Pyrrole-embedded organic molecules received a considerable importance due to their numerous biological and material applications. Hence, several synthetic strategies have been devised for the construction of diverse pyrrole analogues over the years. Among these, the Clauson-Kaas reaction is one of the most widely used protocols for the synthesis of various N-substituted pyrroles. This review briefly describes the Clauson-Kaas reaction along with modifications and a detailed account on its applications in the various sectors of organic synthesis.
{"title":"Applications of Clauson-Kaas Reaction in Organic Synthesis.","authors":"Pargat Singh, Abhijeet Singh, Dileep Kumar Singh, Mahendra Nath","doi":"10.1002/tcr.202400112","DOIUrl":"https://doi.org/10.1002/tcr.202400112","url":null,"abstract":"<p><p>Pyrrole-embedded organic molecules received a considerable importance due to their numerous biological and material applications. Hence, several synthetic strategies have been devised for the construction of diverse pyrrole analogues over the years. Among these, the Clauson-Kaas reaction is one of the most widely used protocols for the synthesis of various N-substituted pyrroles. This review briefly describes the Clauson-Kaas reaction along with modifications and a detailed account on its applications in the various sectors of organic synthesis.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fatemeh Doraghi, Mohammad Mahdi Aghanour Ashtiani, Mahmoud Ameli, Bagher Larijani, Mohammad Mahdavi
8-Methylquinoline is regarded as an ideal substrate to participate in diversely C(sp3)-H functionalization reactions. The presence of the chelating nitrogen atom enables 8-methylquinoline to easily form cyclometallated complexes with various transition metals, leading to the selective synthesis of functionalized quinolines. Considering the great importance of quinoline cores in medicinal chemistry, in this review article, we have covered the publications related to the C-H activation and functionalization of 8-methylquinoline under transition metal catalysis during the last decade.
{"title":"Transition Metal-Catalyzed C-H Activation/Functionalization of 8-Methylquinolines.","authors":"Fatemeh Doraghi, Mohammad Mahdi Aghanour Ashtiani, Mahmoud Ameli, Bagher Larijani, Mohammad Mahdavi","doi":"10.1002/tcr.202400116","DOIUrl":"https://doi.org/10.1002/tcr.202400116","url":null,"abstract":"<p><p>8-Methylquinoline is regarded as an ideal substrate to participate in diversely C(sp<sup>3</sup>)-H functionalization reactions. The presence of the chelating nitrogen atom enables 8-methylquinoline to easily form cyclometallated complexes with various transition metals, leading to the selective synthesis of functionalized quinolines. Considering the great importance of quinoline cores in medicinal chemistry, in this review article, we have covered the publications related to the C-H activation and functionalization of 8-methylquinoline under transition metal catalysis during the last decade.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cadmium sulfide (CdS) based heterojunctions, including type-II, Z-scheme, and S-scheme systems emerged as promising materials for augmenting photocatalytic hydrogen (H2) generation from water splitting. This review offers an exclusive highlight of their fundamental principles, synthesis routes, charge transfer mechanisms, and performance properties in improving H2 production. We overview the crucial roles of Type-II heterojunctions in enhancing charge separation, Z-scheme heterojunctions in promoting redox potentials to reduce electron-hole (e-/h+) pairs recombination, and S-scheme heterojunctions in combining the merits of both type-II and Z-scheme frameworks to obtain highly efficient H2 production. The importance of this review is demonstrated by its thorough comparison of these three configurations, presenting valuable insights into their special contributions and capability for augmenting photocatalytic H2 activity. Additionally, key challenges and prospects in the practical applications of CdS-based heterojunctions are addressed, which provides a comprehensive route for emerging research in achieving sustainable energy goals.
基于硫化镉(CdS)的异质结,包括 II 型、Z 型和 S 型系统,已成为增强光催化水分裂产生氢气(H2)的有前途的材料。本综述独家重点介绍了它们的基本原理、合成路线、电荷转移机制以及在提高 H2 产率方面的性能特性。我们概述了 II 型异质结在增强电荷分离方面的关键作用,Z 型主题异质结在促进氧化还原电位以减少电子-空穴(e-/h+)对重组方面的关键作用,以及 S 型主题异质结在结合 II 型和 Z 型主题框架的优点以获得高效 H2 产能方面的关键作用。本综述的重要性体现在对这三种构型进行了全面比较,对它们在提高光催化 H2 活性方面的特殊贡献和能力提出了宝贵的见解。此外,还探讨了基于 CdS 的异质结在实际应用中面临的主要挑战和前景,为实现可持续能源目标的新兴研究提供了一条全面的途径。
{"title":"Emerging Trends in CdS-Based Nanoheterostructures: From Type-II and Z-Scheme toward S-Scheme Photocatalytic H<sub>2</sub> Production.","authors":"Ikram Ullah, Pei Zhao, Ning Qin, Shuai Chen, Jing-Han Li, An-Wu Xu","doi":"10.1002/tcr.202400127","DOIUrl":"https://doi.org/10.1002/tcr.202400127","url":null,"abstract":"<p><p>Cadmium sulfide (CdS) based heterojunctions, including type-II, Z-scheme, and S-scheme systems emerged as promising materials for augmenting photocatalytic hydrogen (H<sub>2</sub>) generation from water splitting. This review offers an exclusive highlight of their fundamental principles, synthesis routes, charge transfer mechanisms, and performance properties in improving H<sub>2</sub> production. We overview the crucial roles of Type-II heterojunctions in enhancing charge separation, Z-scheme heterojunctions in promoting redox potentials to reduce electron-hole (e<sup>-</sup>/h<sup>+</sup>) pairs recombination, and S-scheme heterojunctions in combining the merits of both type-II and Z-scheme frameworks to obtain highly efficient H<sub>2</sub> production. The importance of this review is demonstrated by its thorough comparison of these three configurations, presenting valuable insights into their special contributions and capability for augmenting photocatalytic H<sub>2</sub> activity. Additionally, key challenges and prospects in the practical applications of CdS-based heterojunctions are addressed, which provides a comprehensive route for emerging research in achieving sustainable energy goals.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a significant variant of the Michael reaction, the 1,6-addition reaction has undergone considerable development over the past decade. This effective strategy enables the synthesis of a variety of novel and potentially bioactive functional molecules. In this review, we summarize the recent progress in NHC-catalyzed 1,6-addition reactions, highlighting their efficiency in the rapid synthesis of complex functional molecules. We also provide our perspectives on the future development of this dynamic and highly active research area.
{"title":"Recent Progress on NHC-Catalyzed 1,6-Conjugate Addition Reactions.","authors":"Jun Sun, Shichun Jiang, Yonggui Liu, Ling Pan, Ying-Guo Liu, Bing Zeng","doi":"10.1002/tcr.202400125","DOIUrl":"https://doi.org/10.1002/tcr.202400125","url":null,"abstract":"<p><p>As a significant variant of the Michael reaction, the 1,6-addition reaction has undergone considerable development over the past decade. This effective strategy enables the synthesis of a variety of novel and potentially bioactive functional molecules. In this review, we summarize the recent progress in NHC-catalyzed 1,6-addition reactions, highlighting their efficiency in the rapid synthesis of complex functional molecules. We also provide our perspectives on the future development of this dynamic and highly active research area.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuang Liu, Le Zhang, Qingqing You, Huangdi Feng, Junhai Huang
Silicon, due to its abundance, non-toxicity, and cost-effectiveness, is a critical element in the earth's crust with significant industrial applications. In organic chemistry, main group elements, and in particular silicon, are extensively utilized as versatile synthetic intermediates. Despite the current challenges associated with harsh reaction conditions and unsustainable practices in synthesizing crucial organic structural molecules, desilylation reactions have emerged as a facilitative method, offering milder conditions and operational simplicity. This review provides a comprehensive analysis of recent advancements in the synthesis of valuable organic molecules through two distinct desilylation reactions. It systematically presents the synthesis of a variety of derivatives, such as furan, alcohol, N-heterocyclic, and ketone, highlighting the broad substrate tolerance of these reactions. This broad functional group compatibility suggests a promising future for the synthesis of a wide range of bioactive molecules, underscoring the significant potential of desilylation in contemporary organic synthesis.
{"title":"Advancements in Desilylation Reactions for the Synthesis of Valuable Organic Molecules.","authors":"Chuang Liu, Le Zhang, Qingqing You, Huangdi Feng, Junhai Huang","doi":"10.1002/tcr.202400120","DOIUrl":"https://doi.org/10.1002/tcr.202400120","url":null,"abstract":"<p><p>Silicon, due to its abundance, non-toxicity, and cost-effectiveness, is a critical element in the earth's crust with significant industrial applications. In organic chemistry, main group elements, and in particular silicon, are extensively utilized as versatile synthetic intermediates. Despite the current challenges associated with harsh reaction conditions and unsustainable practices in synthesizing crucial organic structural molecules, desilylation reactions have emerged as a facilitative method, offering milder conditions and operational simplicity. This review provides a comprehensive analysis of recent advancements in the synthesis of valuable organic molecules through two distinct desilylation reactions. It systematically presents the synthesis of a variety of derivatives, such as furan, alcohol, N-heterocyclic, and ketone, highlighting the broad substrate tolerance of these reactions. This broad functional group compatibility suggests a promising future for the synthesis of a wide range of bioactive molecules, underscoring the significant potential of desilylation in contemporary organic synthesis.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel P Da Costa, Manoela Sacramento, Angelita M Barcellos, Diego Alves
This report outlines the evolution and recent progress about the different protocols to synthesize the N-heterocycles fused hybrids, specifically [1,2,3]triazolo[1,5-a]quinoline. This review encompasses a broad range of approaches, describing several reactions for obtaining this since, such as dehydrogenative cyclization, oxidative N-N coupling, Dieckmann condensation, intramolecular Heck, (3+2)-cycloaddition, Ullman-type coupling and direct intramolecular arylation reactions. We divided this review in three section based in the starting materials to synthesize the target [1,2,3]triazolo[1,5-a]quinolines. Starting materials containing quinoline or triazole units previously formed, as well as starting materials which both quinoline and triazole units are formed in situ. Different methods of obtaining are described, such as metal-free or catalyzed conditions, azide-free, using conventional heating or alternative energy sources, such as electrochemical and photochemical methods. Mechanistic insights underlying the reported reactions were also described in this comprehensive review.
{"title":"Comprehensive Review on the Synthesis of [1,2,3]Triazolo[1,5-a]Quinolines.","authors":"Gabriel P Da Costa, Manoela Sacramento, Angelita M Barcellos, Diego Alves","doi":"10.1002/tcr.202400107","DOIUrl":"https://doi.org/10.1002/tcr.202400107","url":null,"abstract":"<p><p>This report outlines the evolution and recent progress about the different protocols to synthesize the N-heterocycles fused hybrids, specifically [1,2,3]triazolo[1,5-a]quinoline. This review encompasses a broad range of approaches, describing several reactions for obtaining this since, such as dehydrogenative cyclization, oxidative N-N coupling, Dieckmann condensation, intramolecular Heck, (3+2)-cycloaddition, Ullman-type coupling and direct intramolecular arylation reactions. We divided this review in three section based in the starting materials to synthesize the target [1,2,3]triazolo[1,5-a]quinolines. Starting materials containing quinoline or triazole units previously formed, as well as starting materials which both quinoline and triazole units are formed in situ. Different methods of obtaining are described, such as metal-free or catalyzed conditions, azide-free, using conventional heating or alternative energy sources, such as electrochemical and photochemical methods. Mechanistic insights underlying the reported reactions were also described in this comprehensive review.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huda S Alghamdi, Ahsan Ali, Afnan M Ajeebi, Abdesslem Jedidi, Mohammed Sanhoob, Mahbuba Aktary, A H Shabi, Mohammad Usman, Wasan Alghamdi, Shahad Alzahrani, Md Abdul Aziz, M Nasiruzzaman Shaikh
Restructuring the current energy industry towards sustainability requires transitioning from carbon based to renewable energy sources, reducing CO2 emissions. Hydrogen, is considered a significant clean energy carrier. However, it faces challenges in transportation and storage due to its high reactivity, flammability, and low density under ambient conditions. Liquid organic hydrogen carriers offer a solution for storing hydrogen because they allow for the economical and practical storage of organic compounds in regular vessels through hydrogenation and dehydrogenation. This review evaluates several hydrogen technologies aimed at addressing the challenges associated with hydrogen transportation and its economic viablity. The discussion delves into exploring the catalysts and their activity in the context of catalysts' development. This review highlights the pivotal role of various catalyst materials in enhancing the hydrogenation and dehydrogenation activities of multiple LOHC systems, including benzene/cyclohexane, toluene/methylcyclohexane (MCH), N-ethylcarbazole (NEC)/dodecahydro-N-ethylcarbazole (H12-NEC), and dibenzyltoluene (DBT)/perhydrodibenzyltoluene (H18-DBT). By exploring the catalytic properties of noble metals, transition metals, and multimetallic catalysts, the review provides valuable insights into their design and optimization. Also, the discussion revolved around the implementation of a hydrogen economy on a global scale, with a particular focus on the plans pertaining to Saudi Arabia and the GCC (Gulf Cooperation Council) countries. The review lays out the challenges this technology will face, including the need to increase its H2 capacity, reduce energy consumption by providing solutions, and guarantee the thermal stability of the materials.
{"title":"Catalysts for Liquid Organic Hydrogen Carriers (LOHCs): Efficient Storage and Transport for Renewable Energy.","authors":"Huda S Alghamdi, Ahsan Ali, Afnan M Ajeebi, Abdesslem Jedidi, Mohammed Sanhoob, Mahbuba Aktary, A H Shabi, Mohammad Usman, Wasan Alghamdi, Shahad Alzahrani, Md Abdul Aziz, M Nasiruzzaman Shaikh","doi":"10.1002/tcr.202400082","DOIUrl":"https://doi.org/10.1002/tcr.202400082","url":null,"abstract":"<p><p>Restructuring the current energy industry towards sustainability requires transitioning from carbon based to renewable energy sources, reducing CO<sub>2</sub> emissions. Hydrogen, is considered a significant clean energy carrier. However, it faces challenges in transportation and storage due to its high reactivity, flammability, and low density under ambient conditions. Liquid organic hydrogen carriers offer a solution for storing hydrogen because they allow for the economical and practical storage of organic compounds in regular vessels through hydrogenation and dehydrogenation. This review evaluates several hydrogen technologies aimed at addressing the challenges associated with hydrogen transportation and its economic viablity. The discussion delves into exploring the catalysts and their activity in the context of catalysts' development. This review highlights the pivotal role of various catalyst materials in enhancing the hydrogenation and dehydrogenation activities of multiple LOHC systems, including benzene/cyclohexane, toluene/methylcyclohexane (MCH), N-ethylcarbazole (NEC)/dodecahydro-N-ethylcarbazole (H12-NEC), and dibenzyltoluene (DBT)/perhydrodibenzyltoluene (H18-DBT). By exploring the catalytic properties of noble metals, transition metals, and multimetallic catalysts, the review provides valuable insights into their design and optimization. Also, the discussion revolved around the implementation of a hydrogen economy on a global scale, with a particular focus on the plans pertaining to Saudi Arabia and the GCC (Gulf Cooperation Council) countries. The review lays out the challenges this technology will face, including the need to increase its H<sub>2</sub> capacity, reduce energy consumption by providing solutions, and guarantee the thermal stability of the materials.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proton exchange membrane fuel cells (PEMFCs) have proven to be a promising power source for various applications ranging from portable devices to automotive and stationary power systems. The production of PEMFC involves numerous stages in the value chain, with each stage presenting unique challenges and opportunities to improve the overall performance and durability of the PEMFC stack. These include steps such as manufacturing the key components such as the platinum-based catalyst, processing these components into the membrane electrode assemblies (MEAs), and stacking the MEAs to ultimately produce a PEMFC stack. However, it is also known that the break-in or conditioning phase of the stack plays a crucial role in the final performance as well as durability. It involves several key phenomena such as hydration of the membrane, swelling of the ionomer, redistribution of the catalyst and the creation of suitable electrochemical interfaces – establishment of the triple phase boundary. These improve the proton conductivity, the mass transport of reactants and products, the catalytic activity of the electrode and thus the overall efficiency of the FC. The cruciality of break-in is demonstrated by the improvement in performance, which can even be over 50 % compared to the initial state. The state-of-the-art approach for the break-in of MEAs involves an electrochemical protocol, such as voltage cycling, using a PEMFC testing station. This method is time-consuming, equipment-intensive, and costly. Therefore, new, elegant, and cost-effective solutions are needed. Nevertheless, the primary aim is to achieve maximum/optimal performance so that it is fully operational and ready for the market. It is therefore essential to better understand and deconvolute these complex mechanisms taking place during break-in/conditioning. Strategies include controlled humidity and temperature cycling, novel electrode materials and other advanced break-in methods such as air braking, vacuum activation or steaming. In addition, it is critical to address the challenges associated with standardisation and quantification of protocols to enable interlaboratory comparisons to further advance the field.
质子交换膜燃料电池(PEMFC)已被证明是一种前景广阔的动力源,适用于从便携式设备到汽车和固定动力系统等各种应用领域。质子交换膜燃料电池的生产涉及价值链中的多个阶段,每个阶段都为提高质子交换膜燃料电池堆的整体性能和耐用性带来了独特的挑战和机遇。这些步骤包括制造铂基催化剂等关键部件、将这些部件加工成膜电极组件(MEA)以及堆叠 MEA 以最终生产出 PEMFC 堆。然而,众所周知,堆栈的磨合或调节阶段对最终性能和耐用性起着至关重要的作用。这涉及几个关键现象,如膜的水化、离子聚合物的膨胀、催化剂的重新分布以及合适的电化学界面的形成--三相边界的建立。这些现象改善了质子传导性、反应物和产物的质量传输、电极的催化活性,从而提高了 FC 的整体效率。性能的改善证明了磨合的重要性,与初始状态相比,性能改善甚至可以超过 50%。最先进的 MEA 磨合方法涉及电化学协议,例如使用 PEMFC 测试站进行电压循环。这种方法耗时长、设备密集、成本高昂。因此,我们需要新的、优雅的和具有成本效益的解决方案。然而,首要目标是实现最高/最优性能,使其能够完全投入使用,并随时准备投放市场。因此,必须更好地理解和破解磨合/调节过程中发生的这些复杂机制。策略包括控制湿度和温度循环、新型电极材料和其他先进的磨合方法,如空气制动、真空激活或蒸气。此外,关键是要解决与协议标准化和量化相关的挑战,以便进行实验室间比较,进一步推动该领域的发展。
{"title":"Fundamental and Practical Aspects of Break-In/Conditioning of Proton Exchange Membrane Fuel Cells","authors":"Mitja Kostelec, Matija Gatalo, Nejc Hodnik","doi":"10.1002/tcr.202400114","DOIUrl":"10.1002/tcr.202400114","url":null,"abstract":"<p>Proton exchange membrane fuel cells (PEMFCs) have proven to be a promising power source for various applications ranging from portable devices to automotive and stationary power systems. The production of PEMFC involves numerous stages in the value chain, with each stage presenting unique challenges and opportunities to improve the overall performance and durability of the PEMFC stack. These include steps such as manufacturing the key components such as the platinum-based catalyst, processing these components into the membrane electrode assemblies (MEAs), and stacking the MEAs to ultimately produce a PEMFC stack. However, it is also known that the break-in or conditioning phase of the stack plays a crucial role in the final performance as well as durability. It involves several key phenomena such as hydration of the membrane, swelling of the ionomer, redistribution of the catalyst and the creation of suitable electrochemical interfaces – establishment of the triple phase boundary. These improve the proton conductivity, the mass transport of reactants and products, the catalytic activity of the electrode and thus the overall efficiency of the FC. The cruciality of break-in is demonstrated by the improvement in performance, which can even be over 50 % compared to the initial state. The state-of-the-art approach for the break-in of MEAs involves an electrochemical protocol, such as voltage cycling, using a PEMFC testing station. This method is time-consuming, equipment-intensive, and costly. Therefore, new, elegant, and cost-effective solutions are needed. Nevertheless, the primary aim is to achieve maximum/optimal performance so that it is fully operational and ready for the market. It is therefore essential to better understand and deconvolute these complex mechanisms taking place during break-in/conditioning. Strategies include controlled humidity and temperature cycling, novel electrode materials and other advanced break-in methods such as air braking, vacuum activation or steaming. In addition, it is critical to address the challenges associated with standardisation and quantification of protocols to enable interlaboratory comparisons to further advance the field.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tcr.202400114","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Melinda Nonn, Prof. Santos Fustero, Prof. Loránd Kiss
The cover picture shows the structure of some three-dimensional small molecular entities, such as highly-functionalized cyclopentanes and saturated azaheterocycles with multiple chiral centers, derived by chemical manipulations of Vince lactam. More details can be found in article number e2024000070 by Melinda Nonn, Santos Fustero, and Loránd Kiss. (DOl: 10.1002/tcr.202400070.