首页 > 最新文献

Cell Research最新文献

英文 中文
ZBP1 links infections to cancer immunotherapy. ZBP1将感染与癌症免疫治疗联系起来。
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-13 DOI: 10.1038/s41422-025-01196-3
Lorenzo Galluzzi,Spencer Brackett,Neil Johnson
{"title":"ZBP1 links infections to cancer immunotherapy.","authors":"Lorenzo Galluzzi,Spencer Brackett,Neil Johnson","doi":"10.1038/s41422-025-01196-3","DOIUrl":"https://doi.org/10.1038/s41422-025-01196-3","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"27 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145499459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted destruction of VISTA boosts anti-tumor immunotherapy 靶向破坏VISTA促进抗肿瘤免疫治疗。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-13 DOI: 10.1038/s41422-025-01194-5
Li Chen, Xia Bu, Yishuang Sun, Daoyuan Huang, Yong Chen, Tao Hou, Xiaoping Hu, Jingchao Wang, Peiqiang Yan, Yihang Qi, Weiwei Jiang, Yan Xiong, Jing Liu, Yang Gao, Mengxi Huan, Bin Wang, Qianjia Liu, Xiaoming Dai, Fabin Dang, John M. Asara, Masanori Fujimoto, Hiroyuki Inuzuka, Jian Jin, Jinfang Zhang, Gordon J. Freeman, Wenyi Wei
Immune checkpoints serve as regulatory pathways that are essential for regulating immune response and homeostasis. As such, many components along the pathway have emerged as pivotal targets in cancer therapy. To overcome the treatment resistance and limited efficacy encountered by current immune checkpoint therapies, there is an urgent need for new immunotherapeutic targets and strategies. V-domain Ig suppressor of T cell activation (VISTA) is an immune checkpoint protein with a unique expression pattern and has emerged as a novel therapeutic target in anti-tumor immunotherapy; however, the precise role of VISTA and its regulatory mechanisms in tumor cells remain incompletely understood. Here, we identify a novel strategy targeting VISTA for cancer immunotherapy, enhancing therapeutic outcomes. Mechanistically, we show that VISTA undergoes anaphase-promoting complex/cyclosome (APC/C)/CDH1-mediated ubiquitination and subsequent proteasomal degradation, a process that can be reversed by the deubiquitinase USP2. Therapeutically, the USP2 inhibitor MS102 significantly reduces VISTA protein abundance in vitro and in vivo, enhances T cell responses, and synergizes with anti-PD-1 immunotherapy to improve survival in syngeneic mouse tumor models. Our findings reveal a regulatory network for VISTA stability control and support the combination of USP2 inhibitors with anti-PD-1 immunotherapy to enhance anti-tumor immune responses.
免疫检查点是调节免疫反应和体内平衡的重要途径。因此,该通路上的许多成分已成为癌症治疗的关键靶点。为了克服目前免疫检查点疗法所遇到的治疗耐药性和有限的疗效,迫切需要新的免疫治疗靶点和策略。V-domain Ig suppressor of T cell activation (VISTA)是一种具有独特表达模式的免疫检查点蛋白,已成为抗肿瘤免疫治疗的新靶点;然而,VISTA在肿瘤细胞中的确切作用及其调控机制尚不完全清楚。在这里,我们确定了一种针对VISTA的癌症免疫治疗新策略,提高了治疗效果。在机制上,我们发现VISTA经历了后期促进复合物/环体(APC/C)/ cdh1介导的泛素化和随后的蛋白酶体降解,这一过程可以通过去泛素酶USP2逆转。在治疗上,USP2抑制剂MS102在体外和体内显著降低VISTA蛋白丰度,增强T细胞反应,并与抗pd -1免疫疗法协同作用,提高同基因小鼠肿瘤模型的生存率。我们的研究结果揭示了VISTA稳定性控制的调控网络,并支持USP2抑制剂与抗pd -1免疫疗法联合使用以增强抗肿瘤免疫应答。
{"title":"Targeted destruction of VISTA boosts anti-tumor immunotherapy","authors":"Li Chen, Xia Bu, Yishuang Sun, Daoyuan Huang, Yong Chen, Tao Hou, Xiaoping Hu, Jingchao Wang, Peiqiang Yan, Yihang Qi, Weiwei Jiang, Yan Xiong, Jing Liu, Yang Gao, Mengxi Huan, Bin Wang, Qianjia Liu, Xiaoming Dai, Fabin Dang, John M. Asara, Masanori Fujimoto, Hiroyuki Inuzuka, Jian Jin, Jinfang Zhang, Gordon J. Freeman, Wenyi Wei","doi":"10.1038/s41422-025-01194-5","DOIUrl":"10.1038/s41422-025-01194-5","url":null,"abstract":"Immune checkpoints serve as regulatory pathways that are essential for regulating immune response and homeostasis. As such, many components along the pathway have emerged as pivotal targets in cancer therapy. To overcome the treatment resistance and limited efficacy encountered by current immune checkpoint therapies, there is an urgent need for new immunotherapeutic targets and strategies. V-domain Ig suppressor of T cell activation (VISTA) is an immune checkpoint protein with a unique expression pattern and has emerged as a novel therapeutic target in anti-tumor immunotherapy; however, the precise role of VISTA and its regulatory mechanisms in tumor cells remain incompletely understood. Here, we identify a novel strategy targeting VISTA for cancer immunotherapy, enhancing therapeutic outcomes. Mechanistically, we show that VISTA undergoes anaphase-promoting complex/cyclosome (APC/C)/CDH1-mediated ubiquitination and subsequent proteasomal degradation, a process that can be reversed by the deubiquitinase USP2. Therapeutically, the USP2 inhibitor MS102 significantly reduces VISTA protein abundance in vitro and in vivo, enhances T cell responses, and synergizes with anti-PD-1 immunotherapy to improve survival in syngeneic mouse tumor models. Our findings reveal a regulatory network for VISTA stability control and support the combination of USP2 inhibitors with anti-PD-1 immunotherapy to enhance anti-tumor immune responses.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 12","pages":"987-1002"},"PeriodicalIF":25.9,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145499485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myeloperoxidase: one enzyme, two jobs. 髓过氧化物酶:一种酶,两种作用。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-11 DOI: 10.1038/s41422-025-01192-7
Sara Marchese, Andrea Mattevi
{"title":"Myeloperoxidase: one enzyme, two jobs.","authors":"Sara Marchese, Andrea Mattevi","doi":"10.1038/s41422-025-01192-7","DOIUrl":"https://doi.org/10.1038/s41422-025-01192-7","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":" ","pages":""},"PeriodicalIF":25.9,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145494753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The molecular basis of μ-opioid receptor signaling plasticity μ-阿片受体信号传导可塑性的分子基础。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-11-07 DOI: 10.1038/s41422-025-01191-8
Huibing Zhang, Xueting Wang, Kun Xi, Qingya Shen, Jianheng Xue, Yanqing Zhu, Shao-Kun Zang, Tianqiang Yu, Dan-Dan Shen, Jia Guo, Li-Nan Chen, Su-Yu Ji, Jiao Qin, Yingjun Dong, Mingming Zhao, Ming Yang, Haijing Wu, Guoli Yang, Yan Zhang
Activation of the μ-opioid receptor (μOR) alleviates pain but also elicits adverse effects through diverse G proteins and β-arrestins. The structural details of μOR complexes with Gz and β-arrestins have not been determined, impeding a comprehensive understanding of μOR signaling plasticity. Here, we present the cryo-EM structures of the μOR–Gz and μOR–βarr1 complexes, revealing selective conformational preferences of μOR when engaged with specific downstream signaling transducers. Integrated receptor pharmacology, including high-resolution structural analysis, cell signaling assays, and molecular dynamics simulations, demonstrated that transmembrane helix 1 (TM1) acts as an allosteric regulator of μOR signaling bias through differential stabilization of the Gi-, Gz-, and βarr1-bound states. Mechanistically, outward TM1 displacement confers structural flexibility that promotes G protein recruitment, whereas inward TM1 retraction facilitates βarr1 recruitment by stabilizing the intracellular binding pocket through coordinated interactions with TM2, TM7, and helix8. Structural comparisons between the Gi-, Gz-, and βarr1-bound complexes identified a TM1-fusion pocket with significant implications for downstream signaling regulation. Overall, we demonstrate that the conformational and thermodynamic heterogeneity of TM1 allosterically drives the downstream signaling specificity and plasticity of μOR, thereby expanding the understanding of μOR signal transduction mechanisms and providing new avenues for the rational design of analgesics.
μ-阿片受体(μOR)的激活可以减轻疼痛,但也会通过多种G蛋白和β-抑制素引起不良反应。μOR与Gz和β-阻滞蛋白配合物的结构细节尚未确定,这阻碍了对μOR信号传导可塑性的全面理解。在这里,我们展示了μOR- gz和μOR-βarr1配合物的低温电镜结构,揭示了μOR与特定下游信号转导器结合时的选择性构象偏好。综合受体药理学,包括高分辨率结构分析、细胞信号分析和分子动力学模拟,表明跨膜螺旋1 (TM1)通过Gi-、Gz-和βarr1结合状态的差异稳定,作为μOR信号偏态的变构调节剂。从机制上说,向外的TM1位移赋予了结构灵活性,促进了G蛋白的募集,而向内的TM1缩回通过与TM2、TM7和helix8的协调相互作用稳定了细胞内结合袋,从而促进了βarr1的募集。Gi-、Gz-和βarr1结合复合物的结构比较发现了一个tm1融合袋,对下游信号调节具有重要意义。总之,我们证明了TM1的构象和热力学异质性变构驱动μOR的下游信号特异性和可塑性,从而扩大了对μOR信号转导机制的理解,并为合理设计镇痛药提供了新的途径。
{"title":"The molecular basis of μ-opioid receptor signaling plasticity","authors":"Huibing Zhang, Xueting Wang, Kun Xi, Qingya Shen, Jianheng Xue, Yanqing Zhu, Shao-Kun Zang, Tianqiang Yu, Dan-Dan Shen, Jia Guo, Li-Nan Chen, Su-Yu Ji, Jiao Qin, Yingjun Dong, Mingming Zhao, Ming Yang, Haijing Wu, Guoli Yang, Yan Zhang","doi":"10.1038/s41422-025-01191-8","DOIUrl":"10.1038/s41422-025-01191-8","url":null,"abstract":"Activation of the μ-opioid receptor (μOR) alleviates pain but also elicits adverse effects through diverse G proteins and β-arrestins. The structural details of μOR complexes with Gz and β-arrestins have not been determined, impeding a comprehensive understanding of μOR signaling plasticity. Here, we present the cryo-EM structures of the μOR–Gz and μOR–βarr1 complexes, revealing selective conformational preferences of μOR when engaged with specific downstream signaling transducers. Integrated receptor pharmacology, including high-resolution structural analysis, cell signaling assays, and molecular dynamics simulations, demonstrated that transmembrane helix 1 (TM1) acts as an allosteric regulator of μOR signaling bias through differential stabilization of the Gi-, Gz-, and βarr1-bound states. Mechanistically, outward TM1 displacement confers structural flexibility that promotes G protein recruitment, whereas inward TM1 retraction facilitates βarr1 recruitment by stabilizing the intracellular binding pocket through coordinated interactions with TM2, TM7, and helix8. Structural comparisons between the Gi-, Gz-, and βarr1-bound complexes identified a TM1-fusion pocket with significant implications for downstream signaling regulation. Overall, we demonstrate that the conformational and thermodynamic heterogeneity of TM1 allosterically drives the downstream signaling specificity and plasticity of μOR, thereby expanding the understanding of μOR signal transduction mechanisms and providing new avenues for the rational design of analgesics.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 12","pages":"1021-1036"},"PeriodicalIF":25.9,"publicationDate":"2025-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01191-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145457272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nearly complete redirection of insertion-type indel into recombination enhances knock-in and facilitates endogenous biomolecular condensate analysis 插入型indel几乎完全重定向到重组中,增强了敲入并促进了内源性生物分子凝聚分析。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-29 DOI: 10.1038/s41422-025-01190-9
Minglei Huang, Jingjing Fu, Peizhe Wang, Boyi Chen, Qichen Yuan, Jiawei Yu, Huimin Wang, Yiting Liu, Zhiyi Li, Yanling Wu, Tianlei Ying, Qingfeng Wu, Ming Zhu, Wei Qin, Yinqing Li
{"title":"Nearly complete redirection of insertion-type indel into recombination enhances knock-in and facilitates endogenous biomolecular condensate analysis","authors":"Minglei Huang, Jingjing Fu, Peizhe Wang, Boyi Chen, Qichen Yuan, Jiawei Yu, Huimin Wang, Yiting Liu, Zhiyi Li, Yanling Wu, Tianlei Ying, Qingfeng Wu, Ming Zhu, Wei Qin, Yinqing Li","doi":"10.1038/s41422-025-01190-9","DOIUrl":"10.1038/s41422-025-01190-9","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 12","pages":"1079-1082"},"PeriodicalIF":25.9,"publicationDate":"2025-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145380880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KCNQ1 and PIP2: it takes two to tango KCNQ1和PIP2:一个巴掌拍不响。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-23 DOI: 10.1038/s41422-025-01189-2
Alicia De La Cruz, H. Peter Larsson
{"title":"KCNQ1 and PIP2: it takes two to tango","authors":"Alicia De La Cruz, H. Peter Larsson","doi":"10.1038/s41422-025-01189-2","DOIUrl":"10.1038/s41422-025-01189-2","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 12","pages":"922-923"},"PeriodicalIF":25.9,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01189-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145351546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intestinal GAPs: neuro-epithelial-immune modules for liver protection. 肠间隙:用于肝脏保护的神经上皮免疫模块。
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-16 DOI: 10.1038/s41422-025-01188-3
Manuel O Jakob,Andreas Diefenbach
{"title":"Intestinal GAPs: neuro-epithelial-immune modules for liver protection.","authors":"Manuel O Jakob,Andreas Diefenbach","doi":"10.1038/s41422-025-01188-3","DOIUrl":"https://doi.org/10.1038/s41422-025-01188-3","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"127 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145305470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LGP2 stops MDA5 translocation to start antiviral signaling LGP2阻止MDA5易位启动抗病毒信号传导。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-15 DOI: 10.1038/s41422-025-01187-4
Jiyoung Jang, Myung Hyun Jo
{"title":"LGP2 stops MDA5 translocation to start antiviral signaling","authors":"Jiyoung Jang, Myung Hyun Jo","doi":"10.1038/s41422-025-01187-4","DOIUrl":"10.1038/s41422-025-01187-4","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 11","pages":"785-786"},"PeriodicalIF":25.9,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01187-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145296067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trained immunity: induction of an inflammatory memory in disease 训练免疫:疾病中炎症记忆的诱导。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-14 DOI: 10.1038/s41422-025-01171-y
Titus Schlüter, Yuri van Elsas, Bram Priem, Athanasios Ziogas, Mihai G. Netea
The innate immune system adapts its behavior based on previous insults, mounting an enhanced response upon re-exposure. Hematopoietic progenitors in the bone marrow and peripheral innate immune cells can undergo epigenetic and metabolic reprogramming, establishing an innate immune memory known as trained immunity. The concept of trained immunity recently gained relevance in our understanding of how innate immunity is regulated in various diseases. This review explores the role of trained immunity in infections, autoimmune disease, cardiovascular disease, cancer, and neurodegenerative disease. We discuss how trained immunity can provide heterologous protection against infections, as it has been induced for decades by the Bacillus Calmette Guérin vaccine, how it can help counteract immunosuppression, and how it can be inappropriately induced leading to chronic inflammation. By understanding how trained immunity is involved in processes leading to health and disease, novel therapeutic strategies can be developed.
先天免疫系统根据先前的侮辱调整其行为,在再次暴露时建立增强的反应。骨髓中的造血祖细胞和外周先天免疫细胞可以经历表观遗传和代谢重编程,建立一种被称为训练免疫的先天免疫记忆。训练免疫的概念最近在我们理解先天免疫在各种疾病中是如何调节的过程中获得了相关性。这篇综述探讨了训练免疫在感染、自身免疫性疾病、心血管疾病、癌症和神经退行性疾病中的作用。我们将讨论经过训练的免疫如何提供抗感染的异源保护,因为它已经被芽孢杆菌卡介苗疫苗诱导了几十年,它如何帮助抵消免疫抑制,以及它如何被不适当地诱导导致慢性炎症。通过了解训练免疫如何参与导致健康和疾病的过程,可以开发新的治疗策略。
{"title":"Trained immunity: induction of an inflammatory memory in disease","authors":"Titus Schlüter, Yuri van Elsas, Bram Priem, Athanasios Ziogas, Mihai G. Netea","doi":"10.1038/s41422-025-01171-y","DOIUrl":"10.1038/s41422-025-01171-y","url":null,"abstract":"The innate immune system adapts its behavior based on previous insults, mounting an enhanced response upon re-exposure. Hematopoietic progenitors in the bone marrow and peripheral innate immune cells can undergo epigenetic and metabolic reprogramming, establishing an innate immune memory known as trained immunity. The concept of trained immunity recently gained relevance in our understanding of how innate immunity is regulated in various diseases. This review explores the role of trained immunity in infections, autoimmune disease, cardiovascular disease, cancer, and neurodegenerative disease. We discuss how trained immunity can provide heterologous protection against infections, as it has been induced for decades by the Bacillus Calmette Guérin vaccine, how it can help counteract immunosuppression, and how it can be inappropriately induced leading to chronic inflammation. By understanding how trained immunity is involved in processes leading to health and disease, novel therapeutic strategies can be developed.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 11","pages":"792-802"},"PeriodicalIF":25.9,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01171-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145283189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secondary structure transitions and dual PIP2 binding define cardiac KCNQ1-KCNE1 channel gating 二级结构转变和双PIP2结合定义心脏KCNQ1-KCNE1通道门控。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-02 DOI: 10.1038/s41422-025-01182-9
Ling Zhong, Xiaoqing Lin, Xinyu Cheng, Shuangyan Wan, Yaoguang Hua, Weiwei Nan, Bin Hu, Xiangjun Peng, Zihan Zhou, Qiansen Zhang, Huaiyu Yang, Frank Noé, Zhenzhen Yan, Dexiang Jiang, Hangyu Zhang, Fengjiao Liu, Chenxin Xiao, Zhuo Zhou, Yimin Mou, Haijie Yu, Lijuan Ma, Chen Huang, Vincent Kam Wai Wong, Sookja Kim Chung, Bing Shen, Zhi-Hong Jiang, Erwin Neher, Wandi Zhu, Jin Zhang, Panpan Hou
The KCNQ1 + KCNE1 potassium channel complex produces the slow delayed rectifier current (IKs) critical for cardiac repolarization. Loss-of-function mutations in KCNQ1 and KCNE1 cause long QT syndrome (LQTS) types 1 and 5 (LQT1/LQT5), accounting for over one-third of clinical LQTS cases. Despite prior structural work on KCNQ1 and KCNQ1 + KCNE3, the structural basis of KCNQ1 + KCNE1 remains unresolved. Using cryo-electron microscopy and electrophysiology, we determined high-resolution (2.5–3.4 Å) structures of human KCNQ1APO, and KCNQ1 + KCNE1 in both closed and open states. KCNE1 occupies a pivotal position at the interface of three KCNQ1 subunits, inducing six helix-to-loop transitions in KCNQ1 transmembrane segments. Three of them occur at both ends of the S4–S5 linker, maintaining a loop conformation during IKs gating, while the other three, in S6 and helix A, undergo dynamic helix-loop transitions during IKs gating. These structural rearrangements: (1) stabilize the closed pore and the conformation of the intermediate state voltage-sensing domain, thereby determining channel gating, ion permeation, and single-channel conductance; (2) enable a dual-PIP2 modulation mechanism, where one PIP2 occupies the canonical site, while the second PIP2 bridges the S4–S5 linker, KCNE1, and the adjacent S6’, stabilizing channel opening; (3) create a fenestration capable of binding compounds specific for KCNQ1 + KCNE1 (e.g., AC-1). Together, these findings reveal a previously unrecognized large-scale secondary structural transition during ion channel gating that fine-tunes IKs function and provides a foundation for developing targeted LQTS therapy.
KCNQ1 + KCNE1钾通道复合物产生对心脏复极至关重要的缓慢延迟整流电流(IKs)。KCNQ1和KCNE1的功能缺失突变导致1型和5型(LQT1/LQT5)长QT综合征(LQTS),占临床LQTS病例的三分之一以上。尽管之前对KCNQ1和KCNQ1 + KCNE3的结构进行了研究,但KCNQ1 + KCNE1的结构基础仍未得到解决。利用低温电镜和电生理学,我们确定了人类KCNQ1APO和KCNQ1 + KCNE1在关闭和打开状态下的高分辨率(2.5-3.4 Å)结构。KCNE1在三个KCNQ1亚基的界面处占据关键位置,在KCNQ1跨膜片段中诱导6次螺旋到环的转变。其中三个发生在S4-S5连接体的两端,在IKs门控期间保持环构象,而另外三个,在S6和螺旋a中,在IKs门控期间经历动态的螺旋环转变。这些结构重排:(1)稳定封闭孔和中间态电压感应域的构象,从而决定通道门控、离子渗透和单通道电导;(2)启用双PIP2调制机制,其中一个PIP2占据规范位点,而第二个PIP2桥接S4-S5连接器KCNE1和相邻的S6',稳定通道开放;(3)创建一个能够结合KCNQ1 + KCNE1特异性化合物(例如AC-1)的开孔。总之,这些发现揭示了离子通道门控过程中以前未被认识到的大规模二级结构转变,微调IKs功能,并为开发靶向LQTS治疗提供了基础。
{"title":"Secondary structure transitions and dual PIP2 binding define cardiac KCNQ1-KCNE1 channel gating","authors":"Ling Zhong, Xiaoqing Lin, Xinyu Cheng, Shuangyan Wan, Yaoguang Hua, Weiwei Nan, Bin Hu, Xiangjun Peng, Zihan Zhou, Qiansen Zhang, Huaiyu Yang, Frank Noé, Zhenzhen Yan, Dexiang Jiang, Hangyu Zhang, Fengjiao Liu, Chenxin Xiao, Zhuo Zhou, Yimin Mou, Haijie Yu, Lijuan Ma, Chen Huang, Vincent Kam Wai Wong, Sookja Kim Chung, Bing Shen, Zhi-Hong Jiang, Erwin Neher, Wandi Zhu, Jin Zhang, Panpan Hou","doi":"10.1038/s41422-025-01182-9","DOIUrl":"10.1038/s41422-025-01182-9","url":null,"abstract":"The KCNQ1 + KCNE1 potassium channel complex produces the slow delayed rectifier current (IKs) critical for cardiac repolarization. Loss-of-function mutations in KCNQ1 and KCNE1 cause long QT syndrome (LQTS) types 1 and 5 (LQT1/LQT5), accounting for over one-third of clinical LQTS cases. Despite prior structural work on KCNQ1 and KCNQ1 + KCNE3, the structural basis of KCNQ1 + KCNE1 remains unresolved. Using cryo-electron microscopy and electrophysiology, we determined high-resolution (2.5–3.4 Å) structures of human KCNQ1APO, and KCNQ1 + KCNE1 in both closed and open states. KCNE1 occupies a pivotal position at the interface of three KCNQ1 subunits, inducing six helix-to-loop transitions in KCNQ1 transmembrane segments. Three of them occur at both ends of the S4–S5 linker, maintaining a loop conformation during IKs gating, while the other three, in S6 and helix A, undergo dynamic helix-loop transitions during IKs gating. These structural rearrangements: (1) stabilize the closed pore and the conformation of the intermediate state voltage-sensing domain, thereby determining channel gating, ion permeation, and single-channel conductance; (2) enable a dual-PIP2 modulation mechanism, where one PIP2 occupies the canonical site, while the second PIP2 bridges the S4–S5 linker, KCNE1, and the adjacent S6’, stabilizing channel opening; (3) create a fenestration capable of binding compounds specific for KCNQ1 + KCNE1 (e.g., AC-1). Together, these findings reveal a previously unrecognized large-scale secondary structural transition during ion channel gating that fine-tunes IKs function and provides a foundation for developing targeted LQTS therapy.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 11","pages":"887-899"},"PeriodicalIF":25.9,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01182-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145205680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1