This review critically examines the environmental implications of metalloids, with a focus on their role in industrial applications and the resulting ecological challenges. It addresses the dual nature of metalloids, emphasizing their beneficial uses while highlighting contamination and toxicity issues in soil, water, and atmospheric systems. The analysis evaluates specific environmental challenges associated with each metalloid and assesses both conventional and innovative remediation techniques, with a particular focus on bioremediation and nanoremediation technologies. Recent advancements in these areas are explored, offering insights into the mechanisms of metalloid transport and contamination. The review advocates for sustainable remediation strategies and promotes an integrated approach to managing metalloid pollution, aiming to protect environmental health and enhance sustainability.
{"title":"From Utility to Toxicity: Managing Metalloid Pollution Through Innovative Remediation Technologies.","authors":"Veeraswamy Davamani, Subramanian Arulmani, Ramesh Poornima, Rayapalayam Periyasamy Premalatha, Mohan Deepasri, Periasamy Kalaiselvi, Myleswamy Gopalakrishnan, Cheol Joo Moon, Jayaraman Theerthagiri, Myong Yong Choi","doi":"10.1002/tcr.202500191","DOIUrl":"https://doi.org/10.1002/tcr.202500191","url":null,"abstract":"<p><p>This review critically examines the environmental implications of metalloids, with a focus on their role in industrial applications and the resulting ecological challenges. It addresses the dual nature of metalloids, emphasizing their beneficial uses while highlighting contamination and toxicity issues in soil, water, and atmospheric systems. The analysis evaluates specific environmental challenges associated with each metalloid and assesses both conventional and innovative remediation techniques, with a particular focus on bioremediation and nanoremediation technologies. Recent advancements in these areas are explored, offering insights into the mechanisms of metalloid transport and contamination. The review advocates for sustainable remediation strategies and promotes an integrated approach to managing metalloid pollution, aiming to protect environmental health and enhance sustainability.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202500191"},"PeriodicalIF":7.5,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145687047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silicon quantum dots (SiQDs) are an emerging class of high-performing, sustainable, environmentally safe luminescent nanomaterial. They offer opportunities for next-generation displays, solid-state lighting, medical applications, and quantum technologies. Here, we highlight recent breakthroughs in colloidal SiQD synthesis and photophysics, comparing eight synthetic strategies. Among these, we focus on the hydrogen silsesquioxane (HSQ) polymer route, a simple and cost-effective hot-injection-free method that yields highly crystalline, ultrabright, and stable SiQDs with photoluminescence quantum yields approaching 80%. We also describe how solvent engineering realizes SiQD light-emitting diodes (LEDs) with record external quantum efficiencies (EQEs, >16%), >700-fold-increased lifetimes, and far-red emissions to rival state-of-the-art perovskite QD LEDs. Moreover, rice husk-derived SiQD LEDs illustrate the potential for low-waste circular material cycles. Thus, SiQDs are a sustainable platform for plant growth technologies, photodynamic therapy, and beyond.
{"title":"Hot-Injection-Free Silicon Nanocrystals Realize Record-Breaking Sustainable QD LEDs.","authors":"Ken-Ichi Saitow","doi":"10.1002/tcr.202500248","DOIUrl":"https://doi.org/10.1002/tcr.202500248","url":null,"abstract":"<p><p>Silicon quantum dots (SiQDs) are an emerging class of high-performing, sustainable, environmentally safe luminescent nanomaterial. They offer opportunities for next-generation displays, solid-state lighting, medical applications, and quantum technologies. Here, we highlight recent breakthroughs in colloidal SiQD synthesis and photophysics, comparing eight synthetic strategies. Among these, we focus on the hydrogen silsesquioxane (HSQ) polymer route, a simple and cost-effective hot-injection-free method that yields highly crystalline, ultrabright, and stable SiQDs with photoluminescence quantum yields approaching 80%. We also describe how solvent engineering realizes SiQD light-emitting diodes (LEDs) with record external quantum efficiencies (EQEs, >16%), >700-fold-increased lifetimes, and far-red emissions to rival state-of-the-art perovskite QD LEDs. Moreover, rice husk-derived SiQD LEDs illustrate the potential for low-waste circular material cycles. Thus, SiQDs are a sustainable platform for plant growth technologies, photodynamic therapy, and beyond.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202500248"},"PeriodicalIF":7.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145667346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mechanofluorochromism (MFC) is a photophysical phenomenon in which the color and fluorescent color of solid-state organic or metal complex fluorescent dyes change upon external mechanical stimulation (grinding) and recover to their original ones upon heating or exposure to solvent vapor. We discovered that newly developed donor-π-acceptor (D-π-A) fluorescent dyes exhibit bathochromic or hypsochromic-shifted MFC (b-MFC or h-MFC). This MFC arises from reversible switching between the crystalline and amorphous states, accompanied by changes in dipole-dipole and intermolecular π-π interactions upon grinding and heating. Indeed, such MFC not only is of a great scientific interest in photochemistry and photophysics but also has great potential for development of smart materials for next-generation optoelectronic devices, including rewritable photoimaging and electroluminescence devices. In this Personal Account, we offer an insight into the mechanism for the expression of MFC and present molecular design directions for creating D-π-A-type mechanofluorochromic dyes which can exhibit b-MFC or h-MFC.
{"title":"Mechanofluorochromism (MFC) of Donor-π-Acceptor (D-π-A)-Type Fluorescent Dyes.","authors":"Yousuke Ooyama","doi":"10.1002/tcr.202500211","DOIUrl":"https://doi.org/10.1002/tcr.202500211","url":null,"abstract":"<p><p>Mechanofluorochromism (MFC) is a photophysical phenomenon in which the color and fluorescent color of solid-state organic or metal complex fluorescent dyes change upon external mechanical stimulation (grinding) and recover to their original ones upon heating or exposure to solvent vapor. We discovered that newly developed donor-π-acceptor (D-π-A) fluorescent dyes exhibit bathochromic or hypsochromic-shifted MFC (b-MFC or h-MFC). This MFC arises from reversible switching between the crystalline and amorphous states, accompanied by changes in dipole-dipole and intermolecular π-π interactions upon grinding and heating. Indeed, such MFC not only is of a great scientific interest in photochemistry and photophysics but also has great potential for development of smart materials for next-generation optoelectronic devices, including rewritable photoimaging and electroluminescence devices. In this Personal Account, we offer an insight into the mechanism for the expression of MFC and present molecular design directions for creating D-π-A-type mechanofluorochromic dyes which can exhibit b-MFC or h-MFC.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202500211"},"PeriodicalIF":7.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145660527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S Pravinkumar, Attunuri Nagireddy, Hamesh Basumatary, Adita S Madavi, Prathap Reddy Mukthapuram, Rajesh Manda
Propargylic alcohol is a shining star in the chemical space. These congeners have garnered significant attention from the synthetic chemistry community due to their dual functionality and three-centered reactivity. In this realm, the electrophilic cyclization of propargylic alcohols with a tethered nucleophile functional group is a key strategy for synthesizing hetero- and carbocycles. In these transformations, the position of the nucleophilic reactive handle can influence the reaction outcome. Consequently, these derivatives open up numerous opportunities to create complex cyclic adducts through various reaction pathways. Among all nucleophile tethers, the hydroxy group has been increasingly used in the production of oxy-heterocyclics. The hydroxy dialing on the core propargylic alcohol would lead to oxy-heterocyclics, such as benzofuran, furan, chromene, coumarin, chromone, pyrane, etc., which have numerous applications in various fields of biology and other scientific fields. In this review, we focused on uncovered hydroxy-tethered propargylic alcohol cyclization reactions. We categorized these transformations based on the structural features of hydroxy propargylic alcohols. With this review, we aim to pave the way for further efforts in discovering new reaction pathways.
{"title":"Application of Hydroxy Propargylic Alcohols in Organic Synthesis.","authors":"S Pravinkumar, Attunuri Nagireddy, Hamesh Basumatary, Adita S Madavi, Prathap Reddy Mukthapuram, Rajesh Manda","doi":"10.1002/tcr.202500266","DOIUrl":"https://doi.org/10.1002/tcr.202500266","url":null,"abstract":"<p><p>Propargylic alcohol is a shining star in the chemical space. These congeners have garnered significant attention from the synthetic chemistry community due to their dual functionality and three-centered reactivity. In this realm, the electrophilic cyclization of propargylic alcohols with a tethered nucleophile functional group is a key strategy for synthesizing hetero- and carbocycles. In these transformations, the position of the nucleophilic reactive handle can influence the reaction outcome. Consequently, these derivatives open up numerous opportunities to create complex cyclic adducts through various reaction pathways. Among all nucleophile tethers, the hydroxy group has been increasingly used in the production of oxy-heterocyclics. The hydroxy dialing on the core propargylic alcohol would lead to oxy-heterocyclics, such as benzofuran, furan, chromene, coumarin, chromone, pyrane, etc., which have numerous applications in various fields of biology and other scientific fields. In this review, we focused on uncovered hydroxy-tethered propargylic alcohol cyclization reactions. We categorized these transformations based on the structural features of hydroxy propargylic alcohols. With this review, we aim to pave the way for further efforts in discovering new reaction pathways.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202500266"},"PeriodicalIF":7.5,"publicationDate":"2025-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145629403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Excited-state intramolecular proton transfer (ESIPT) happens when a molecule, upon photon absorption, is promoted to an electronically excited state, where a proton transfer occurs from a donor to an acceptor group within the molecule. This process generates an excited-state tautomer, often exhibiting a lower ionization potential. Consequently, the fluore scence spectra display a notable Stokes shift, with emission peaks shifted toward longer wavelengths. More details can be found in the Review by Rampal Pandey, Mrituanjay D. Pandey, and co-workers (DOI: 10.1002/tcr.202500109).