入了解,包括预测转化高风险的生物标志物。然而,目前临床上还没有旨在预防或恢复可塑性的治疗方法。在目前的综述中,我们将对不同来源的肿瘤中神经内分泌和鳞状细胞转分化的共同和不同的分子驱动因素进行生物学和治疗方面的概述,包括对先前已知和最近描述的与组织学转化相关的分子事件的描述性分析,并提出基于证据的转分化替代模型。明确定义不同器官和不同组织学命运的转化性肿瘤的共性和差异对于将分子发现转化为临床环境至关重要。
{"title":"Lineage plasticity and histological transformation: tumor histology as a spectrum","authors":"Xiaoling Li, Eric E. Gardner, Sonia Molina-Pinelo, Clare Wilhelm, Ping Mu, Álvaro Quintanal-Villalonga","doi":"10.1038/s41422-025-01180-x","DOIUrl":"10.1038/s41422-025-01180-x","url":null,"abstract":"Lineage plasticity, the ability of cells to transition to an alternative phenotype as a means for adaptation, is an increasingly recognized mechanism of tumor evolution and a driver of resistance to anticancer therapies. The most extensively described clinical settings impacted by such molecular phenomena include neuroendocrine transformation in androgen receptor-dependent prostate adenocarcinoma, and adenocarcinoma-to-neuroendocrine and adenocarcinoma-to-squamous transdifferentiation in epidermal growth factor receptor-driven lung adenocarcinoma, affecting 10%–20% of patients treated with targeted therapy. Recent analyses of human tumor samples and in vivo models of histological transformation have led to insights into the biology of lineage plasticity, including biomarkers predictive of high risk of transformation. However, no clinically available therapies aimed to prevent or revert plasticity are currently available. In the present review, we will provide a biological and therapeutic overview of the current understanding of common and divergent molecular drivers of neuroendocrine and squamous transdifferentiation in tumors from different origins, including descriptive analysis of previously known and recently described molecular events associated with histological transformation, and propose evidence-based alternative models of transdifferentiation. A clear definition of the commonalities and differences of transforming tumors in different organs and to different histological fates will be important to translate molecular findings to the clinical setting.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 11","pages":"803-823"},"PeriodicalIF":25.9,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01180-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145189203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular basis of vitamin K-dependent protein γ-glutamyl carboxylation 维生素k依赖蛋白γ-谷氨酰羧化的分子基础。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-09-29 DOI: 10.1038/s41422-025-01185-6
Qihang Zhong, Dandan Chen, Jinkun Xu, Yao Li, Wanqiong Yuan, Yan Meng, Qi Wen, Qiwei Ye, Guopeng Wang, Kexin Pan, Chunli Song, Lin Tao, Jie Qiao, Jing Hang
{"title":"Molecular basis of vitamin K-dependent protein γ-glutamyl carboxylation","authors":"Qihang Zhong, Dandan Chen, Jinkun Xu, Yao Li, Wanqiong Yuan, Yan Meng, Qi Wen, Qiwei Ye, Guopeng Wang, Kexin Pan, Chunli Song, Lin Tao, Jie Qiao, Jing Hang","doi":"10.1038/s41422-025-01185-6","DOIUrl":"10.1038/s41422-025-01185-6","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 11","pages":"917-920"},"PeriodicalIF":25.9,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01185-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145184691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-RNA Rmrp pre-dimerizes TLR3 for immune activation 自rna Rmrp使TLR3预二聚体参与免疫激活。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-09-29 DOI: 10.1038/s41422-025-01184-7
Ailin Han, Richard A. Flavell
{"title":"Self-RNA Rmrp pre-dimerizes TLR3 for immune activation","authors":"Ailin Han, Richard A. Flavell","doi":"10.1038/s41422-025-01184-7","DOIUrl":"10.1038/s41422-025-01184-7","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 11","pages":"781-782"},"PeriodicalIF":25.9,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01184-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145182724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting NNMT in fibroblasts reawakens T cells and restores antitumor immunity. 靶向成纤维细胞中的NNMT可唤醒T细胞并恢复抗肿瘤免疫。
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-09-24 DOI: 10.1038/s41422-025-01181-w
Moumita Sarkar,Yi Jiang,Raghu Kalluri
{"title":"Targeting NNMT in fibroblasts reawakens T cells and restores antitumor immunity.","authors":"Moumita Sarkar,Yi Jiang,Raghu Kalluri","doi":"10.1038/s41422-025-01181-w","DOIUrl":"https://doi.org/10.1038/s41422-025-01181-w","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"11 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145127102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATP-dependent one-dimensional movement maintains immune homeostasis by suppressing spontaneous MDA5 filament assembly atp依赖的一维运动通过抑制自发的MDA5丝组装来维持免疫稳态。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-09-19 DOI: 10.1038/s41422-025-01183-8
Xiao-Peng Han, Ming Rao, Yu Chang, Jun-Yan Zhu, Jun Cheng, Yu-Ting Li, Wu Qiong, Si-Chao Ye, Qiurong Zhang, Shao-Qing Zhang, Ling-Ling Chen, Fajian Hou, Jin Zhong, Jiaquan Liu
MDA5 is a RIG-I-like receptor (RLR) that recognizes viral double-stranded RNA (dsRNA) to initiate the innate immune response. Its activation requires filament formation along the dsRNA, which triggers the oligomerization of N-terminal caspase activation and recruitment domains. The ATPase activity of MDA5 is critical for immune homeostasis, likely by regulating filament assembly. However, the molecular basis underlying this process remains poorly understood. Here, we show that MDA5 operates as an ATP-hydrolysis-driven motor that translocates along dsRNA in a one-dimensional (1D) manner. Multiple MDA5 motors can cooperatively load onto a single dsRNA, but their movements rarely synchronize, inhibiting spontaneous filament formation and activation. LGP2, a key regulator of MDA5 signaling, recognizes MDA5 motors and blocks their movement, thereby promoting filament assembly through a translocation-directed mechanism. This unique assembly strategy underscores the role of 1D motion in higher-order protein oligomerization and reveals a novel mechanism for maintaining immune homeostasis.
MDA5是一种rig - i样受体(RLR),可识别病毒双链RNA (dsRNA)启动先天免疫反应。它的激活需要沿着dsRNA形成丝,这触发n端caspase激活和募集结构域的寡聚化。MDA5的atp酶活性对免疫稳态至关重要,可能通过调节丝的组装。然而,这一过程背后的分子基础仍然知之甚少。在这里,我们发现MDA5作为atp水解驱动的马达,沿着dsRNA以一维(1D)方式易位。多个MDA5马达可以协同加载到单个dsRNA上,但它们的运动很少同步,抑制了自发细丝的形成和激活。LGP2是MDA5信号的关键调控因子,它识别MDA5马达并阻断其运动,从而通过易位导向机制促进丝的组装。这种独特的组装策略强调了一维运动在高阶蛋白质寡聚化中的作用,并揭示了维持免疫稳态的新机制。
{"title":"ATP-dependent one-dimensional movement maintains immune homeostasis by suppressing spontaneous MDA5 filament assembly","authors":"Xiao-Peng Han, Ming Rao, Yu Chang, Jun-Yan Zhu, Jun Cheng, Yu-Ting Li, Wu Qiong, Si-Chao Ye, Qiurong Zhang, Shao-Qing Zhang, Ling-Ling Chen, Fajian Hou, Jin Zhong, Jiaquan Liu","doi":"10.1038/s41422-025-01183-8","DOIUrl":"10.1038/s41422-025-01183-8","url":null,"abstract":"MDA5 is a RIG-I-like receptor (RLR) that recognizes viral double-stranded RNA (dsRNA) to initiate the innate immune response. Its activation requires filament formation along the dsRNA, which triggers the oligomerization of N-terminal caspase activation and recruitment domains. The ATPase activity of MDA5 is critical for immune homeostasis, likely by regulating filament assembly. However, the molecular basis underlying this process remains poorly understood. Here, we show that MDA5 operates as an ATP-hydrolysis-driven motor that translocates along dsRNA in a one-dimensional (1D) manner. Multiple MDA5 motors can cooperatively load onto a single dsRNA, but their movements rarely synchronize, inhibiting spontaneous filament formation and activation. LGP2, a key regulator of MDA5 signaling, recognizes MDA5 motors and blocks their movement, thereby promoting filament assembly through a translocation-directed mechanism. This unique assembly strategy underscores the role of 1D motion in higher-order protein oligomerization and reveals a novel mechanism for maintaining immune homeostasis.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 11","pages":"900-912"},"PeriodicalIF":25.9,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01183-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145089897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
White matter interactome in vascular dementia 血管性痴呆的白质相互作用。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-09-17 DOI: 10.1038/s41422-025-01175-8
Stefan Wendt, Brian A. MacVicar
{"title":"White matter interactome in vascular dementia","authors":"Stefan Wendt, Brian A. MacVicar","doi":"10.1038/s41422-025-01175-8","DOIUrl":"10.1038/s41422-025-01175-8","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"36 2","pages":"101-102"},"PeriodicalIF":25.9,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01175-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145078225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deconstructing the architecture of memory engrams 解构记忆印迹的架构。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-09-17 DOI: 10.1038/s41422-025-01179-4
Yi Zhong, Bo Lei
{"title":"Deconstructing the architecture of memory engrams","authors":"Yi Zhong, Bo Lei","doi":"10.1038/s41422-025-01179-4","DOIUrl":"10.1038/s41422-025-01179-4","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 11","pages":"783-784"},"PeriodicalIF":25.9,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01179-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145078206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soluble tissue factor generated by necroptosis-triggered shedding is responsible for thrombosis 坏死引发的脱落所产生的可溶性组织因子是导致血栓形成的原因
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-09-12 DOI: 10.1038/s41422-025-01167-8
Peixing Wan, Swati Choksi, Yeon-Ji Park, Xin Chen, Jiong Yan, Sahar Foroutannejad, Zhaoshan Liu, Jichun Chen, Ross Lake, Chengyu Liu, Zheng-Gang Liu
Tissue factor (TF) is a cell surface protein critical for normal hemostasis and pathological thrombosis. Necroptosis is a form of regulated necrosis associated with different diseases. Here, we reported the identification of the first functional soluble tissue factor (sTF) in mediating blood coagulation, shed from the membrane full-length TF (flTF) by proteases, ADAMs, during necroptosis. By generating sTF-specific antibody and transgenic mice carrying knockin mutations at the ADAM cleavage site of TF (T211V212 mutated to E211E212), we demonstrated that this sTF is responsible for necroptosis-related thrombosis in inflammation and viral infection mouse models. Importantly, we showed that eliminating necroptosis or the cleavage of the flTF blocked the production of sTF and prevented thrombosis in mice. We also detected sTF in the plasma of human COVID-19 patients and showed that SARS-CoV-2 pseudovirus induced sTF production. Our findings demonstrated that the sTF plays a major role in thrombosis under necroptosis-related pathological conditions and provided a diagnostic marker and potential therapies for treating thrombosis without affecting hemostasis.
组织因子(Tissue factor, TF)是一种对正常止血和病理性血栓形成至关重要的细胞表面蛋白。坏死性上睑下垂是一种与不同疾病相关的受调节的坏死。在这里,我们报道了在坏死坏死过程中,由蛋白酶ADAMs从膜全长TF (flTF)中脱落的第一个介导血液凝固的功能性可溶性组织因子(sTF)的鉴定。通过产生sTF特异性抗体和在TF的ADAM切割位点携带敲入基因突变的转基因小鼠(T211V212突变为E211E212),我们证明了该sTF在炎症和病毒感染小鼠模型中负责坏死相关血栓形成。重要的是,我们发现消除坏死下垂或flTF的切割可阻断小鼠sTF的产生并防止血栓形成。我们还在人类COVID-19患者的血浆中检测到sTF,并表明SARS-CoV-2假病毒诱导了sTF的产生。我们的研究结果表明,sTF在坏死相关病理条件下的血栓形成中起着重要作用,为不影响止血的治疗血栓形成提供了诊断标志和潜在的治疗方法。
{"title":"Soluble tissue factor generated by necroptosis-triggered shedding is responsible for thrombosis","authors":"Peixing Wan, Swati Choksi, Yeon-Ji Park, Xin Chen, Jiong Yan, Sahar Foroutannejad, Zhaoshan Liu, Jichun Chen, Ross Lake, Chengyu Liu, Zheng-Gang Liu","doi":"10.1038/s41422-025-01167-8","DOIUrl":"10.1038/s41422-025-01167-8","url":null,"abstract":"Tissue factor (TF) is a cell surface protein critical for normal hemostasis and pathological thrombosis. Necroptosis is a form of regulated necrosis associated with different diseases. Here, we reported the identification of the first functional soluble tissue factor (sTF) in mediating blood coagulation, shed from the membrane full-length TF (flTF) by proteases, ADAMs, during necroptosis. By generating sTF-specific antibody and transgenic mice carrying knockin mutations at the ADAM cleavage site of TF (T211V212 mutated to E211E212), we demonstrated that this sTF is responsible for necroptosis-related thrombosis in inflammation and viral infection mouse models. Importantly, we showed that eliminating necroptosis or the cleavage of the flTF blocked the production of sTF and prevented thrombosis in mice. We also detected sTF in the plasma of human COVID-19 patients and showed that SARS-CoV-2 pseudovirus induced sTF production. Our findings demonstrated that the sTF plays a major role in thrombosis under necroptosis-related pathological conditions and provided a diagnostic marker and potential therapies for treating thrombosis without affecting hemostasis.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 11","pages":"840-858"},"PeriodicalIF":25.9,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01167-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145035310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An anti-inflammatory autophagic target in chronic diseases 慢性疾病中的抗炎自噬靶点
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-09-11 DOI: 10.1038/s41422-025-01176-7
Prithvi Reddy Akepati, Vojo Deretic
{"title":"An anti-inflammatory autophagic target in chronic diseases","authors":"Prithvi Reddy Akepati, Vojo Deretic","doi":"10.1038/s41422-025-01176-7","DOIUrl":"10.1038/s41422-025-01176-7","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"36 2","pages":"99-100"},"PeriodicalIF":25.9,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01176-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145031907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
APOL proteins tune gut immunity via commensal lipid recognition APOL蛋白通过共生脂质识别调节肠道免疫
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-09-08 DOI: 10.1038/s41422-025-01166-9
Shohei Asami, Hiroshi Ohno
{"title":"APOL proteins tune gut immunity via commensal lipid recognition","authors":"Shohei Asami, Hiroshi Ohno","doi":"10.1038/s41422-025-01166-9","DOIUrl":"10.1038/s41422-025-01166-9","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"36 1","pages":"9-10"},"PeriodicalIF":25.9,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01166-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145017359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1