Buckling failure of layered rock slopes due to self-weight is common in mountain areas, especially for high and steep slope, and it frequently results in serious disasters. Previous research has focused on qualitatively evaluating slope buckling stability and rarely studied the whole process from bending deformation to forming landslide. In this work, considering the tensile and compressive characteristics of rock, the simulation of high and steep slope bucking failure evolved in Bawang Mountain, was conducted by numerical manifold method. The buckling deformation mechanism and progressive failure process of Bawang Mountain high steep slope were studied. The reliability of the numerical method was verified by the comparison of theoretical calculation and field measurement data. The results show that numerical manifold method can accurately simulate high and steep slope buckling failure process by preforming interlayer and cross joints. The process of slope buckling deformation and instability failure can be divided into minor sliding-creep deformation, interlayer dislocation-slight bending, traction by slope toe-sharp uplift, accelerated sliding-landslide formation. Under the long-term action of self-weight, the evolution of slope buckling from formation to landslide is a progressive failure process, which mainly contains three stages: slight bending deformation, intense uplift deformation and landslide formation.
Deep underground rocks exhibit significant layered heterogeneity due to geological evolution and sedimentation. Rock fracture toughness, as one of the important indicators of hydraulic crack propagation, also exhibits heterogeneous distribution. In order to investigate the influence of non-uniform fracture toughness of layered rocks on hydraulic crack propagation, this paper establishes a planar three-dimensional hydraulic crack propagation model. The model is numerically solved using the 3D displacement discontinuity method (3D-DDM) and the finite difference method. The calculation results indicate that when the distribution of the fracture toughness of layered rocks changes from uniform to non-uniform, the fracture morphology develops from a standard circular crack to an elliptical crack. When the difference of the rock fracture toughness between adjacent rock layers and the middle rock layer (pay zone) is large enough, the fracture morphology will develop towards a rectangular shape. In addition, when the fracture toughness of rock layers is non-uniformly distributed, the hydraulic crack not only rapidly expand in the softening layer (rock layer with lower fracture toughness), but also slowly propagate in the strong layer (rock layer with higher fracture toughness). However, the propagation speed in the softening layer is much faster than that in the strong layer. The results indicate that the heterogeneity of rock fracture toughness has an important impact on the morphology, propagation speed, and direction of hydraulic fractures.

