Dr. Ilyass Jellal, Dr. Hugues Vergnes, Prof. Brigitte Caussat
Uniformly coating micronic particles with metals is of main interest for a broad range of applications. This study demonstrates the feasibility of depositing pure copper on the surface of micronic alumina particles by the fluidized bed chemical vapor deposition process from the cheap and nontoxic copper acetylacetonate precursor. Thanks to the development of a preconditioning protocol, a complete fluidization of the particles organized as porous agglomerates was reached. The coating of the individual particles was favored by using conditions involving low deposition rates. The influence of key operating parameters on the process behavior and on the characteristics of the deposit was studied. The deposited copper was of cubic crystal structure without carbon nor oxide contamination.
{"title":"Fluidized Bed Chemical Vapor Deposition of Copper on Micronic Alumina Powders","authors":"Dr. Ilyass Jellal, Dr. Hugues Vergnes, Prof. Brigitte Caussat","doi":"10.1002/ceat.202400253","DOIUrl":"10.1002/ceat.202400253","url":null,"abstract":"<p>Uniformly coating micronic particles with metals is of main interest for a broad range of applications. This study demonstrates the feasibility of depositing pure copper on the surface of micronic alumina particles by the fluidized bed chemical vapor deposition process from the cheap and nontoxic copper acetylacetonate precursor. Thanks to the development of a preconditioning protocol, a complete fluidization of the particles organized as porous agglomerates was reached. The coating of the individual particles was favored by using conditions involving low deposition rates. The influence of key operating parameters on the process behavior and on the characteristics of the deposit was studied. The deposited copper was of cubic crystal structure without carbon nor oxide contamination.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"47 12","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conventional fluids used in fission-based water-cooled nuclear reactors have lower heat transfer coefficients (HTCs) and thermal conductivity, which has led researchers to explore high-performance fluids that can enhance heat transfer in routine operation and prevent core meltdown in the case of accidents. It is important to investigate a wide range of fluids that can help designers improve thermal hydraulic characteristics, such as HTC, critical heat flux, and minimum departure from nucleate boiling ratio (MDNBR). In this study, the effectiveness of nanofluids in enhancing heat transfer parameters, including thermal conductivity and heat capacity, was investigated. Four different nanofluids (Al2O3–H2O, ZrO2–H2O, Ag–H2O, and Si–H2O) with pure water as the primary coolant in an HPR-1000 nuclear reactor were compared using computational methods. Due to computational limitations, only the flow channel among four fuel rods with the highest power density in the core was simulated using Eulerian computational fluid dynamics. The results of this study show that silver water (Ag–H2O) nanofluid outperformed other nanofluids and pure water. It had a higher average HTC and MDNBR, with a 67.15 % and 45.23 % improvement, respectively, compared to pure water. The fuel rod wall temperature was also reduced by 28.5 K with Ag–H2O compared to water. Comparison of current simulated results with literature data shows a good agreement.
{"title":"Improved Heat Transfer Capabilities of Nanofluids—An Assessment Through CFD Analysis","authors":"Rehan Zubair Khalid, Mehmood Iqbal, Aitazaz Hassan, Syed Muhammad Haris, Atta Ullah","doi":"10.1002/ceat.202300523","DOIUrl":"10.1002/ceat.202300523","url":null,"abstract":"<p>Conventional fluids used in fission-based water-cooled nuclear reactors have lower heat transfer coefficients (HTCs) and thermal conductivity, which has led researchers to explore high-performance fluids that can enhance heat transfer in routine operation and prevent core meltdown in the case of accidents. It is important to investigate a wide range of fluids that can help designers improve thermal hydraulic characteristics, such as HTC, critical heat flux, and minimum departure from nucleate boiling ratio (MDNBR). In this study, the effectiveness of nanofluids in enhancing heat transfer parameters, including thermal conductivity and heat capacity, was investigated. Four different nanofluids (Al<sub>2</sub>O<sub>3</sub>–H<sub>2</sub>O, ZrO<sub>2</sub>–H<sub>2</sub>O, Ag–H<sub>2</sub>O, and Si–H<sub>2</sub>O) with pure water as the primary coolant in an HPR-1000 nuclear reactor were compared using computational methods. Due to computational limitations, only the flow channel among four fuel rods with the highest power density in the core was simulated using Eulerian computational fluid dynamics. The results of this study show that silver water (Ag–H<sub>2</sub>O) nanofluid outperformed other nanofluids and pure water. It had a higher average HTC and MDNBR, with a 67.15 % and 45.23 % improvement, respectively, compared to pure water. The fuel rod wall temperature was also reduced by 28.5 K with Ag–H<sub>2</sub>O compared to water. Comparison of current simulated results with literature data shows a good agreement.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"47 11","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ceat.202300523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review explores advancements, challenges, and considerations in photocatalytic dye degradation for sustainable wastewater treatment. It highlights smart photocatalyst design, visible-light-responsive materials, and co-catalyst engineering, which enhance system efficacy. Despite environmental concerns, the eco-friendly aspects of photocatalysis offer a promising alternative to traditional methods. Future perspectives emphasize nanotechnology's role in developing effective photocatalysts and integrating visible-light and solar-driven systems to meet sustainability goals. Efforts in co-catalyst engineering and reactor design aim to optimize processes, addressing kinetic and scalability challenges, while economic research focuses on reducing costs to improve competitiveness.
{"title":"Mechanistic Insights and Emerging Trends in Photocatalytic Dye Degradation for Wastewater Treatment","authors":"Sahil Tak, Sanjeet Grewal, Shreya, Peeyush Phogat, Manisha, Ranjana Jha, Sukhvir Singh","doi":"10.1002/ceat.202400142","DOIUrl":"10.1002/ceat.202400142","url":null,"abstract":"<p>This review explores advancements, challenges, and considerations in photocatalytic dye degradation for sustainable wastewater treatment. It highlights smart photocatalyst design, visible-light-responsive materials, and co-catalyst engineering, which enhance system efficacy. Despite environmental concerns, the eco-friendly aspects of photocatalysis offer a promising alternative to traditional methods. Future perspectives emphasize nanotechnology's role in developing effective photocatalysts and integrating visible-light and solar-driven systems to meet sustainability goals. Efforts in co-catalyst engineering and reactor design aim to optimize processes, addressing kinetic and scalability challenges, while economic research focuses on reducing costs to improve competitiveness.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"47 11","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Ying Lu, Xinyang Li, Herbert Une Meir, Guang Yu Yang, Yu Shuan Fan, Way Lee Cheng, Wai Siong Chai
This study employs Cantera code to investigate the laminar burning velocity of different ammonia–hydrogen mixtures. Suitable models were selected from recent literature, and the one with the lowest root mean square error (RMSE) against experimental data was identified through the error function method. Bao mechanism shows an RMSE value of 4.71 at atmospheric pressure for ammonia–hydrogen mixtures, while the Otomo mechanism exhibits an RMSE of 2.11 under high-pressure conditions. Additionally, sensitivity analysis was conducted to highlight critical reactions within each mechanism, emphasizing distinctions between different pressures. This approach aims to choose the proper mechanism to reduce computational and experimental costs in the early stages of ammonia–hydrogen research.
{"title":"Numerical Analysis Selecting Chemical Mechanism of Ammonia–Hydrogen Mixture Laminar Burning Velocity by RMSE","authors":"Yu Ying Lu, Xinyang Li, Herbert Une Meir, Guang Yu Yang, Yu Shuan Fan, Way Lee Cheng, Wai Siong Chai","doi":"10.1002/ceat.202400053","DOIUrl":"https://doi.org/10.1002/ceat.202400053","url":null,"abstract":"This study employs Cantera code to investigate the laminar burning velocity of different ammonia–hydrogen mixtures. Suitable models were selected from recent literature, and the one with the lowest root mean square error (RMSE) against experimental data was identified through the error function method. Bao mechanism shows an RMSE value of 4.71 at atmospheric pressure for ammonia–hydrogen mixtures, while the Otomo mechanism exhibits an RMSE of 2.11 under high-pressure conditions. Additionally, sensitivity analysis was conducted to highlight critical reactions within each mechanism, emphasizing distinctions between different pressures. This approach aims to choose the proper mechanism to reduce computational and experimental costs in the early stages of ammonia–hydrogen research.","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"16 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, a new ellipse-fitting algorithm is proposed to achieve the reconstruction of bubble shapes in bubbly flow captured by a high-speed camera in the gas–liquid two-phase column reactor. Bubble flow patterns and geometric parameters in the experimental images are recognized and identified successfully, represented by means of the topological parameters. Three logical steps are carried out in detail. First, the area threshold and the circularity factors are established to identify the bubbles whether belonging to a single bubble or not. The overlapping bubbles in images can be separated from single bubbles based on a watershed segmentation algorithm. Second, a single bubble image and an overlapping bubble image are combined into one image. After that, statistical analysis for the size distributions and ellipse area bubbles is performed for further analysis and discussion. The advantage of this algorithm is that it can make use of a set of major and minor axes of an ellipse to capture the ellipse parameters more effectively. Simulation results are well agreed with experimental measurements. Moreover, it can be used to detect many ellipse-like bubbles that are dispersed in high-speed camera images, indicating that it is a better strategy for the recognition and identification of bubbly turbulent flow accurately.
{"title":"A New Bubble Image Model Based on the Recognition of Bubble Flow","authors":"Prof. Guohui Li, Dr. Xue Liu, Prof. Yang Liu","doi":"10.1002/ceat.202400009","DOIUrl":"10.1002/ceat.202400009","url":null,"abstract":"<p>In this study, a new ellipse-fitting algorithm is proposed to achieve the reconstruction of bubble shapes in bubbly flow captured by a high-speed camera in the gas–liquid two-phase column reactor. Bubble flow patterns and geometric parameters in the experimental images are recognized and identified successfully, represented by means of the topological parameters. Three logical steps are carried out in detail. First, the area threshold and the circularity factors are established to identify the bubbles whether belonging to a single bubble or not. The overlapping bubbles in images can be separated from single bubbles based on a watershed segmentation algorithm. Second, a single bubble image and an overlapping bubble image are combined into one image. After that, statistical analysis for the size distributions and ellipse area bubbles is performed for further analysis and discussion. The advantage of this algorithm is that it can make use of a set of major and minor axes of an ellipse to capture the ellipse parameters more effectively. Simulation results are well agreed with experimental measurements. Moreover, it can be used to detect many ellipse-like bubbles that are dispersed in high-speed camera images, indicating that it is a better strategy for the recognition and identification of bubbly turbulent flow accurately.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"47 11","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bi-reforming hydrogen production has its potential in the reduction of greenhouse gas emissions. In this work, methane bi-reforming process in a packed bed reactor using bi-disperse catalyst particles is numerically investigated via a particle-resolved modeling. The impacts of macropore fraction, porosity and macropore size on temperature and reaction rate distribution in the bed are evaluated. The results demonstrate that there exists a peak of the maximum temperature difference in the bed with the catalyst macropore fraction. Increasing the macropore fraction of the catalyst can weaken the non-uniformity of coke formation in the bed. The increase in the macropore size of the catalyst particle can promote the hydrogen production, especially when the macropore size of particle is smaller.
{"title":"Evaluation of Bi-reforming Performance of Bi-disperse Catalyst in a Packed Bed Reactor","authors":"Yaochen Zhu, Prof. Shuai Wang, Dr. Qinghong Zhang","doi":"10.1002/ceat.202400276","DOIUrl":"10.1002/ceat.202400276","url":null,"abstract":"<p>Bi-reforming hydrogen production has its potential in the reduction of greenhouse gas emissions. In this work, methane bi-reforming process in a packed bed reactor using bi-disperse catalyst particles is numerically investigated via a particle-resolved modeling. The impacts of macropore fraction, porosity and macropore size on temperature and reaction rate distribution in the bed are evaluated. The results demonstrate that there exists a peak of the maximum temperature difference in the bed with the catalyst macropore fraction. Increasing the macropore fraction of the catalyst can weaken the non-uniformity of coke formation in the bed. The increase in the macropore size of the catalyst particle can promote the hydrogen production, especially when the macropore size of particle is smaller.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"47 12","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yibo Gao, Linlin Geng, Patrick G. Verdin, Ibra Fall, Ruijie Zhang, Zhongjie Tian, Desheng Zhang
A pressure correction method is proposed considering the influence of a dual factor. The applicability of a pressure correction method coupled with a drag model is discussed along with the accuracy of the simulation results obtained by such a pressure correction method. It is found that the present pressure correction method combined with the DBS (dual bubble size) drag model can accurately reflect the changing trend of gas holdup distribution with pressure. It is also established that results from this model applied to a bubble column match well with the experimental data. Finally, when compared with other pressure correction models, the proposed model shows better robustness in three-dimensional simulations and can predict radial gas holdup distributions with better accuracy.
{"title":"Modeling of Dual-Factor Drag Correction Model for Bubbly Flow under Elevated Pressure","authors":"Yibo Gao, Linlin Geng, Patrick G. Verdin, Ibra Fall, Ruijie Zhang, Zhongjie Tian, Desheng Zhang","doi":"10.1002/ceat.202300477","DOIUrl":"10.1002/ceat.202300477","url":null,"abstract":"<p>A pressure correction method is proposed considering the influence of a dual factor. The applicability of a pressure correction method coupled with a drag model is discussed along with the accuracy of the simulation results obtained by such a pressure correction method. It is found that the present pressure correction method combined with the DBS (dual bubble size) drag model can accurately reflect the changing trend of gas holdup distribution with pressure. It is also established that results from this model applied to a bubble column match well with the experimental data. Finally, when compared with other pressure correction models, the proposed model shows better robustness in three-dimensional simulations and can predict radial gas holdup distributions with better accuracy.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"47 11","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}