首页 > 最新文献

Cell Research最新文献

英文 中文
Lactate-activated GPR81/FARP1 signaling drives insulin-independent glucose uptake and metabolic control 乳酸激活的GPR81/FARP1信号驱动胰岛素不依赖的葡萄糖摄取和代谢控制
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-13 DOI: 10.1038/s41422-025-01207-3
Yaxin Niu, Shengmin Hu, Yanfeng Zhang, Jinbao Yang, Jiarui Zhang, Ruiping He, Li Chen, Lin Xu, Hongfang Zhao, Bing Gan, Ruobing Ren, Ruth J. F. Loos, Haobin Ye, Xingrong Du, Tongjin Zhao, Peng Li, Antonio Vidal-Puig, Linzhang Huang
Insulin-stimulated glucose uptake is central to global carbohydrate metabolism, yet metabolites that enhance glucose uptake independently of insulin remain undefined. Here, we identify L-lactate as an insulin-independent regulator of glucose uptake that mitigates hyperglycemia. Loss of LDHA in muscle reduces lactate production, impairing glucose homeostasis in mice. By contrast, lactate administration or genetic upregulation of lactate production improves glucose control. Knockout of the lactate receptor GPR81 in skeletal muscle worsens glucose tolerance, whereas its ectopic expression or pharmacological activation enhances carbohydrate metabolism. Mechanistically, GPR81 recruits FARP1 to activate RAC1, promoting GLUT4 translocation independently of insulin signaling. Notably, the expression of LDHA, GPR81, and FARP1 is upregulated after exercise, and GPR81 variants are highly correlated with fasting insulin levels in humans, underscoring the synergy of the GPR81-FARP1-GLUT4 axis with insulin in glucose regulation. Our findings suggest that targeting GPR81 represents a potential insulin-independent strategy for the treatment of hyperglycemia.
胰岛素刺激的葡萄糖摄取是全球碳水化合物代谢的核心,然而,独立于胰岛素而增强葡萄糖摄取的代谢物仍未明确。在这里,我们确定l -乳酸作为胰岛素不依赖的葡萄糖摄取调节剂,减轻高血糖。肌肉中LDHA的损失减少了乳酸的产生,损害了小鼠的葡萄糖稳态。相比之下,乳酸管理或乳酸产生的基因上调可改善葡萄糖控制。骨骼肌中乳酸受体GPR81的敲除会恶化葡萄糖耐量,而其异位表达或药理激活会增强碳水化合物代谢。在机制上,GPR81招募FARP1激活RAC1,独立于胰岛素信号传导促进GLUT4易位。值得注意的是,运动后LDHA、GPR81和FARP1的表达上调,GPR81变异体与人体空腹胰岛素水平高度相关,强调了GPR81-FARP1- glut4轴与胰岛素在葡萄糖调节中的协同作用。我们的研究结果表明,靶向GPR81代表了治疗高血糖的潜在胰岛素不依赖型策略。
{"title":"Lactate-activated GPR81/FARP1 signaling drives insulin-independent glucose uptake and metabolic control","authors":"Yaxin Niu, Shengmin Hu, Yanfeng Zhang, Jinbao Yang, Jiarui Zhang, Ruiping He, Li Chen, Lin Xu, Hongfang Zhao, Bing Gan, Ruobing Ren, Ruth J. F. Loos, Haobin Ye, Xingrong Du, Tongjin Zhao, Peng Li, Antonio Vidal-Puig, Linzhang Huang","doi":"10.1038/s41422-025-01207-3","DOIUrl":"10.1038/s41422-025-01207-3","url":null,"abstract":"Insulin-stimulated glucose uptake is central to global carbohydrate metabolism, yet metabolites that enhance glucose uptake independently of insulin remain undefined. Here, we identify L-lactate as an insulin-independent regulator of glucose uptake that mitigates hyperglycemia. Loss of LDHA in muscle reduces lactate production, impairing glucose homeostasis in mice. By contrast, lactate administration or genetic upregulation of lactate production improves glucose control. Knockout of the lactate receptor GPR81 in skeletal muscle worsens glucose tolerance, whereas its ectopic expression or pharmacological activation enhances carbohydrate metabolism. Mechanistically, GPR81 recruits FARP1 to activate RAC1, promoting GLUT4 translocation independently of insulin signaling. Notably, the expression of LDHA, GPR81, and FARP1 is upregulated after exercise, and GPR81 variants are highly correlated with fasting insulin levels in humans, underscoring the synergy of the GPR81-FARP1-GLUT4 axis with insulin in glucose regulation. Our findings suggest that targeting GPR81 represents a potential insulin-independent strategy for the treatment of hyperglycemia.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"36 2","pages":"137-151"},"PeriodicalIF":25.9,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145956283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria target the plasma membrane to cause mitoxyperiosis. 线粒体以质膜为靶点,引起有丝分裂。
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-13 DOI: 10.1038/s41422-025-01215-3
Jaiya Randhawa,Luke A J O'Neill
{"title":"Mitochondria target the plasma membrane to cause mitoxyperiosis.","authors":"Jaiya Randhawa,Luke A J O'Neill","doi":"10.1038/s41422-025-01215-3","DOIUrl":"https://doi.org/10.1038/s41422-025-01215-3","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"26 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145961333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gz and β-arrestin 1 signaling in the μ-opioid receptor Gz和β-阻滞蛋白1信号在μ-阿片受体中的作用。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-09 DOI: 10.1038/s41422-025-01214-4
Zhi Cheng, Bryan L. Roth
{"title":"Gz and β-arrestin 1 signaling in the μ-opioid receptor","authors":"Zhi Cheng, Bryan L. Roth","doi":"10.1038/s41422-025-01214-4","DOIUrl":"10.1038/s41422-025-01214-4","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"36 2","pages":"97-98"},"PeriodicalIF":25.9,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01214-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145932511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient mechanical activation of the Piezo1 channel facilitates ex vivo expansion of hematopoietic stem cells Piezo1通道的瞬时机械激活促进了造血干细胞的体外扩增
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-09 DOI: 10.1038/s41422-025-01209-1
Qiwei Wang, Xin Zeng, Haoxiang Yang, Huan Lu, Lingli Jiang, Lizhen Xu, Jinxin Li, Jingyi Li, Yingli Han, Xiaoyan Wu, Yuanhong Zhou, Xiaolan Chen, Yanmin Zhao, Jimin Shi, Yi Luo, Fang Ni, Jie Sun, Qian Zhao, Fan Yang, Peng Xia, Hongyuan Jiang, He Huang, Pengxu Qian
Achieving long-term ex vivo expansion of functional hematopoietic stem cells (HSCs) is essential for advancing HSC-based clinical therapies. Although mechanosensitive ion channels are known to play key roles in the hematopoietic system, their involvement in HSC expansion remains unclear. Here, we show that Piezo1 is highly expressed in HSCs. Both genetic deletion and prolonged chemical activation of Piezo1 impair cultured HSC function, indicating that transient mechanical activation of Piezo1 is required for maintenance of HSCs in culture. To achieve this, we screened various microspheres and found that PS500 (500-nm polystyrene microspheres) significantly enhanced ex vivo expansion of mouse bone marrow HSCs with long-term repopulating capacity. PS500 also expanded human umbilical cord blood HSCs capable of engraftment in immunodeficient mice. Mechanistically, PS500 activates Piezo1, triggering Ca2+-dependent expression of proliferative cytokines and subsequent STAT3 activation, which support HSC self-renewal and proliferation. Together, these findings show that PS500 enables transient Piezo1 activation and efficient, non-toxic expansion of functional HSCs, offering a promising approach for the generation of transplantable HSCs for clinical use.
实现功能性造血干细胞(hsc)的长期体外扩增对于推进基于hsc的临床治疗至关重要。虽然已知机械敏感离子通道在造血系统中起关键作用,但它们在HSC扩增中的作用尚不清楚。在这里,我们发现Piezo1在造血干细胞中高度表达。基因缺失和Piezo1的长时间化学激活都会损害培养的HSC功能,这表明在培养中维持HSC需要Piezo1的短暂机械激活。为了实现这一目标,我们筛选了各种微球,发现PS500(500纳米聚苯乙烯微球)显著增强了小鼠骨髓造血干细胞的体外扩增和长期再生能力。PS500还扩增了人类脐带血造血干细胞在免疫缺陷小鼠体内的移植能力。在机制上,PS500激活Piezo1,触发Ca2+依赖性增殖细胞因子的表达和随后的STAT3激活,从而支持HSC自我更新和增殖。总之,这些发现表明PS500能够瞬时激活Piezo1并有效、无毒地扩增功能性造血干细胞,为临床应用的可移植造血干细胞的产生提供了一种有希望的方法。
{"title":"Transient mechanical activation of the Piezo1 channel facilitates ex vivo expansion of hematopoietic stem cells","authors":"Qiwei Wang, Xin Zeng, Haoxiang Yang, Huan Lu, Lingli Jiang, Lizhen Xu, Jinxin Li, Jingyi Li, Yingli Han, Xiaoyan Wu, Yuanhong Zhou, Xiaolan Chen, Yanmin Zhao, Jimin Shi, Yi Luo, Fang Ni, Jie Sun, Qian Zhao, Fan Yang, Peng Xia, Hongyuan Jiang, He Huang, Pengxu Qian","doi":"10.1038/s41422-025-01209-1","DOIUrl":"https://doi.org/10.1038/s41422-025-01209-1","url":null,"abstract":"Achieving long-term ex vivo expansion of functional hematopoietic stem cells (HSCs) is essential for advancing HSC-based clinical therapies. Although mechanosensitive ion channels are known to play key roles in the hematopoietic system, their involvement in HSC expansion remains unclear. Here, we show that Piezo1 is highly expressed in HSCs. Both genetic deletion and prolonged chemical activation of Piezo1 impair cultured HSC function, indicating that transient mechanical activation of Piezo1 is required for maintenance of HSCs in culture. To achieve this, we screened various microspheres and found that PS500 (500-nm polystyrene microspheres) significantly enhanced ex vivo expansion of mouse bone marrow HSCs with long-term repopulating capacity. PS500 also expanded human umbilical cord blood HSCs capable of engraftment in immunodeficient mice. Mechanistically, PS500 activates Piezo1, triggering Ca2+-dependent expression of proliferative cytokines and subsequent STAT3 activation, which support HSC self-renewal and proliferation. Together, these findings show that PS500 enables transient Piezo1 activation and efficient, non-toxic expansion of functional HSCs, offering a promising approach for the generation of transplantable HSCs for clinical use.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"22 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
R-loops orchestrate RNAPII transcriptional reprogramming for the maternal-to-zygotic transition r -环协调RNAPII转录重编程,以实现母体到合子的转变
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-09 DOI: 10.1038/s41422-025-01208-2
Yaoyi Li, Qing Li, Xinxiu Wang, Chao Di, Yingliang Sheng, Ying Ma, Junzhi Liao, Qingqing Cai, Sainan Huang, Jiayu Chen, Guangming Wu, Lingling Zhang, Guangjin Pan, Shaorong Gao, Hongjie Yao
R-loops are pervasive genomic structures that link epigenetic modification and transcriptional regulation. However, the functional roles and regulatory mechanisms of R-loops during preimplantation development in mammals remain unexplored. Here, we reveal that the reprogramming of R-loops across developmental stages depends on CG density, with CG-poor R-loops more stage specific and strongly associated with early embryonic development. Loss of CG-poor R-loops causes severe defects in the maternal-to-zygotic transition (MZT) and preimplantation embryo development. This abnormal maintenance of CG-poor R-loops promotes premature activation of major zygotic genome activation (ZGA) genes. CG-poor R-loops inhibit DDX21 helicase activity on the 7SK/HEXIM1 snRNP complex, restricting CDK9 release and subsequent phosphorylation of Ser2 at the C-terminal domain of RNA polymerase II (RNAPII S2p) — the biochemical hallmark of pause release — thus enforcing RNAPII accumulation at major ZGA gene promoters to ensure productive transcription. These findings establish R-loops as direct modulators of RNAPII pause release, promoting the temporal fidelity of gene expression during the MZT.
r环是普遍存在的基因组结构,连接表观遗传修饰和转录调控。然而,r环在哺乳动物着床前发育中的功能作用和调控机制仍未被探索。在这里,我们发现r环在发育阶段的重编程取决于CG密度,CG差的r环更具阶段特异性,与早期胚胎发育密切相关。缺少CG-poor R-loops会导致母体到受精卵转变(MZT)和着床前胚胎发育的严重缺陷。这种异常维持的cg -差r环促进了主要合子基因组激活(ZGA)基因的过早激活。CG-poor R-loops抑制7SK/HEXIM1 snRNP复合物上的DDX21解旋酶活性,限制CDK9的释放和随后RNA聚合酶II (RNAPII S2p) c端区域Ser2的磷酸化(暂停释放的生化标志),从而加强RNAPII在主要ZGA基因启动子处的积累,以确保高效转录。这些发现表明r环是RNAPII暂停释放的直接调节剂,促进了MZT期间基因表达的时间保真度。
{"title":"R-loops orchestrate RNAPII transcriptional reprogramming for the maternal-to-zygotic transition","authors":"Yaoyi Li, Qing Li, Xinxiu Wang, Chao Di, Yingliang Sheng, Ying Ma, Junzhi Liao, Qingqing Cai, Sainan Huang, Jiayu Chen, Guangming Wu, Lingling Zhang, Guangjin Pan, Shaorong Gao, Hongjie Yao","doi":"10.1038/s41422-025-01208-2","DOIUrl":"https://doi.org/10.1038/s41422-025-01208-2","url":null,"abstract":"R-loops are pervasive genomic structures that link epigenetic modification and transcriptional regulation. However, the functional roles and regulatory mechanisms of R-loops during preimplantation development in mammals remain unexplored. Here, we reveal that the reprogramming of R-loops across developmental stages depends on CG density, with CG-poor R-loops more stage specific and strongly associated with early embryonic development. Loss of CG-poor R-loops causes severe defects in the maternal-to-zygotic transition (MZT) and preimplantation embryo development. This abnormal maintenance of CG-poor R-loops promotes premature activation of major zygotic genome activation (ZGA) genes. CG-poor R-loops inhibit DDX21 helicase activity on the 7SK/HEXIM1 snRNP complex, restricting CDK9 release and subsequent phosphorylation of Ser2 at the C-terminal domain of RNA polymerase II (RNAPII S2p) — the biochemical hallmark of pause release — thus enforcing RNAPII accumulation at major ZGA gene promoters to ensure productive transcription. These findings establish R-loops as direct modulators of RNAPII pause release, promoting the temporal fidelity of gene expression during the MZT.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"28 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fibrous-layer resident Angptl7+ periosteal stem cells sense injury inflammation to orchestrate fracture repair 纤维层常住Angptl7+骨膜干细胞感知损伤炎症,协调骨折修复
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-08 DOI: 10.1038/s41422-025-01202-8
Bo Jiang, Wenhui Xing, Xiaocui Xu, Shuqin Chen, Heng Feng, Rui Shao, Jiatong Sun, Yazhuo Zhang, Zaiqi Xie, Wenxiang Wang, Xubin Yin, Yi Wang, Miaomiao Wang, Ling Li, Zhong Zhang, Bo Gao, Jinlong Suo, Xuye Hu, Lijun Wang, Jun Sun, Bin Zhou, Bo O. Zhou, Matthew B. Greenblatt, Rongrong Le, Weiguo Zou
Periosteum contains abundant Ctsk-lineage skeletal stem cells (P-SSCs) that are key drivers of intramembranous ossification during bone development and maintenance. However, P-SSCs regenerate fractured bones by mediating endochondral ossification, raising the question of whether distinct P-SSCs subsets separately mediate steady-state bone formation and fracture repair. Here we uncover the heterogeneity of P-SSCs, identifying an Angptl7-expressing quiescent P-SSCs subset, which is restricted to the fibrous-layer of periosteum and barely contributes to postnatal bone development. After bone fracture, these cells largely contribute to bone healing by dedicating to endochondral ossification, regenerating the entire bone architecture. Dysfunction of Angptl7-lineage P-SSCs strongly impairs the bone healing process but does not affect steady-state bone formation. Multimodal analysis reveals that these cells can be immediately activated under the regulation of TNF-α/NF-κB signaling, subsequently acquiring osteogenic capacity. Together, our findings unravel an injury-specified P-SSCs subpopulation, providing a model that there are tissue-resident stem cells specialized for injury repair, while parallel stem cells maintain homeostasis.
骨膜中含有丰富的ctsk谱系骨骼干细胞(p - ssc),它们是骨发育和维持过程中膜内骨化的关键驱动因素。然而,P-SSCs通过介导软骨内成骨来再生骨折骨,这就提出了不同的P-SSCs亚群是否分别介导稳态骨形成和骨折修复的问题。在这里,我们揭示了P-SSCs的异质性,确定了一个表达angptl7的静态P-SSCs亚群,该亚群仅限于骨膜纤维层,几乎不参与出生后的骨发育。骨折后,这些细胞通过致力于软骨内成骨,再生整个骨结构,在很大程度上有助于骨愈合。angptl7谱系p - ssc功能障碍严重损害骨愈合过程,但不影响稳态骨形成。多模态分析显示,这些细胞在TNF-α/NF-κB信号的调控下可以立即被激活,随后获得成骨能力。总之,我们的研究结果揭示了损伤特异性p - ssc亚群,提供了一个模型,即存在专门用于损伤修复的组织内干细胞,而平行干细胞维持稳态。
{"title":"Fibrous-layer resident Angptl7+ periosteal stem cells sense injury inflammation to orchestrate fracture repair","authors":"Bo Jiang, Wenhui Xing, Xiaocui Xu, Shuqin Chen, Heng Feng, Rui Shao, Jiatong Sun, Yazhuo Zhang, Zaiqi Xie, Wenxiang Wang, Xubin Yin, Yi Wang, Miaomiao Wang, Ling Li, Zhong Zhang, Bo Gao, Jinlong Suo, Xuye Hu, Lijun Wang, Jun Sun, Bin Zhou, Bo O. Zhou, Matthew B. Greenblatt, Rongrong Le, Weiguo Zou","doi":"10.1038/s41422-025-01202-8","DOIUrl":"10.1038/s41422-025-01202-8","url":null,"abstract":"Periosteum contains abundant Ctsk-lineage skeletal stem cells (P-SSCs) that are key drivers of intramembranous ossification during bone development and maintenance. However, P-SSCs regenerate fractured bones by mediating endochondral ossification, raising the question of whether distinct P-SSCs subsets separately mediate steady-state bone formation and fracture repair. Here we uncover the heterogeneity of P-SSCs, identifying an Angptl7-expressing quiescent P-SSCs subset, which is restricted to the fibrous-layer of periosteum and barely contributes to postnatal bone development. After bone fracture, these cells largely contribute to bone healing by dedicating to endochondral ossification, regenerating the entire bone architecture. Dysfunction of Angptl7-lineage P-SSCs strongly impairs the bone healing process but does not affect steady-state bone formation. Multimodal analysis reveals that these cells can be immediately activated under the regulation of TNF-α/NF-κB signaling, subsequently acquiring osteogenic capacity. Together, our findings unravel an injury-specified P-SSCs subpopulation, providing a model that there are tissue-resident stem cells specialized for injury repair, while parallel stem cells maintain homeostasis.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"36 2","pages":"121-136"},"PeriodicalIF":25.9,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01202-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145908422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fibrous-layer periosteal stem cells sensing injury-induced inflammation 纤维层骨膜干细胞感知损伤性炎症。
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-08 DOI: 10.1038/s41422-025-01210-8
Noriaki Ono
{"title":"Fibrous-layer periosteal stem cells sensing injury-induced inflammation","authors":"Noriaki Ono","doi":"10.1038/s41422-025-01210-8","DOIUrl":"10.1038/s41422-025-01210-8","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"36 2","pages":"95-96"},"PeriodicalIF":25.9,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01210-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145917196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensing of DNA double-strand breaks by the NHEJ system stabilizes RORγt transcriptional activity and shapes Th17 pathogenicity in autoimmunity. NHEJ系统对DNA双链断裂的感知稳定了rorγ - t转录活性,并在自身免疫中形成了Th17致病性。
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-07 DOI: 10.1038/s41422-025-01204-6
Guan-Yu Chen,Wen-Jie Zhu,Zhuang Li,Yun-Wei Hu,Xiao-Shuang Luo,Zhi-Qing Mai,Yuan Pan,Yu-Xun Shi,Zuo-Yi Li,Jun Huang,Pei-Dong Yuan,Zhi-Qiang Xiao,Qian Chen,Yan-Yan Xie,Hai-Xiang Huang,Yu-Xi Chen,Yao Lu,Min-Zhen Wang,Yi-Wen Xia,Xiao-Qing Chen,Dong-Ming Kuang,Dan Liang
Robust mitochondrial ROS production induces extensive double-strand breaks (DSBs) in telomeric DNA of effector T cells, where the DNA repair machinery is rapidly hyper-evoked to sense and ligate DSBs during the respiratory burst. However, whether effector T cells can exploit the DNA repair system to simultaneously potentiate their functional activation remains largely unknown, especially in the context of autoimmunity. Here, we demonstrate that non-homologous end joining (NHEJ), a predominant mechanism of DNA repair, is highly activated in pathogenic T helper 17 (pTh17) cells and exerts a previously unrecognized effect on shaping the pathogenic nature of pTh17s to trigger autoimmunity. Mechanistically, the perception of DSBs by KU proteins facilitates auto-phosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), which stabilizes RORγt to bind to the promoters of effector-gene loci, thus initiating the pTh17 effector program to induce autoimmunity. Using mass spectrometry and transcriptome analyses, we identified IER2 as a novel NHEJ factor that potentiates DNA-PKcs kinase activity in response to IL-23R stimulation, which is necessary for shaping Th17 pathogenicity. Therefore, targeting the immuno-pattern of the NHEJ system shows potential for the treatment of autoimmune diseases.
强大的线粒体ROS生成诱导效应T细胞端粒DNA中广泛的双链断裂(DSBs),其中DNA修复机制在呼吸爆发期间迅速被超激活以感知和连接DSBs。然而,效应T细胞是否可以利用DNA修复系统同时增强其功能激活在很大程度上仍然未知,特别是在自身免疫的背景下。在这里,我们证明了非同源末端连接(NHEJ),一种主要的DNA修复机制,在致病性T辅助17 (pTh17)细胞中被高度激活,并在塑造pTh17的致病性方面发挥了一种以前未被认识到的作用,从而引发自身免疫。从机制上说,KU蛋白对DSBs的感知促进了dna依赖性蛋白激酶催化亚基(DNA-PKcs)的自磷酸化,从而稳定rorγ - t与效应基因位点的启动子结合,从而启动pTh17效应程序,诱导自身免疫。通过质谱分析和转录组分析,我们发现IER2是一种新的NHEJ因子,可以增强DNA-PKcs激酶活性,以响应IL-23R刺激,这是形成Th17致病性所必需的。因此,靶向NHEJ系统的免疫模式显示出治疗自身免疫性疾病的潜力。
{"title":"Sensing of DNA double-strand breaks by the NHEJ system stabilizes RORγt transcriptional activity and shapes Th17 pathogenicity in autoimmunity.","authors":"Guan-Yu Chen,Wen-Jie Zhu,Zhuang Li,Yun-Wei Hu,Xiao-Shuang Luo,Zhi-Qing Mai,Yuan Pan,Yu-Xun Shi,Zuo-Yi Li,Jun Huang,Pei-Dong Yuan,Zhi-Qiang Xiao,Qian Chen,Yan-Yan Xie,Hai-Xiang Huang,Yu-Xi Chen,Yao Lu,Min-Zhen Wang,Yi-Wen Xia,Xiao-Qing Chen,Dong-Ming Kuang,Dan Liang","doi":"10.1038/s41422-025-01204-6","DOIUrl":"https://doi.org/10.1038/s41422-025-01204-6","url":null,"abstract":"Robust mitochondrial ROS production induces extensive double-strand breaks (DSBs) in telomeric DNA of effector T cells, where the DNA repair machinery is rapidly hyper-evoked to sense and ligate DSBs during the respiratory burst. However, whether effector T cells can exploit the DNA repair system to simultaneously potentiate their functional activation remains largely unknown, especially in the context of autoimmunity. Here, we demonstrate that non-homologous end joining (NHEJ), a predominant mechanism of DNA repair, is highly activated in pathogenic T helper 17 (pTh17) cells and exerts a previously unrecognized effect on shaping the pathogenic nature of pTh17s to trigger autoimmunity. Mechanistically, the perception of DSBs by KU proteins facilitates auto-phosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), which stabilizes RORγt to bind to the promoters of effector-gene loci, thus initiating the pTh17 effector program to induce autoimmunity. Using mass spectrometry and transcriptome analyses, we identified IER2 as a novel NHEJ factor that potentiates DNA-PKcs kinase activity in response to IL-23R stimulation, which is necessary for shaping Th17 pathogenicity. Therefore, targeting the immuno-pattern of the NHEJ system shows potential for the treatment of autoimmune diseases.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"12 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145907874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting PTPN13 with 11-amino-acid peptides of C-terminal APC prevents immune evasion of colorectal cancer c端APC的11-氨基酸肽靶向PTPN13可预防结直肠癌的免疫逃逸
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-05 DOI: 10.1038/s41422-025-01206-4
Wen-Hui Ma, Wen-Yi Li, Tao Chen, Linqian Jing, Yue-Hong Chen, Kejun Li, Zhuo-Luo Xu, Rong-Fang Shen, Yutong He, Tingyu Mou, Ting-Yue Luo, Xiangnan Sun, Zhao-Kun Wu, Li-Jing Wang, Hong-Juan Liu, Xiaozhong Qiu, Yi Gao, Xiaochun Bai, Wei Wang, Dalei Wu, Guoxin Li, Wei-Jie Zhou
Colorectal cancer (CRC) remains largely refractory to immune-checkpoint blockade, with adenomatous polyposis coli (APC) mutations present in 80%–90% of cases. Loss of APC was previously thought to promote tumor progression mainly through deregulated Wnt/β-catenin signaling. Here, we report that APC loss leads to inhibition of CD8+ T cell infiltration and CRC immune evasion through the dephosphorylation of signal transducers and activators of transcription 1 (STAT1) by protein tyrosine phosphatase non-receptor type 13 (PTPN13), independently of β-catenin. Peptides containing the last 11 C-terminal amino acid (aa) residues of APC (APC11) bind directly to PTPN13 to block PTPN13–STAT1 interactions and facilitate STAT1 phosphorylation, interferon regulatory factor-1 (IRF1) expression, major histocompatibility complex (MHC) class I antigen presentation, and T cell intratumoral infiltration, all of which eventually inhibit tumor progression and enhance the effects of programmed cell death 1 (PD1) blockade. Thus, we have identified a previously unknown APC/PTPN13/STAT1-dependent tumor immune-suppressive mechanism. The potent tumor-suppressing effect of combining anti-PD1 antibodies with APC11 peptides provides a compelling target and rationale for future development of anti-tumor drugs for patients with CRC.
结直肠癌(CRC)在很大程度上仍然对免疫检查点阻断难治,80%-90%的病例存在腺瘤性大肠息肉病(APC)突变。以前认为APC的缺失主要通过解除对Wnt/β-catenin信号的调控来促进肿瘤进展。在这里,我们报道APC缺失通过蛋白酪氨酸磷酸酶非受体13 (PTPN13)对信号转导和转录激活因子1 (STAT1)的去磷酸化导致CD8+ T细胞浸润和CRC免疫逃避的抑制,而不依赖于β-catenin。含有APC (APC11)最后11个c端氨基酸(aa)残基的肽直接与PTPN13结合,阻断PTPN13 - STAT1相互作用,促进STAT1磷酸化、干扰素调节因子-1 (IRF1)表达、主要组织相容性复合体(MHC) I类抗原呈递和T细胞瘤内浸润,最终抑制肿瘤进展,增强程序性细胞死亡1 (PD1)阻断的作用。因此,我们已经确定了一种以前未知的APC/PTPN13/ stat1依赖性肿瘤免疫抑制机制。抗pd1抗体联合APC11肽的有效肿瘤抑制作用为未来开发用于结直肠癌患者的抗肿瘤药物提供了一个令人信服的靶点和理论基础。
{"title":"Targeting PTPN13 with 11-amino-acid peptides of C-terminal APC prevents immune evasion of colorectal cancer","authors":"Wen-Hui Ma, Wen-Yi Li, Tao Chen, Linqian Jing, Yue-Hong Chen, Kejun Li, Zhuo-Luo Xu, Rong-Fang Shen, Yutong He, Tingyu Mou, Ting-Yue Luo, Xiangnan Sun, Zhao-Kun Wu, Li-Jing Wang, Hong-Juan Liu, Xiaozhong Qiu, Yi Gao, Xiaochun Bai, Wei Wang, Dalei Wu, Guoxin Li, Wei-Jie Zhou","doi":"10.1038/s41422-025-01206-4","DOIUrl":"10.1038/s41422-025-01206-4","url":null,"abstract":"Colorectal cancer (CRC) remains largely refractory to immune-checkpoint blockade, with adenomatous polyposis coli (APC) mutations present in 80%–90% of cases. Loss of APC was previously thought to promote tumor progression mainly through deregulated Wnt/β-catenin signaling. Here, we report that APC loss leads to inhibition of CD8+ T cell infiltration and CRC immune evasion through the dephosphorylation of signal transducers and activators of transcription 1 (STAT1) by protein tyrosine phosphatase non-receptor type 13 (PTPN13), independently of β-catenin. Peptides containing the last 11 C-terminal amino acid (aa) residues of APC (APC11) bind directly to PTPN13 to block PTPN13–STAT1 interactions and facilitate STAT1 phosphorylation, interferon regulatory factor-1 (IRF1) expression, major histocompatibility complex (MHC) class I antigen presentation, and T cell intratumoral infiltration, all of which eventually inhibit tumor progression and enhance the effects of programmed cell death 1 (PD1) blockade. Thus, we have identified a previously unknown APC/PTPN13/STAT1-dependent tumor immune-suppressive mechanism. The potent tumor-suppressing effect of combining anti-PD1 antibodies with APC11 peptides provides a compelling target and rationale for future development of anti-tumor drugs for patients with CRC.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"36 1","pages":"72-93"},"PeriodicalIF":25.9,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01206-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitophagy in the pathogenesis and management of disease 线粒体自噬在疾病的发病和治疗中的作用
IF 25.9 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-05 DOI: 10.1038/s41422-025-01203-7
Qi Wang, Yu Sun, Terytty Yang Li, Johan Auwerx
Mitophagy, an evolutionarily conserved quality-control process, selectively removes damaged mitochondria to maintain cellular homeostasis. Recent advances in our understanding of the molecular machinery underlying mitophagy — from receptors and stress-responsive triggers to lysosomal degradation — illustrate its key role in maintaining mitochondrial integrity and adapting mitochondrial function to ever-changing physiological demands. In this review, we outline the fundamental mechanisms of mitophagy and discuss how dysregulation of this pathway disrupts mitochondrial function and metabolic balance, driving a wide range of disorders, including neurodegenerative, cardiovascular, metabolic, and immune-related diseases, as well as cancer. We explore the dual role of mitophagy as both a disease driver and a therapeutic target, highlighting the efforts and challenges of translating mechanistic insights into precision therapies. Targeting mitophagy to restore mitochondrial homeostasis may be at the center of a large range of translational opportunities for improving human health.
线粒体自噬是一种进化上保守的质量控制过程,选择性地去除受损的线粒体以维持细胞稳态。最近我们对线粒体自噬的分子机制的理解有了新的进展,从受体和应激反应触发器到溶酶体降解,说明了线粒体自噬在维持线粒体完整性和使线粒体功能适应不断变化的生理需求方面的关键作用。在这篇综述中,我们概述了线粒体自噬的基本机制,并讨论了这一途径的失调如何破坏线粒体功能和代谢平衡,从而导致广泛的疾病,包括神经退行性疾病、心血管疾病、代谢疾病、免疫相关疾病以及癌症。我们探讨了线粒体自噬作为疾病驱动因素和治疗靶点的双重作用,强调了将机制见解转化为精确治疗的努力和挑战。靶向线粒体自噬以恢复线粒体稳态可能是改善人类健康的大量转化机会的中心。
{"title":"Mitophagy in the pathogenesis and management of disease","authors":"Qi Wang, Yu Sun, Terytty Yang Li, Johan Auwerx","doi":"10.1038/s41422-025-01203-7","DOIUrl":"10.1038/s41422-025-01203-7","url":null,"abstract":"Mitophagy, an evolutionarily conserved quality-control process, selectively removes damaged mitochondria to maintain cellular homeostasis. Recent advances in our understanding of the molecular machinery underlying mitophagy — from receptors and stress-responsive triggers to lysosomal degradation — illustrate its key role in maintaining mitochondrial integrity and adapting mitochondrial function to ever-changing physiological demands. In this review, we outline the fundamental mechanisms of mitophagy and discuss how dysregulation of this pathway disrupts mitochondrial function and metabolic balance, driving a wide range of disorders, including neurodegenerative, cardiovascular, metabolic, and immune-related diseases, as well as cancer. We explore the dual role of mitophagy as both a disease driver and a therapeutic target, highlighting the efforts and challenges of translating mechanistic insights into precision therapies. Targeting mitophagy to restore mitochondrial homeostasis may be at the center of a large range of translational opportunities for improving human health.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"36 1","pages":"11-37"},"PeriodicalIF":25.9,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01203-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145896014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1