Muhammad Kaleem Shabbir, Fozia Arif, Haleema Asghar, Sanam Irum Memon, Urooj Khanum, Javeed Akhtar, Akbar Ali, Zeeshan Ramzan, Aliya Aziz, Ayaz Ali Memon, Prof. Khalid Hussain Thebo
MXene, regarded as cutting-edge two-dimensional (2D) materials, have been widely explored in various applications due to their remarkable flexibility, high specific surface area, good mechanical strength, and interesting electrical conductivity. Recently, 2D MXene has served as a ideal platform for the design and development of electrocatalysts with high activity, selectivity, and stability. This review article provides a detailed description of the structural engineering of MXene-based electrocatalysts and summarizes the uses of 2D MXene in hydrogen evolution reactions, nitrogen reduction reactions, oxygen evolution reactions, oxygen reduction reactions, and methanol/ethanol oxidation. Then, key issues and prospects for 2D MXene as a next-generation platform in fundamental research and real-world electrocatalysis applications are discussed. Emphasis will be given to material design and enhancement techniques. Finally, future research directions are suggested to improve the efficiency of MXene-based electrocatalysts.
{"title":"Two-Dimensional MXene-Based Electrocatalysts: Challenges and Opportunities","authors":"Muhammad Kaleem Shabbir, Fozia Arif, Haleema Asghar, Sanam Irum Memon, Urooj Khanum, Javeed Akhtar, Akbar Ali, Zeeshan Ramzan, Aliya Aziz, Ayaz Ali Memon, Prof. Khalid Hussain Thebo","doi":"10.1002/tcr.202400047","DOIUrl":"10.1002/tcr.202400047","url":null,"abstract":"<p>MXene, regarded as cutting-edge two-dimensional (2D) materials, have been widely explored in various applications due to their remarkable flexibility, high specific surface area, good mechanical strength, and interesting electrical conductivity. Recently, 2D MXene has served as a ideal platform for the design and development of electrocatalysts with high activity, selectivity, and stability. This review article provides a detailed description of the structural engineering of MXene-based electrocatalysts and summarizes the uses of 2D MXene in hydrogen evolution reactions, nitrogen reduction reactions, oxygen evolution reactions, oxygen reduction reactions, and methanol/ethanol oxidation. Then, key issues and prospects for 2D MXene as a next-generation platform in fundamental research and real-world electrocatalysis applications are discussed. Emphasis will be given to material design and enhancement techniques. Finally, future research directions are suggested to improve the efficiency of MXene-based electrocatalysts.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongao Liu, Yuqing Wang, Quanxin Gong, Yupeng Xia, Lei Li, Yuhua Xue, Junhe Yang, Shengjuan Li
Despite initial skepticism, hexagonal boron nitride (h-BN) has become a promising photocatalyst due to its unique two-dimensional structure, remarkable stability, and potential for adjustability through various modification strategies. This review provides a comprehensive analysis of the inherent characteristics of h-BN-based nanomaterials, recent advancements in their environmental and energy applications, practical modification techniques, and the challenges and prospects in photocatalysis. More details can be found in article number e202300334 by Shengjuan Li and co-workers. (DOl: 10.1002/tcr.202300334.