Pub Date : 2024-02-01DOI: 10.1016/j.esci.2023.100187
Linwei Zheng , Mang Niu , Tiantian Zeng , Xiaohang Ge , Yanrui Wang , Chun Xian Guo , Weiyong Yuan , Dapeng Cao , Lian Ying Zhang , Chang Ming Li
Regulating the electronic and geometric structures of electrocatalysts is an effective strategy to boost their catalytic properties. Herein, a coral-like nanostructure is assembled with Mo-doped Pt clusters to form a highly active catalyst toward the oxygen reduction reaction (ORR). The advantages of a Mo-doped porous skeleton, grain boundaries, and MoOx species on the Pt cluster surfaces synergistically boost the electrocatalytic performance. This unique architecture delivers 3.5- and 2.8-fold higher mass and specific activities, respectively, than commercial Pt/C. Density functional theory calculations reveal that the Mo-doped Pt clusters have an optimized Pt–O bond length of 2.110 Å, which weakens the adsorption energy of the intermediate O∗ to yield great ORR activity. Moreover, the catalyst shows a decay in the half-wave potential of only 8 mV after 10,000 cycles of accelerated durability testing. The high stability arises from the increased dissociation energy of Pt atoms and the stable architecture of the coral-like structure of clusters.
{"title":"Assembling molybdenum-doped platinum clusters into a coral-like nanostructure for highly enhanced oxygen reduction","authors":"Linwei Zheng , Mang Niu , Tiantian Zeng , Xiaohang Ge , Yanrui Wang , Chun Xian Guo , Weiyong Yuan , Dapeng Cao , Lian Ying Zhang , Chang Ming Li","doi":"10.1016/j.esci.2023.100187","DOIUrl":"10.1016/j.esci.2023.100187","url":null,"abstract":"<div><p>Regulating the electronic and geometric structures of electrocatalysts is an effective strategy to boost their catalytic properties. Herein, a coral-like nanostructure is assembled with Mo-doped Pt clusters to form a highly active catalyst toward the oxygen reduction reaction (ORR). The advantages of a Mo-doped porous skeleton, grain boundaries, and MoOx species on the Pt cluster surfaces synergistically boost the electrocatalytic performance. This unique architecture delivers 3.5- and 2.8-fold higher mass and specific activities, respectively, than commercial Pt/C. Density functional theory calculations reveal that the Mo-doped Pt clusters have an optimized Pt–O bond length of 2.110 Å, which weakens the adsorption energy of the intermediate O∗ to yield great ORR activity. Moreover, the catalyst shows a decay in the half-wave potential of only 8 mV after 10,000 cycles of accelerated durability testing. The high stability arises from the increased dissociation energy of Pt atoms and the stable architecture of the coral-like structure of clusters.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 1","pages":"Article 100187"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001271/pdfft?md5=20b1553d92da7308e0f22afccb94efce&pid=1-s2.0-S2667141723001271-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135889721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.esci.2023.100158
Wujie Dong , Fuqiang Huang
Crystal structure determines electrochemical energy storage characteristics; this is the underlying logic of material design. To date, hundreds of electrode materials have been developed to pursue superior performance. However, it remains a great challenge to understand the fundamental structure–performance relationship and achieve quantitative crystal structure design for efficient energy storage. In this review, we introduce the concept of crystal packing factor (PF), which can quantify crystal packing density. We then present and classify the typical crystal structures of attractive cathode/anode materials. Comparative PF analyses of different materials, including polymorphs, isomorphs, and others, are performed to clarify the influence of crystal packing density on energy storage performance through electronic and ionic conductivities. Notably, the practical electronic/ionic conductivities of energy storage materials are based on their intrinsic characteristics related to the PF yet are also affected by extrinsic factors. The PF provides a novel avenue for understanding the electrochemical performance of pristine materials and may offer guidance on designing better materials. Additional approaches involve size regulation, doping, carbon additives, and other methods. We also propose extended PF concepts to understand charge storage and transport behavior at different scales. Finally, we provide our insights on the major challenges and prospective solutions in this highly exciting field.
{"title":"Understanding the influence of crystal packing density on electrochemical energy storage materials","authors":"Wujie Dong , Fuqiang Huang","doi":"10.1016/j.esci.2023.100158","DOIUrl":"10.1016/j.esci.2023.100158","url":null,"abstract":"<div><p>Crystal structure determines electrochemical energy storage characteristics; this is the underlying logic of material design. To date, hundreds of electrode materials have been developed to pursue superior performance. However, it remains a great challenge to understand the fundamental structure–performance relationship and achieve quantitative crystal structure design for efficient energy storage. In this review, we introduce the concept of crystal packing factor (PF), which can quantify crystal packing density. We then present and classify the typical crystal structures of attractive cathode/anode materials. Comparative PF analyses of different materials, including polymorphs, isomorphs, and others, are performed to clarify the influence of crystal packing density on energy storage performance through electronic and ionic conductivities. Notably, the practical electronic/ionic conductivities of energy storage materials are based on their intrinsic characteristics related to the PF yet are also affected by extrinsic factors<em>.</em> The PF provides a novel avenue for understanding the electrochemical performance of pristine materials and may offer guidance on designing better materials. Additional approaches involve size regulation, doping, carbon additives, and other methods. We also propose extended PF concepts to understand charge storage and transport behavior at different scales. Finally, we provide our insights on the major challenges and prospective solutions in this highly exciting field.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 1","pages":"Article 100158"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723000897/pdfft?md5=64cf318ca9def33be25cdfc83b7f194a&pid=1-s2.0-S2667141723000897-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89150479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.esci.2023.100188
Lidong Sun , Yong Wang , Lingchen Kong , Shaoshan Chen , Cong Peng , Jiahui Zheng , Yu Li , Wei Feng
As high-energy cathode materials, conversion-type metal fluorides provide a prospective pathway for developing next-generation lithium-ion batteries. However, they suffer from severe performance decay owing to continuous structural destruction and active material dissolution upon cycling, which worsen at elevated temperatures. Here, we design a novel FeF2 cathode with in situ polymerized solid-state electrolyte systems to enhance the cycling ability of metal fluorides at 60 °C. Novel FeF2 with a mesoporous structure (meso-FeF2) improves Li+ diffusion and relieves the volume change that typically occurs during the alternating conversion reactions. The structural stability of the meso-FeF2 cathode is strengthened by an in situ polymerized solid-state electrolyte, which prevents the pulverization and ion dissolution that are inevitable for conventional liquid electrolytes. Under the double action of this in situ polymerized solid-state electrolyte and the meso-FeF2's mesoporous structure, the active material maintains an intact SEI layer and part of the mesoporous structure after long charge–discharge cycling, showing excellent cycling stability at high temperatures.
作为高能正极材料,转换型金属氟化物为开发下一代锂离子电池提供了一条前景广阔的途径。然而,由于在循环过程中结构持续破坏和活性材料溶解,它们的性能衰减严重,在温度升高时情况更加恶化。在此,我们设计了一种新型 FeF2 阴极,并采用原位聚合固态电解质系统,以增强金属氟化物在 60 °C 下的循环能力。具有介孔结构(meso-FeF2)的新型 FeF2 改善了 Li+ 的扩散,缓解了通常在交替转换反应中发生的体积变化。原位聚合固态电解质增强了介孔 FeF2 阴极的结构稳定性,防止了传统液态电解质不可避免的粉碎和离子溶解现象。在这种原位聚合固态电解质和介质 FeF2 的介孔结构的双重作用下,活性材料在长时间充放电循环后仍能保持完整的 SEI 层和部分介孔结构,在高温下表现出优异的循环稳定性。
{"title":"Designing mesostructured iron (II) fluorides with a stable in situ polymer electrolyte interface for high-energy-density lithium-ion batteries","authors":"Lidong Sun , Yong Wang , Lingchen Kong , Shaoshan Chen , Cong Peng , Jiahui Zheng , Yu Li , Wei Feng","doi":"10.1016/j.esci.2023.100188","DOIUrl":"10.1016/j.esci.2023.100188","url":null,"abstract":"<div><p>As high-energy cathode materials, conversion-type metal fluorides provide a prospective pathway for developing next-generation lithium-ion batteries. However, they suffer from severe performance decay owing to continuous structural destruction and active material dissolution upon cycling, which worsen at elevated temperatures. Here, we design a novel FeF<sub>2</sub> cathode with <em>in situ</em> polymerized solid-state electrolyte systems to enhance the cycling ability of metal fluorides at 60 °C. Novel FeF<sub>2</sub> with a mesoporous structure (meso-FeF<sub>2</sub>) improves Li<sup>+</sup> diffusion and relieves the volume change that typically occurs during the alternating conversion reactions. The structural stability of the meso-FeF<sub>2</sub> cathode is strengthened by an <em>in situ</em> polymerized solid-state electrolyte, which prevents the pulverization and ion dissolution that are inevitable for conventional liquid electrolytes. Under the double action of this <em>in situ</em> polymerized solid-state electrolyte and the meso-FeF<sub>2</sub>'s mesoporous structure, the active material maintains an intact SEI layer and part of the mesoporous structure after long charge–discharge cycling, showing excellent cycling stability at high temperatures.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 1","pages":"Article 100188"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001283/pdfft?md5=0dbd161a4b3d9986b41b7b53f20710b5&pid=1-s2.0-S2667141723001283-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135434450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.esci.2023.100140
Hon Ho Wong , Mingzi Sun , Tong Wu , Cheuk Hei Chan , Lu Lu , Qiuyang Lu , Baian Chen , Bolong Huang
Although single-atom catalysts (SACs) have attracted enormous attention for their applications in the electrochemical reduction of CO2 (CO2RR) due to their extraordinary catalytic activity and well-defined active centers, neighboring effects and their influence on the electrochemical performance of SACs have not been well investigated. In this review, we present a summary of the neighboring effects on SACs for the CO2RR process, where the surrounding atoms not only induce electronic modulation of the metal atom but also participate in the CO2RR. Both theoretical and experimental studies have pointed out that the neighboring sites of the anchored metal center can provide second active/adsorption locations during the catalytic process, enhancing CO2RR performance tremendously. This review supplies advanced insights into the significant roles and impacts of neighboring effects on the catalytic process, which also benefit the development of advanced SACs to achieve efficient electrocatalysis.
{"title":"Neighboring effect in single-atom catalysts for the electrochemical carbon dioxide reduction reaction","authors":"Hon Ho Wong , Mingzi Sun , Tong Wu , Cheuk Hei Chan , Lu Lu , Qiuyang Lu , Baian Chen , Bolong Huang","doi":"10.1016/j.esci.2023.100140","DOIUrl":"10.1016/j.esci.2023.100140","url":null,"abstract":"<div><p>Although single-atom catalysts (SACs) have attracted enormous attention for their applications in the electrochemical reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) due to their extraordinary catalytic activity and well-defined active centers, neighboring effects and their influence on the electrochemical performance of SACs have not been well investigated. In this review, we present a summary of the neighboring effects on SACs for the CO<sub>2</sub>RR process, where the surrounding atoms not only induce electronic modulation of the metal atom but also participate in the CO<sub>2</sub>RR. Both theoretical and experimental studies have pointed out that the neighboring sites of the anchored metal center can provide second active/adsorption locations during the catalytic process, enhancing CO<sub>2</sub>RR performance tremendously. This review supplies advanced insights into the significant roles and impacts of neighboring effects on the catalytic process, which also benefit the development of advanced SACs to achieve efficient electrocatalysis.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 1","pages":"Article 100140"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723000654/pdfft?md5=434077aa5799f09e9b05a582ec478729&pid=1-s2.0-S2667141723000654-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76581058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-25DOI: 10.1016/j.esci.2024.100243
Hee Jung Kim , Gill Sang Han , Hyun Suk Jung
Perovskite solar cells (PSCs) have shown remarkable advancements and achieved impressive power conversion efficiencies since their initial introduction in 2012. However, challenges regarding stability, quality, and sustainability must be addressed for their successful commercial use. This review analyses the recent studies and challenges related to the operating life and end-of-life utilization of PSCs. Strategies to enhance the stability and mitigate the toxic Pb leakage in operational and recycling approaches of discarded PSCs post their end-of-life are examined to establish a viable and sustainable PSC industry. Additionally, future research directions are proposed for the advancements in the PSC industry. The goal is to ensure high efficiency as well as economic and environmental sustainability throughout the lifecycle of PSCs.
{"title":"Managing the lifecycle of perovskite solar cells: Addressing stability and environmental concerns from utilization to end-of-life","authors":"Hee Jung Kim , Gill Sang Han , Hyun Suk Jung","doi":"10.1016/j.esci.2024.100243","DOIUrl":"10.1016/j.esci.2024.100243","url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) have shown remarkable advancements and achieved impressive power conversion efficiencies since their initial introduction in 2012. However, challenges regarding stability, quality, and sustainability must be addressed for their successful commercial use. This review analyses the recent studies and challenges related to the operating life and end-of-life utilization of PSCs. Strategies to enhance the stability and mitigate the toxic Pb leakage in operational and recycling approaches of discarded PSCs post their end-of-life are examined to establish a viable and sustainable PSC industry. Additionally, future research directions are proposed for the advancements in the PSC industry. The goal is to ensure high efficiency as well as economic and environmental sustainability throughout the lifecycle of PSCs.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100243"},"PeriodicalIF":0.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141724000211/pdfft?md5=9af375c34e24f08f7ef6b4770783ac17&pid=1-s2.0-S2667141724000211-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bismuth vanadate (BiVO4) is a promising photoanode material for photoelectrochemical (PEC) water oxidation. However, its performance is greatly hindered by poor bulk and interfacial charge transfer. Herein, to address this issue, iron doped vanadyl phosphate (Fe:VOPO4) was grafted on molybdenum doped BiVO4 (Mo:BiVO4) for significantly enhancing charge transfer and oxygen evolution kinetics simultaneously. Consequently, the resultant Fe:VOPO4/Mo:BVO4 photoanode exhibits a remarkable photocurrent density of 6.59 mA cm−2 at 1.23 V versus the reversible hydrogen electrode (VRHE) under AM 1.5G illumination, over approximately 5.5 times as high as that of pristine BiVO4. Systematic studies have demonstrated that the hopping activation energy of small polarons is significantly reduced due to the Mo doping, resulting in accelerated bulk charge transfer. More importantly, the deposition of Fe:VOPO4 promotes the interfacial charge transfer between Mo:BiVO4 and Fe:VOPO4 via the construction of V−O−V and P−O bonds, in addition to facilitating water splitting kinetics. This work provides a general strategy for optimizing charge transfer process, especially at the interface between photoanodes and cocatalysts.
钒酸铋(BiVO4)是一种很有前途的光电化学(PEC)水氧化光阳极材料。然而,其性能却因体积和界面电荷转移能力差而大受影响。为了解决这一问题,本文将掺杂铁的磷酸钒(Fe:VOPO4)接枝到掺杂钼的 BiVO4(Mo:BiVO4)上,以同时显著增强电荷转移和氧进化动力学。因此,在 AM 1.5G 光照下,Fe:VOPO4/Mo:BVO4 光阳极在 1.23 V 电压下与可逆氢电极 (VRHE) 相比显示出 6.59 mA cm-2 的显著光电流密度,是原始 BiVO4 光阳极的 5.5 倍以上。系统研究表明,由于掺杂了钼,小极子的跳跃活化能显著降低,从而加速了体电荷转移。更重要的是,Fe:VOPO4 的沉积通过构建 V-O-V 和 P-O 键,促进了 Mo:BiVO4 和 Fe:VOPO4 之间的界面电荷转移,此外还有利于水分离动力学。这项工作为优化电荷转移过程,尤其是光阳极与助催化剂之间的界面电荷转移过程提供了一种通用策略。
{"title":"Enhanced bulk and interfacial charge transfer in Fe:VOPO4 modified Mo:BiVO4 photoanodes for photoelectrochemical water splitting","authors":"Bing He, Yu Cao, Kaijie Lin, Mingjie Wu, Yunhai Zhu, Xun Cui, Liang Hu, Yingkui Yang, Xueqin Liu","doi":"10.1016/j.esci.2024.100242","DOIUrl":"https://doi.org/10.1016/j.esci.2024.100242","url":null,"abstract":"<p>Bismuth vanadate (BiVO<sub>4</sub>) is a promising photoanode material for photoelectrochemical (PEC) water oxidation. However, its performance is greatly hindered by poor bulk and interfacial charge transfer. Herein, to address this issue, iron doped vanadyl phosphate (Fe:VOPO<sub>4</sub>) was grafted on molybdenum doped BiVO<sub>4</sub> (Mo:BiVO<sub>4</sub>) for significantly enhancing charge transfer and oxygen evolution kinetics simultaneously. Consequently, the resultant Fe:VOPO<sub>4</sub>/Mo:BVO<sub>4</sub> photoanode exhibits a remarkable photocurrent density of 6.59 mA cm<sup>−2</sup> at 1.23 V versus the reversible hydrogen electrode (V<sub>RHE</sub>) under AM 1.5G illumination, over approximately 5.5 times as high as that of pristine BiVO<sub>4</sub>. Systematic studies have demonstrated that the hopping activation energy of small polarons is significantly reduced due to the Mo doping, resulting in accelerated bulk charge transfer. More importantly, the deposition of Fe:VOPO<sub>4</sub> promotes the interfacial charge transfer between Mo:BiVO<sub>4</sub> and Fe:VOPO<sub>4</sub> via the construction of V−O−V and P−O bonds, in addition to facilitating water splitting kinetics. This work provides a general strategy for optimizing charge transfer process, especially at the interface between photoanodes and cocatalysts.</p>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-10DOI: 10.1016/j.esci.2023.100221
Aodong Zhu , Lin Chen , Ao Zhang , Chenpu Zhu , Xinxin Zhang , Jie Zhong , Fuzhi Huang , Yi-Bing Cheng , Junyan Xiao
Carbon-based perovskite solar cells (C-PSCs) are promising candidates for large-scale photovoltaic applications due to their theoretical low cost and high stability. However, the fabrication of high-performance C-PSCs with large-area electrodes remains challenging. In this work, we propose a novel playdough-like graphite putty as top electrode in the perovskite devices. This electrode with soft nature can form good contact with the hole-transporting layer and the conductive substrate at room temperature by a simple pressing technique, which facilitates the fabrication of both small-area devices and perovskite solar modules. In this preliminary research, the corresponding small devices and modules can achieve efficiencies of 20.29% (∼0.15 cm2) and 16.01% (∼10 cm2), respectively. Moreover, we analyze the limitations of the optical and electrical properties of this playdough-like graphite electrode on the device performance, suggesting a direction for further improvement of C-PSCs in the future.
{"title":"Playdough-like carbon electrode: A promising strategy for high efficiency perovskite solar cells and modules","authors":"Aodong Zhu , Lin Chen , Ao Zhang , Chenpu Zhu , Xinxin Zhang , Jie Zhong , Fuzhi Huang , Yi-Bing Cheng , Junyan Xiao","doi":"10.1016/j.esci.2023.100221","DOIUrl":"10.1016/j.esci.2023.100221","url":null,"abstract":"<div><p>Carbon-based perovskite solar cells (C-PSCs) are promising candidates for large-scale photovoltaic applications due to their theoretical low cost and high stability. However, the fabrication of high-performance C-PSCs with large-area electrodes remains challenging. In this work, we propose a novel playdough-like graphite putty as top electrode in the perovskite devices. This electrode with soft nature can form good contact with the hole-transporting layer and the conductive substrate at room temperature by a simple pressing technique, which facilitates the fabrication of both small-area devices and perovskite solar modules. In this preliminary research, the corresponding small devices and modules can achieve efficiencies of 20.29% (∼0.15 cm<sup>2</sup>) and 16.01% (∼10 cm<sup>2</sup>), respectively. Moreover, we analyze the limitations of the optical and electrical properties of this playdough-like graphite electrode on the device performance, suggesting a direction for further improvement of C-PSCs in the future.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100221"},"PeriodicalIF":0.0,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001751/pdfft?md5=581b2051f0552172b41c70cb0f765139&pid=1-s2.0-S2667141723001751-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138560609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-10DOI: 10.1016/j.esci.2023.100223
Xingkai Ju , Jiao Kong , Guohua Qi , Shuping Hou , Bo Wang , Xingkang Diao , Shaojun Dong , Yongdong Jin
Developing the high biosafety, effective and wearable devices for fast wound healing is highly desired but remains a challenge. Here, we propose a “win–win co-operation” strategy to potentiate effective skin wound healing at the wound site by constructing robust and ecofriendly composite patch under opto-electric stimulation. The wearable patch is composed of ionic gel doped with Ti3C2Tx (MXene), which possesses good photothermal response to kill the bacteria via effective inhibition of the expression of inflammatory factors, preventing wound infection. Importantly, the composite ionogel patch is capable of providing green and on-demand electrical stimulation for wound site, guiding cell migration and proliferation by improved bioenergy and expression up-regulation of growth factor. In mice wound models, the treatment group healed ∼31% more rapidly. Mechanistically, the wearable devices could enable visual and real-time supervising treatment effect due to their good transmittance. The proposed strategy would be promising for future clinical treatment of wound healing.
{"title":"Photoelectric-driven conductive composite ionogel patch for effective wound healing","authors":"Xingkai Ju , Jiao Kong , Guohua Qi , Shuping Hou , Bo Wang , Xingkang Diao , Shaojun Dong , Yongdong Jin","doi":"10.1016/j.esci.2023.100223","DOIUrl":"10.1016/j.esci.2023.100223","url":null,"abstract":"<div><p>Developing the high biosafety, effective and wearable devices for fast wound healing is highly desired but remains a challenge. Here, we propose a “win–win co-operation” strategy to potentiate effective skin wound healing at the wound site by constructing robust and ecofriendly composite patch under opto-electric stimulation. The wearable patch is composed of ionic gel doped with Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> (MXene), which possesses good photothermal response to kill the bacteria via effective inhibition of the expression of inflammatory factors, preventing wound infection. Importantly, the composite ionogel patch is capable of providing green and on-demand electrical stimulation for wound site, guiding cell migration and proliferation by improved bioenergy and expression up-regulation of growth factor. In mice wound models, the treatment group healed ∼31% more rapidly. Mechanistically, the wearable devices could enable visual and real-time supervising treatment effect due to their good transmittance. The proposed strategy would be promising for future clinical treatment of wound healing.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100223"},"PeriodicalIF":0.0,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001775/pdfft?md5=12a01699ebde0f655eda4a436e12f70a&pid=1-s2.0-S2667141723001775-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138560597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.1016/j.esci.2023.100209
Mengjun Wang , Jun Jia , Hao Yan , Guang Li , Qiming Hong , Yuzheng Guo , Yong Xu , Xiaoqing Huang
Phase modulation of noble metal alloys (NMAs) is critically important in nanoscience since the distinct atomic arrangements can largely determine their physicochemical properties. However, the precise modulation of NMAs is formidably challenging, because thermodynamically stable phases are generally preferential compared to those metastable ones. Herein, we proposed a potential energy trapping strategy for phase modulation of Pd–Te alloys with solvents. Thereinto, ethylene glycol can increase the energy barrier for both Pd leaching and Te introduction, forming metastable Pd20Te7 phase. Inversely, N, N-dimethylformamide is unable to trap metastable phase, inducing the phase evolution to thermodynamically stable PdTe phase, and the precise phase modulation was realized including Pd20Te7, PdTe and PdTe2 phases. The Pd–Te alloys displayed phase-dependent formic acid oxidation catalytic performance with PdTe phase showing the best. This work proposes a strategy for creating metastable phase with potential energy trap, which may deepen the understanding of phase engineering for noble metal-based nanocrystals.
{"title":"Phase engineering of Pd–Te nanoplates via potential energy trapping","authors":"Mengjun Wang , Jun Jia , Hao Yan , Guang Li , Qiming Hong , Yuzheng Guo , Yong Xu , Xiaoqing Huang","doi":"10.1016/j.esci.2023.100209","DOIUrl":"10.1016/j.esci.2023.100209","url":null,"abstract":"<div><p>Phase modulation of noble metal alloys (NMAs) is critically important in nanoscience since the distinct atomic arrangements can largely determine their physicochemical properties. However, the precise modulation of NMAs is formidably challenging, because thermodynamically stable phases are generally preferential compared to those metastable ones. Herein, we proposed a potential energy trapping strategy for phase modulation of Pd–Te alloys with solvents. Thereinto, ethylene glycol can increase the energy barrier for both Pd leaching and Te introduction, forming metastable Pd<sub>20</sub>Te<sub>7</sub> phase. Inversely, N, N-dimethylformamide is unable to trap metastable phase, inducing the phase evolution to thermodynamically stable PdTe phase, and the precise phase modulation was realized including Pd<sub>20</sub>Te<sub>7</sub>, PdTe and PdTe<sub>2</sub> phases. The Pd–Te alloys displayed phase-dependent formic acid oxidation catalytic performance with PdTe phase showing the best. This work proposes a strategy for creating metastable phase with potential energy trap, which may deepen the understanding of phase engineering for noble metal-based nanocrystals.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100209"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001556/pdfft?md5=34aee37357daca6bebf346fe5ec9f4b7&pid=1-s2.0-S2667141723001556-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-02DOI: 10.1016/j.esci.2023.100208
Shijie Li , Kexin Dong , Mingjie Cai , Xinyu Li , Xiaobo Chen
Present photocatalysts for the synchronous cleanup of pharmaceuticals and heavy metals have several drawbacks, including inadequate reactive sites, inefficient electron–hole disassociation, and insufficient oxidation and reduction power. In this research, we sought to address these issues by using a facile solvothermal-photoreduction route to develop an innovative plasmonic S-scheme heterojunction, Au/MIL-101(Fe)/BiOBr. The screened-out Au/MIL-101(Fe)/BiOBr (AMB-2) works in a durable and high-performance manner for both Cr(VI) and norfloxacin (NOR) eradication under visible light, manifesting up to 53.3 and 2 times greater Cr(VI) and NOR abatement rates, respectively, than BiOBr. Remarkably, AMB-2's ability to remove Cr(VI) in a Cr(VI)-NOR co-existence system is appreciably better than in a sole-Cr(VI) environment; the synergy among Cr(VI), NOR, and AMB-2 results in the better utilization of photo-induced carriers, yielding a desirable capacity for decontaminating Cr(VI) and NOR synchronously. The integration of MOF-based S-scheme heterojunctions and a plasmonic effect contributes to markedly reinforced photocatalytic ability by increasing the number of active sites, augmenting the visible-light absorbance, boosting the efficient disassociation and redistribution of powerful photo-carriers, and elevating the generation of reactive substances. We provide details of the photocatalytic mechanism, NOR decomposition process, and bio-toxicity of the intermediates. This synergistic strategy of modifying S-scheme heterojunctions with a noble metal opens new horizons for devising excellent MOF-based photosystems with a plasmonic effect for environment purification.
目前用于同步净化药物和重金属的光催化剂存在几个缺点,包括反应位点不足、电子-空穴解离效率低以及氧化和还原能力不足。在这项研究中,我们试图利用一种简便的溶热-光诱导路线来开发一种创新的等离子体 S 型异质结 Au/MIL-101(Fe)/BiOBr,从而解决这些问题。筛选出的金/MIL-101(Fe)/BiOBr(AMB-2)可在可见光下持久、高效地消除六价铬和诺氟沙星(NOR),其六价铬和 NOR 的消除率分别是 BiOBr 的 53.3 倍和 2 倍。值得注意的是,AMB-2 在六价铬-NOR 共存系统中去除六价铬的能力明显优于在单一六价铬环境中;六价铬、NOR 和 AMB-2 之间的协同作用使光诱导载体得到了更好的利用,从而产生了同步去除六价铬和 NOR 的理想能力。基于 MOF 的 S 型异质结与等离子体效应相结合,增加了活性位点的数量,提高了可见光吸收率,促进了强力光载体的有效解离和再分配,并提高了反应物质的生成,从而显著增强了光催化能力。我们详细介绍了光催化机理、NOR 分解过程以及中间产物的生物毒性。这种用贵金属修饰 S 型异质结的协同策略为设计出具有质子效应、用于环境净化的卓越 MOF 基光电系统开辟了新天地。
{"title":"A plasmonic S-scheme Au/MIL-101(Fe)/BiOBr photocatalyst for efficient synchronous decontamination of Cr(VI) and norfloxacin antibiotic","authors":"Shijie Li , Kexin Dong , Mingjie Cai , Xinyu Li , Xiaobo Chen","doi":"10.1016/j.esci.2023.100208","DOIUrl":"10.1016/j.esci.2023.100208","url":null,"abstract":"<div><p>Present photocatalysts for the synchronous cleanup of pharmaceuticals and heavy metals have several drawbacks, including inadequate reactive sites, inefficient electron–hole disassociation, and insufficient oxidation and reduction power. In this research, we sought to address these issues by using a facile solvothermal-photoreduction route to develop an innovative plasmonic S-scheme heterojunction, Au/MIL-101(Fe)/BiOBr. The screened-out Au/MIL-101(Fe)/BiOBr (AMB-2) works in a durable and high-performance manner for both Cr(VI) and norfloxacin (NOR) eradication under visible light, manifesting up to 53.3 and 2 times greater Cr(VI) and NOR abatement rates, respectively, than BiOBr. Remarkably, AMB-2's ability to remove Cr(VI) in a Cr(VI)-NOR co-existence system is appreciably better than in a sole-Cr(VI) environment; the synergy among Cr(VI), NOR, and AMB-2 results in the better utilization of photo-induced carriers, yielding a desirable capacity for decontaminating Cr(VI) and NOR synchronously. The integration of MOF-based S-scheme heterojunctions and a plasmonic effect contributes to markedly reinforced photocatalytic ability by increasing the number of active sites, augmenting the visible-light absorbance, boosting the efficient disassociation and redistribution of powerful photo-carriers, and elevating the generation of reactive substances. We provide details of the photocatalytic mechanism, NOR decomposition process, and bio-toxicity of the intermediates. This synergistic strategy of modifying S-scheme heterojunctions with a noble metal opens new horizons for devising excellent MOF-based photosystems with a plasmonic effect for environment purification.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100208"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001544/pdfft?md5=40dae6d8b3f22e4bcb724dd6a23addc0&pid=1-s2.0-S2667141723001544-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135410663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}