首页 > 最新文献

Next Energy最新文献

英文 中文
Evaluation of waste plastic and waste cooking oil as a potential alternative fuel in diesel engine 评估废塑料和废食用油作为柴油发动机替代燃料的潜力
Pub Date : 2024-08-29 DOI: 10.1016/j.nxener.2024.100181

The generation of plastic waste and waste cooking oil is a serious environmental concern because of worldwide waste disposal issues. At the same time, increasing demand and contemporary geopolitics make fossil fuels a significant worldwide problem. As a result, there has been an increase in demand for alternate fuel for CI engines. To overcome these twin problems can be addressed by converting waste into liquid fuels. This research explores an intriguing area by mixing waste cooking oil biodiesel and waste plastic oil to create a mixture that remarkably seems like the physico-chemical properties of diesel fuel in a society that is looking for sustainable alternatives. So, in this investigation, a ternary fuel blend of Petro-diesel, waste cooking oil biodiesel (WCOB), and waste plastic oil (WPO) was used in the diesel engine. To enhance the properties of fuel, combustion, emission, and performance parameters of diesel engines, a ternary blend of B20P20D60 was employed in the CI engine as an alternative fuel. In the ternary fuel blends, WCOB, WPO, and diesel content were 20%, 20%, and 60%, respectively. The results were compared with conventional diesel fuel, showing that the ternary fuel blend B20P20D60 has an improved brake thermal efficiency of up to 1.71% at 80% loading and reduced emissions (HC, CO, NOx) compared to conventional diesel. Because of this, the ternary blends have significant potential for use in diesel engines.

由于世界范围内的废物处理问题,塑料废物和废食用油的产生是一个严重的环境问题。同时,日益增长的需求和当代地缘政治使化石燃料成为一个重大的世界性问题。因此,对用于 CI 发动机的替代燃料的需求不断增加。将废物转化为液体燃料可以解决这两个问题。这项研究探索了一个有趣的领域,即把废食用油生物柴油和废塑料油混合在一起,创造出一种混合物,这种混合物的物理化学特性与柴油非常相似,而社会正在寻求可持续的替代燃料。因此,在这项研究中,柴油发动机使用了石油柴油、废食用油生物柴油(WCOB)和废塑料油(WPO)的三元混合燃料。为了提高柴油发动机的燃料特性、燃烧、排放和性能参数,在 CI 发动机中使用了 B20P20D60 三元混合燃料作为替代燃料。在三元混合燃料中,WCOB、WPO 和柴油的含量分别为 20%、20% 和 60%。结果与传统柴油相比,三元混合燃料 B20P20D60 在 80% 负载时的制动热效率提高了 1.71%,排放(HC、CO、NOx)也减少了。因此,三元混合燃料在柴油发动机中的应用潜力巨大。
{"title":"Evaluation of waste plastic and waste cooking oil as a potential alternative fuel in diesel engine","authors":"","doi":"10.1016/j.nxener.2024.100181","DOIUrl":"10.1016/j.nxener.2024.100181","url":null,"abstract":"<div><p>The generation of plastic waste and waste cooking oil is a serious environmental concern because of worldwide waste disposal issues. At the same time, increasing demand and contemporary geopolitics make fossil fuels a significant worldwide problem. As a result, there has been an increase in demand for alternate fuel for CI engines. To overcome these twin problems can be addressed by converting waste into liquid fuels. This research explores an intriguing area by mixing waste cooking oil biodiesel and waste plastic oil to create a mixture that remarkably seems like the physico-chemical properties of diesel fuel in a society that is looking for sustainable alternatives. So, in this investigation, a ternary fuel blend of Petro-diesel, waste cooking oil biodiesel (WCOB), and waste plastic oil (WPO) was used in the diesel engine. To enhance the properties of fuel, combustion, emission, and performance parameters of diesel engines, a ternary blend of B20P20D60 was employed in the CI engine as an alternative fuel. In the ternary fuel blends, WCOB, WPO, and diesel content were 20%, 20%, and 60%, respectively. The results were compared with conventional diesel fuel, showing that the ternary fuel blend B20P20D60 has an improved brake thermal efficiency of up to 1.71% at 80% loading and reduced emissions (HC, CO, NO<sub>x</sub>) compared to conventional diesel. Because of this, the ternary blends have significant potential for use in diesel engines.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000863/pdfft?md5=4c5621679275f263c88102017c5ca4a1&pid=1-s2.0-S2949821X24000863-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile development of flexible cellulose acetate-lead dioxide membrane electrodes for supercapacitor applications 为超级电容器应用轻松开发柔性醋酸纤维素二氧化铅膜电极
Pub Date : 2024-08-27 DOI: 10.1016/j.nxener.2024.100178

Current work focuses on the development of flexible membranes of cellulose acetate containing lead dioxide for supercapacitor applications. The functionality of cellulose acetate and lead dioxide are analyzed by Fourier transform infrared spectroscopy. The degree of crystallinity is studied using X-ray Diffraction. The degree of hydrophilicity is discussed by water contact angle measurements. A Universal Testing Machine is used to examine the mechanical properties. The electrochemical performances are illustrated using Cyclic voltammetry, Electrochemical impedance Spectroscopy and Galvanostatic charge-discharge techniques. The highest recorded specific capacitance is 148 F g−1 at a current density of 40 mA g−1 for a membrane of 1 wt% lead dioxide in cellulose acetate. Capacitance retention of 89% after 5000 cycles is attained. The power density of 56 W kg−1 and energy density of 10 Wh kg−1 is achieved. The cellulose acetate doped with lead dioxide membranes can provide a better electrode material matrix for flexible energy storage.

目前的工作重点是开发含有二氧化铅的醋酸纤维素柔性膜,用于超级电容器。傅立叶变换红外光谱分析了醋酸纤维素和二氧化铅的功能。用 X 射线衍射法研究了结晶度。亲水程度通过水接触角测量进行讨论。使用万能试验机检测机械性能。使用循环伏安法、电化学阻抗谱法和伽马静态充放电技术对电化学性能进行了说明。在电流密度为 40 mA g-1 时,醋酸纤维素中含有 1 wt% 二氧化铅的膜的最高记录比电容为 148 F g-1。经过 5000 次循环后,电容保持率达到 89%。功率密度达到 56 W kg-1,能量密度达到 10 Wh kg-1。掺杂二氧化铅的醋酸纤维素膜可为柔性储能提供更好的电极材料基质。
{"title":"Facile development of flexible cellulose acetate-lead dioxide membrane electrodes for supercapacitor applications","authors":"","doi":"10.1016/j.nxener.2024.100178","DOIUrl":"10.1016/j.nxener.2024.100178","url":null,"abstract":"<div><p>Current work focuses on the development of flexible membranes of cellulose acetate containing lead dioxide for supercapacitor applications. The functionality of cellulose acetate and lead dioxide are analyzed by Fourier transform infrared spectroscopy. The degree of crystallinity is studied using X-ray Diffraction. The degree of hydrophilicity is discussed by water contact angle measurements. A Universal Testing Machine is used to examine the mechanical properties. The electrochemical performances are illustrated using Cyclic voltammetry, Electrochemical impedance Spectroscopy and Galvanostatic charge-discharge techniques. The highest recorded specific capacitance is 148 F g<sup>−1</sup> at a current density of 40 mA g<sup>−1</sup> for a membrane of 1 wt% lead dioxide in cellulose acetate. Capacitance retention of 89% after 5000 cycles is attained. The power density of 56 W kg<sup>−1</sup> and energy density of 10 Wh kg<sup>−1</sup> is achieved. The cellulose acetate doped with lead dioxide membranes can provide a better electrode material matrix for flexible energy storage.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000838/pdfft?md5=5d59284f3d3cea7fcee9b5474c151458&pid=1-s2.0-S2949821X24000838-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene-assisted improve electrochemical performance of manganese vanadium oxide for aqueous zinc-ion battery 石墨烯辅助改善锌离子水电池锰钒氧化物的电化学性能
Pub Date : 2024-08-27 DOI: 10.1016/j.nxener.2024.100180

Layer spacing of vanadium oxide can be effectively expanded by metal ion, however, its conductivity and electrochemical kinetics still require improvement. This work expands the layer spacing using manganese ion and help to improve conductivity and electrochemical kinetics by graphene. The results demonstrate that the layer spacing can be adjusted from 12.1 Å for pristine vanadium oxide (VOH) to 13.6 Å for manganese vanadium oxide (MnVO). Due to graphene introduction, it decreases to 11.6 Å for manganese vanadium oxide/graphene composite (MnVO-0.05–8/GN-15). Notably, the optimized composite delivers higher specific capacity of 507.5 mAh g−1 for MnVO-0.05–8/GN-15 than that of MnVO (410.4 mAh g−1) and VOH (370.1 mAh g−1) at current density of 0.5 A g−1. Furthermore, the MnVO-0.05–8/GN-15 exhibits fast Zn2+ ion diffusion ability, achieving high energy density of 403.51 Wh kg−1 and retaining an excellent cycle stability of 85.7% after 2000 cycles at a current density of 3 A g−1.

金属离子可有效扩大氧化钒的层间距,但其导电性和电化学动力学仍有待改进。本研究利用锰离子扩大了氧化钒的层间距,有助于提高石墨烯的导电性和电化学动力学性能。结果表明,层间距可从原始氧化钒(VOH)的 12.1 Å 调整到氧化锰钒(MnVO)的 13.6 Å。由于石墨烯的引入,氧化锰钒/石墨烯复合材料(MnVO-0.05-8/GN-15)的层间距降至 11.6 埃。值得注意的是,在电流密度为 0.5 A g-1 时,优化复合材料 MnVO-0.05-8/GN-15 的比容量为 507.5 mAh g-1,高于 MnVO(410.4 mAh g-1)和 VOH(370.1 mAh g-1)。此外,MnVO-0.05-8/GN-15 还表现出快速的 Zn2+ 离子扩散能力,实现了 403.51 Wh kg-1 的高能量密度,并在 3 A g-1 的电流密度下循环 2000 次后保持了 85.7% 的优异循环稳定性。
{"title":"Graphene-assisted improve electrochemical performance of manganese vanadium oxide for aqueous zinc-ion battery","authors":"","doi":"10.1016/j.nxener.2024.100180","DOIUrl":"10.1016/j.nxener.2024.100180","url":null,"abstract":"<div><p>Layer spacing of vanadium oxide can be effectively expanded by metal ion, however, its conductivity and electrochemical kinetics still require improvement. This work expands the layer spacing using manganese ion and help to improve conductivity and electrochemical kinetics by graphene. The results demonstrate that the layer spacing can be adjusted from 12.1 Å for pristine vanadium oxide (VOH) to 13.6 Å for manganese vanadium oxide (MnVO). Due to graphene introduction, it decreases to 11.6 Å for manganese vanadium oxide/graphene composite (MnVO-0.05–8/GN-15). Notably, the optimized composite delivers higher specific capacity of 507.5 mAh g<sup>−1</sup> for MnVO-0.05–8/GN-15 than that of MnVO (410.4 mAh g<sup>−1</sup>) and VOH (370.1 mAh g<sup>−1</sup>) at current density of 0.5 A g<sup>−1</sup>. Furthermore, the MnVO-0.05–8/GN-15 exhibits fast Zn<sup>2+</sup> ion diffusion ability, achieving high energy density of 403.51 Wh kg<sup>−1</sup> and retaining an excellent cycle stability of 85.7% after 2000 cycles at a current density of 3 A g<sup>−1</sup>.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000851/pdfft?md5=71676ba595e9e5e3dbd1e317ba64c35e&pid=1-s2.0-S2949821X24000851-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy harvesting by car-tire using piezoelectric polymer films blended with carbon-nanotubes 使用与碳纳米管混合的压电聚合物薄膜进行汽车轮胎能量收集
Pub Date : 2024-08-23 DOI: 10.1016/j.nxener.2024.100177

Energy harvesting through harnessing mobile cars is possible by combining mechanicals systems with advanced materials. Piezoelectric polymer blends with excellent mechanical properties facilitate energy harvesting using the car-tire as a source. Furthermore, by adding simplicity of preparation to the blends with multi-walled carbon nanotubes (MWCNT), an increase of energy conversion can lead to improved existing polyvinylidene fluoride/polymethylmethacrylate (PVDF/PMMA), films. This work focuses on investigating the best concentration of MWCNT to achieve car-tire energy harvesting as a sustainable and renewable energy option. The results show that 0.05 wt% of MWCNT is the best concentration among several values. A test set-up applying normal stress, simulating car-tire deformation indicated enhanced voltage generation. Compared to the energy consumption of combustion cars, the enriched films generate up to 4.3 kWh. This energy is harvested over a car trip of 100 km. A higher nanotube concentration caused saturation of the blend film and poor output. The novel enriched polymer must be tested for resisting cyclic loads to encourage sustainable energy harvesting using car tires.

通过将机械系统与先进材料相结合,利用移动汽车收集能量成为可能。压电聚合物共混物具有优异的机械性能,可利用汽车轮胎作为能量收集源。此外,通过简化与多壁碳纳米管(MWCNT)共混物的制备,可提高能量转换率,从而改进现有的聚偏二氟乙烯/聚甲基丙烯酸甲酯(PVDF/PMMA)薄膜。这项工作的重点是研究 MWCNT 的最佳浓度,以实现作为可持续和可再生能源选择的汽车轮胎能量收集。结果表明,在几个浓度值中,0.05 wt% 的 MWCNT 是最佳浓度。模拟汽车轮胎变形的法向应力测试装置显示,电压产生得到增强。与内燃汽车的能耗相比,富集薄膜最多可产生 4.3 千瓦时的能量。这些能量可在汽车行驶 100 公里的过程中获得。纳米管浓度越高,混合薄膜的饱和度越高,输出功率越低。必须对新型富集聚合物进行耐循环负荷测试,以鼓励使用汽车轮胎进行可持续的能量收集。
{"title":"Energy harvesting by car-tire using piezoelectric polymer films blended with carbon-nanotubes","authors":"","doi":"10.1016/j.nxener.2024.100177","DOIUrl":"10.1016/j.nxener.2024.100177","url":null,"abstract":"<div><p>Energy harvesting through harnessing mobile cars is possible by combining mechanicals systems with advanced materials. Piezoelectric polymer blends with excellent mechanical properties facilitate energy harvesting using the car-tire as a source. Furthermore, by adding simplicity of preparation to the blends with multi-walled carbon nanotubes (MWCNT), an increase of energy conversion can lead to improved existing polyvinylidene fluoride/polymethylmethacrylate (PVDF/PMMA), films. This work focuses on investigating the best concentration of MWCNT to achieve car-tire energy harvesting as a sustainable and renewable energy option. The results show that 0.05 wt% of MWCNT is the best concentration among several values. A test set-up applying normal stress, simulating car-tire deformation indicated enhanced voltage generation. Compared to the energy consumption of combustion cars, the enriched films generate up to 4.3<!--> <!-->kWh. This energy is harvested over a car trip of 100 km. A higher nanotube concentration caused saturation of the blend film and poor output. The novel enriched polymer must be tested for resisting cyclic loads to encourage sustainable energy harvesting using car tires.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000826/pdfft?md5=9d99ce8cb96d07e5d2a3e803cba1cc41&pid=1-s2.0-S2949821X24000826-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poultry litter-derived biochar for supercapacitor applications 用于超级电容器的家禽粪便衍生生物炭
Pub Date : 2024-08-22 DOI: 10.1016/j.nxener.2024.100171

This research focused on the detailed analytical characterization of the poultry litter-derived biochar followed by its conversion into electrodes for supercapacitor application. Biochar was prepared from poultry waste by pyrolysis at 600 °C for 3 hours and activated it by mixing with potassium hydroxide and re-pyrolyzed at the same temperature for 1 hour. Both the biochar and activated biochar were analyzed using Scanning Electron Microscopy (SEM), Infrared spectroscopy (IR), Time of Flight – Secondary Ion Mass Spectroscopy (ToF-SIMS), and X-ray Photoelectron Spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analyses. SEM analyses suggested that the biochar’s surface became more porous and homogeneous after activation with potassium hydroxide. The specific surface area of biochar increased by more than 200 folds to 814 m2 g−1 after KOH-activation confirmed from BET analysis. IR indicated the activated biochar contained sulfur- and phosphorous-functional groups but few or no oxygen-functional groups. The decrease in oxides of nitrogen, sulfur, and phosphorous was also observed in ToF-SIMS analysis. In spite of the decrease of oxides, the surface oxygen concentration (at%) increased from 42.3% to 46.6% after activation and was assumed to be present as C-O corroborated by XPS. The specific capacitance of activated biochar calculated from galvanostatic charge-discharge is 152 F/g attributed to its hierarchical porosity, heteroatoms presence, and hydrophilicity. This research is expected to contribute towards the sustainable management of agricultural wastes.

这项研究的重点是详细分析家禽粪便衍生生物炭的特性,然后将其转化为超级电容器应用的电极。家禽粪便通过在 600 °C 下热解 3 小时制备出生物炭,然后与氢氧化钾混合使其活化,并在相同温度下重新热解 1 小时。使用扫描电子显微镜(SEM)、红外光谱(IR)、飞行时间-二次离子质谱(ToF-SIMS)、X 射线光电子能谱(XPS)和布鲁纳-埃美特-泰勒(BET)分析法对生物炭和活化生物炭进行了分析。扫描电子显微镜分析表明,用氢氧化钾活化后,生物炭的表面变得更加多孔和均匀。BET 分析证实,经氢氧化钾活化后,生物炭的比表面积增加了 200 多倍,达到 814 平方米 g-1。红外分析表明,活化后的生物炭含有硫和磷官能团,但很少或没有氧官能团。在 ToF-SIMS 分析中也观察到氮氧化物、硫氧化物和磷氧化物的减少。尽管氧化物减少了,但表面氧浓度(at%)却在活化后从 42.3% 增加到 46.6%,XPS 证实了这一点。通过电静态充放电计算得出的活化生物炭的比电容为 152 F/g,这归功于其分层孔隙率、杂原子的存在和亲水性。这项研究有望为农业废弃物的可持续管理做出贡献。
{"title":"Poultry litter-derived biochar for supercapacitor applications","authors":"","doi":"10.1016/j.nxener.2024.100171","DOIUrl":"10.1016/j.nxener.2024.100171","url":null,"abstract":"<div><p>This research focused on the detailed analytical characterization of the poultry litter-derived biochar followed by its conversion into electrodes for supercapacitor application. Biochar was prepared from poultry waste by pyrolysis at 600 °C for 3 hours and activated it by mixing with potassium hydroxide and re-pyrolyzed at the same temperature for 1 hour. Both the biochar and activated biochar were analyzed using Scanning Electron Microscopy (SEM), Infrared spectroscopy (IR), Time of Flight – Secondary Ion Mass Spectroscopy (ToF-SIMS), and X-ray Photoelectron Spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analyses. SEM analyses suggested that the biochar’s surface became more porous and homogeneous after activation with potassium hydroxide. The specific surface area of biochar increased by more than 200 folds to 814 m<sup>2</sup> <!-->g<sup>−1</sup> after KOH-activation confirmed from BET analysis. IR indicated the activated biochar contained sulfur- and phosphorous-functional groups but few or no oxygen-functional groups. The decrease in oxides of nitrogen, sulfur, and phosphorous was also observed in ToF-SIMS analysis. In spite of the decrease of oxides, the surface oxygen concentration (at%) increased from 42.3% to 46.6% after activation and was assumed to be present as C-O corroborated by XPS. The specific capacitance of activated biochar calculated from galvanostatic charge-discharge is 152 F/g attributed to its hierarchical porosity, heteroatoms presence, and hydrophilicity. This research is expected to contribute towards the sustainable management of agricultural wastes.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000760/pdfft?md5=ccab95d377cda9ddaf08c8ddd62bdca2&pid=1-s2.0-S2949821X24000760-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of silicon anodes for high-energy lithium-ion batteries: Challenges, latest developments, and perspectives 高能锂离子电池硅阳极的全面回顾:挑战、最新发展和展望
Pub Date : 2024-08-20 DOI: 10.1016/j.nxener.2024.100176

Lithium-ion batteries (LIBs) have become the predominant and widely used energy storage systems in portable electronic devices, such as video cameras, smartphones, laptops, and plug-in hybrid vehicles, along with in stationary energy storage applications like power banks and backup energy storage systems. Moreover, they are widely used in the latest models of all electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, to meet the demand for EVs and HEVs, notable improvements in commercially available LIBs are required. These include improving energy density, cycling life, power and rate capabilities, safety, and cost. In spite of the initial commercialization of LIBs in 1990 by Sony, current commercial LIBs still rely on graphite/carbon as the anode material, providing a theoretical capacity of approximately 372 mAh g−1. The search is on for viable alternatives to graphite with higher capacity materials, and silicon (Si) has emerged as a promising candidate with a theoretical capacity of approximately 4200 mAh g−1. However, Si anodes face several challenges, such as considerable volume expansion during the lithiation/delithiation process, which leads to significant crystallographic-related phase-induced stresses, continuous formation of a solid electrolyte interface (SEI), and cycle retention decay. The volume expansion caused by stress leads to the pulverization of Si electrodes. This results in the loss of electrical contact with the substrate or current collector, causing a significant and rapid decrease in capacity and ultimately leading to battery failure. This review explores the challenges associated with Si-based anodes, their underlying causes, and their comparative advantages over conventional anodes. Furthermore, the review discusses innovative solutions to address these challenges, such as utilizing novel binders, electrolyte additives, structural, interfacial, composite engineering techniques, and prelithiation methods. Finally, considering the material cost, the suggestion to transition entirely to using up to 100% wt. silicon for anode development is proposed, streamlining practical and commercial implementation in future LIBs.

锂离子电池 (LIB) 已成为便携式电子设备(如摄像机、智能手机、笔记本电脑和插电式混合动力汽车)以及固定储能应用(如电源箱和备用储能系统)中最主要和最广泛使用的储能系统。此外,它们还广泛应用于最新型的全电动汽车(EV)和混合动力电动汽车(HEV)。然而,为了满足电动汽车和混合动力汽车的需求,需要对市售锂离子电池进行显著改进。这些改进包括提高能量密度、循环寿命、功率和速率能力、安全性和成本。尽管索尼公司于 1990 年实现了锂电池的初步商业化,但目前的商用锂电池仍依赖石墨/碳作为阳极材料,理论容量约为 372 mAh g-1。人们正在寻找替代石墨的更高容量材料,硅(Si)已成为一种很有前途的候选材料,其理论容量约为 4200 mAh g-1。然而,硅阳极面临着一些挑战,例如在石化/脱硅过程中会产生相当大的体积膨胀,从而导致与晶体学相关的相诱导应力、固体电解质界面(SEI)的持续形成以及循环保持衰减。应力引起的体积膨胀会导致硅电极粉化。这导致硅电极与基板或集流器失去电接触,使电池容量急剧下降,最终导致电池失效。本综述探讨了与硅基阳极相关的挑战、其根本原因以及与传统阳极相比的比较优势。此外,综述还讨论了应对这些挑战的创新解决方案,如利用新型粘合剂、电解质添加剂、结构、界面、复合工程技术和预硫化方法。最后,考虑到材料成本,提出了将阳极开发完全过渡到使用高达 100% 重量级硅的建议,以简化未来 LIB 的实用性和商业实施。
{"title":"A comprehensive review of silicon anodes for high-energy lithium-ion batteries: Challenges, latest developments, and perspectives","authors":"","doi":"10.1016/j.nxener.2024.100176","DOIUrl":"10.1016/j.nxener.2024.100176","url":null,"abstract":"<div><p>Lithium-ion batteries (LIBs) have become the predominant and widely used energy storage systems in portable electronic devices, such as video cameras, smartphones, laptops, and plug-in hybrid vehicles, along with in stationary energy storage applications like power banks and backup energy storage systems. Moreover, they are widely used in the latest models of all electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, to meet the demand for EVs and HEVs, notable improvements in commercially available LIBs are required. These include improving energy density, cycling life, power and rate capabilities, safety, and cost. In spite of the initial commercialization of LIBs in 1990 by Sony, current commercial LIBs still rely on graphite/carbon as the anode material, providing a theoretical capacity of approximately 372 mAh g<sup>−1</sup>. The search is on for viable alternatives to graphite with higher capacity materials, and silicon (Si) has emerged as a promising candidate with a theoretical capacity of approximately 4200 mAh g<sup>−1</sup>. However, Si anodes face several challenges, such as considerable volume expansion during the lithiation/delithiation process, which leads to significant crystallographic-related phase-induced stresses, continuous formation of a solid electrolyte interface (SEI), and cycle retention decay. The volume expansion caused by stress leads to the pulverization of Si electrodes. This results in the loss of electrical contact with the substrate or current collector, causing a significant and rapid decrease in capacity and ultimately leading to battery failure. This review explores the challenges associated with Si-based anodes, their underlying causes, and their comparative advantages over conventional anodes. Furthermore, the review discusses innovative solutions to address these challenges, such as utilizing novel binders, electrolyte additives, structural, interfacial, composite engineering techniques, and prelithiation methods. Finally, considering the material cost, the suggestion to transition entirely to using up to 100% wt. silicon for anode development is proposed, streamlining practical and commercial implementation in future LIBs.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000814/pdfft?md5=1901a2af3bbb35d3fd9f67cc97e2e535&pid=1-s2.0-S2949821X24000814-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental assessment of alternative fuels utilisation in heavy transport operations for extractive industries 采掘业重型运输作业中使用替代燃料的环境评估
Pub Date : 2024-08-12 DOI: 10.1016/j.nxener.2024.100173

Diesel-fuelled vehicles used in heavy transport operations of extractive industries release an estimated annual 400 Mt of carbon dioxide (CO2), approximately a 1.1% of global CO2 emissions. To address this issue, extractive industries aim to replace diesel with alternative fuels of lower or zero CO2 emissions. Synthetic fuels such as synthetic methanol (e-MeOH) and synthetic natural gas (SNG) present significantly lesser CO2 emissions than conventional fuels, due to their production process utilising CO2 otherwise released in the atmosphere. Green hydrogen (H2) is another alternative fuel associated with zero CO2 emissions during combustion, and near zero emissions from production through renewable energy sources (RES). The goal of this study is to assess the environmental impact of alternative fuels utilised in the heavy transport operations of a marble quarry located in north Greece through Life Cycle Assessment (LCA). The LCA was conducted according to ISO 14040:2006 and 14044:2006/A1:2018 and the International Life Cycle Data (ILCD) Handbook, using the commercial software package Sphera LCA for Experts. The results showed the e-MeOH, SNG and green H2 utilisation result in 51%, 28% and 69% reduction in CO2 eq. emissions, compared to diesel combustion. The study offers an overview of the benefits of alternative fuels for extractive industries, to support decision makers and promote the penetration of greener solutions in the highly emissive sector.

采掘业重型运输作业中使用的柴油车辆每年排放的二氧化碳(CO2)估计达 4 亿吨,约占全球 CO2 排放量的 1.1%。为解决这一问题,采掘业的目标是用二氧化碳排放量较低或为零的替代燃料取代柴油。合成燃料,如合成甲醇(e-MeOH)和合成天然气(SNG),由于其生产过程利用了原本释放到大气中的二氧化碳,因此二氧化碳排放量大大低于传统燃料。绿色氢气(H2)是另一种替代燃料,在燃烧过程中二氧化碳零排放,通过可再生能源(RES)生产时也接近零排放。本研究的目的是通过生命周期评估(LCA)来评估希腊北部一家大理石采石场重型运输作业中使用的替代燃料对环境的影响。生命周期评估是根据 ISO 14040:2006 和 14044:2006/A1:2018 以及《国际生命周期数据手册》进行的,使用的是 Sphera LCA for Experts 商业软件包。结果表明,与柴油燃烧相比,e-MeOH、SNG 和绿色 H2 的利用分别减少了 51%、28% 和 69% 的二氧化碳当量排放。该研究概述了采掘业使用替代燃料的好处,为决策者提供了支持,并促进了绿色解决方案在高排放行业的普及。
{"title":"Environmental assessment of alternative fuels utilisation in heavy transport operations for extractive industries","authors":"","doi":"10.1016/j.nxener.2024.100173","DOIUrl":"10.1016/j.nxener.2024.100173","url":null,"abstract":"<div><p>Diesel-fuelled vehicles used in heavy transport operations of extractive industries release an estimated annual 400 Mt of carbon dioxide (CO<sub>2</sub>), approximately a 1.1% of global CO<sub>2</sub> emissions. To address this issue, extractive industries aim to replace diesel with alternative fuels of lower or zero CO<sub>2</sub> emissions. Synthetic fuels such as synthetic methanol (e-MeOH) and synthetic natural gas (SNG) present significantly lesser CO<sub>2</sub> emissions than conventional fuels, due to their production process utilising CO<sub>2</sub> otherwise released in the atmosphere. Green hydrogen (H<sub>2</sub>) is another alternative fuel associated with zero CO<sub>2</sub> emissions during combustion, and near zero emissions from production through renewable energy sources (RES). The goal of this study is to assess the environmental impact of alternative fuels utilised in the heavy transport operations of a marble quarry located in north Greece through Life Cycle Assessment (LCA). The LCA was conducted according to ISO 14040:2006 and 14044:2006/A1:2018 and the International Life Cycle Data (ILCD) Handbook, using the commercial software package Sphera LCA for Experts. The results showed the e-MeOH, SNG and green H<sub>2</sub> utilisation result in 51%, 28% and 69% reduction in CO<sub>2</sub> eq. emissions, compared to diesel combustion. The study offers an overview of the benefits of alternative fuels for extractive industries, to support decision makers and promote the penetration of greener solutions in the highly emissive sector.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000784/pdfft?md5=942a8ac64636aa4f37a7b12205e3b610&pid=1-s2.0-S2949821X24000784-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental analysis of a sorption thermal energy storage for air heating and dehumidification in electric vehicles 用于电动汽车空气加热和除湿的吸附式热能储存器的实验分析
Pub Date : 2024-08-12 DOI: 10.1016/j.nxener.2024.100170

Electric Vehicles (EVs) will play a crucial role in next years to reach the desired reduction of CO2 emissions. One of the most critical aspects limiting the spread of this type of vehicle is the shorter range compared to conventional Internal Combustion Vehicles (ICVs). According to recent studies, in cold climate up to 50% of battery energy is used to control climate of passenger compartment.

This paper presents the design, development, and experimental analysis of a prototype open sorption Thermal Energy Storage (TES) system specifically engineered for air heating and dehumidification in EVs. The prototype includes 1 kg of zeolite 13X in spherical beads and a Positive Temperature Coefficient (PTC) heater for regeneration. Experimental results, conducted under representative winter conditions, indicate that the device can provide a dry and warm airflow for 45–90 minutes, depending on the mode of operation. Integrating this TES system into the vehicle's air handling unit significantly reduces the outdoor airflow rate without risk of window fogging. Simulations show that the device can reduce the thermal power required to heat the cabin by up to 50% during vehicle operation. During discharge, energy saving is approximately 1300 Wh when the outdoor temperature is 0 °C.

In conclusion, the proposed open sorption TES prototype demonstrates a viable approach to enhancing energy efficiency and passenger comfort in EVs.

未来几年,电动汽车(EV)将在减少二氧化碳排放方面发挥重要作用。与传统内燃汽车(ICV)相比,电动汽车的续航里程较短,这是限制其推广的最关键因素之一。根据最近的研究,在寒冷的气候条件下,多达 50% 的电池能量被用于控制乘客舱的气候。本文介绍了专为电动汽车空气加热和除湿而设计的开放式吸附热能存储(TES)系统原型的设计、开发和实验分析。原型系统包括 1 千克球形珠状沸石 13X 和用于再生的正温度系数(PTC)加热器。在具有代表性的冬季条件下进行的实验结果表明,根据运行模式的不同,该装置可提供 45-90 分钟的干燥和温暖气流。将这种 TES 系统集成到车辆的空气处理装置中,可大大降低室外气流速率,而不会有车窗起雾的风险。模拟结果表明,在车辆运行期间,该装置可将加热车厢所需的热功率最多降低 50%。总之,所提出的开放式吸附式热交换器原型展示了一种提高电动汽车能源效率和乘客舒适度的可行方法。
{"title":"Experimental analysis of a sorption thermal energy storage for air heating and dehumidification in electric vehicles","authors":"","doi":"10.1016/j.nxener.2024.100170","DOIUrl":"10.1016/j.nxener.2024.100170","url":null,"abstract":"<div><p>Electric Vehicles (EVs) will play a crucial role in next years to reach the desired reduction of CO<sub>2</sub> emissions. One of the most critical aspects limiting the spread of this type of vehicle is the shorter range compared to conventional Internal Combustion Vehicles (ICVs). According to recent studies, in cold climate up to 50% of battery energy is used to control climate of passenger compartment.</p><p>This paper presents the design, development, and experimental analysis of a prototype open sorption Thermal Energy Storage (TES) system specifically engineered for air heating and dehumidification in EVs. The prototype includes 1 kg of zeolite 13X in spherical beads and a Positive Temperature Coefficient (PTC) heater for regeneration. Experimental results, conducted under representative winter conditions, indicate that the device can provide a dry and warm airflow for 45–90 minutes, depending on the mode of operation. Integrating this TES system into the vehicle's air handling unit significantly reduces the outdoor airflow rate without risk of window fogging. Simulations show that the device can reduce the thermal power required to heat the cabin by up to 50% during vehicle operation. During discharge, energy saving is approximately 1300 Wh when the outdoor temperature is 0<!--> <!-->°C.</p><p>In conclusion, the proposed open sorption TES prototype demonstrates a viable approach to enhancing energy efficiency and passenger comfort in EVs.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000759/pdfft?md5=72438981df2e612cd4748a910d81a28d&pid=1-s2.0-S2949821X24000759-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid photovoltaic and biogas system for stable power system 用于稳定电力系统的光伏和沼气混合系统
Pub Date : 2024-08-09 DOI: 10.1016/j.nxener.2024.100172

The urgency of addressing climate change has underscored the necessity for implementing a new energy policy. Lately, an increasing number of countries and corporations have initiated the exploration of alternative energy sources to replace fossil fuels. There is a rising interest among individuals in photovoltaic solar panels as a sustainable means of generating electricity. Photovoltaic solar systems, on the other hand, rely significantly on weather conditions. As a result, the electricity generated by photovoltaic (PV) systems is unreliable. Harnessing biogas might serve as a captivating alternative for generating electricity. The study presents a proposal for a hybrid power system that combines PV solar panels and biogas. This system regards the PV solar system as the primary system. A forecast of PV production power is calculated using advanced machine-learning techniques. Subsequently, the projected power is juxtaposed with an approximation of the necessary load. If the PV system is unable to provide the necessary power demand, it is advisable to employ a biogas system to achieve a consistent and reliable power supply. Furthermore, this method offers a forecast of the daily waste demand for a reliable electrical grid. High-capacity manufacturing during the winter season is tested using a proposed solution for calculating biogas capacity and waste amount. The study introduces mathematical equations to address the daily biomass requirements of the system and implements an automated control system to oversee operations. The utilization of the proposed equations and control flow chart methodology effectively facilitates the precise quantification of methane generated from beef manure, reducing the margin of error from 12.82% to 8.28%. Additionally, it enables prompt adjustments to optimize equipment performance. This approach assists engineers in streamlining assessments and lays the groundwork for future improvements in design parameters.

应对气候变化的紧迫性凸显了实施新能源政策的必要性。最近,越来越多的国家和公司开始探索替代能源,以取代化石燃料。个人对光伏太阳能电池板这种可持续发电方式的兴趣日益高涨。另一方面,光伏太阳能系统在很大程度上依赖于天气条件。因此,光伏系统产生的电力并不可靠。利用沼气发电可能是一种极具吸引力的替代方案。本研究提出了一个结合光伏太阳能电池板和沼气的混合发电系统方案。该系统以光伏太阳能系统为主。利用先进的机器学习技术计算出光伏发电功率的预测值。随后,将预测功率与必要负荷的近似值并列。如果光伏系统无法提供必要的电力需求,建议采用沼气系统,以实现稳定可靠的电力供应。此外,这种方法还能预测每天的废物需求量,从而为电网提供可靠的电力供应。利用建议的沼气容量和废物量计算方案,对冬季的大容量生产进行了测试。该研究引入了数学公式来解决系统的每日生物量需求,并实施了一个自动控制系统来监督运行。利用建议的方程和控制流程图方法,可有效促进对牛粪产生的甲烷进行精确量化,将误差率从 12.82% 降低到 8.28%。此外,它还能及时调整以优化设备性能。这种方法有助于工程师简化评估,并为今后改进设计参数奠定基础。
{"title":"Hybrid photovoltaic and biogas system for stable power system","authors":"","doi":"10.1016/j.nxener.2024.100172","DOIUrl":"10.1016/j.nxener.2024.100172","url":null,"abstract":"<div><p>The urgency of addressing climate change has underscored the necessity for implementing a new energy policy. Lately, an increasing number of countries and corporations have initiated the exploration of alternative energy sources to replace fossil fuels. There is a rising interest among individuals in photovoltaic solar panels as a sustainable means of generating electricity. Photovoltaic solar systems, on the other hand, rely significantly on weather conditions. As a result, the electricity generated by photovoltaic (PV) systems is unreliable. Harnessing biogas might serve as a captivating alternative for generating electricity. The study presents a proposal for a hybrid power system that combines PV solar panels and biogas. This system regards the PV solar system as the primary system. A forecast of PV production power is calculated using advanced machine-learning techniques. Subsequently, the projected power is juxtaposed with an approximation of the necessary load. If the PV system is unable to provide the necessary power demand, it is advisable to employ a biogas system to achieve a consistent and reliable power supply. Furthermore, this method offers a forecast of the daily waste demand for a reliable electrical grid. High-capacity manufacturing during the winter season is tested using a proposed solution for calculating biogas capacity and waste amount. The study introduces mathematical equations to address the daily biomass requirements of the system and implements an automated control system to oversee operations. The utilization of the proposed equations and control flow chart methodology effectively facilitates the precise quantification of methane generated from beef manure, reducing the margin of error from 12.82% to 8.28%. Additionally, it enables prompt adjustments to optimize equipment performance. This approach assists engineers in streamlining assessments and lays the groundwork for future improvements in design parameters.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000772/pdfft?md5=daa8a3da62b9adc233ecc78ad47af59c&pid=1-s2.0-S2949821X24000772-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study of an air-cooled battery pack: Effects of time-averaging heat generation in a case study 风冷电池组的数值研究:案例研究中时间平均发热的影响
Pub Date : 2024-08-08 DOI: 10.1016/j.nxener.2024.100175

In the quest for cleaner energy sources in the automotive industry, lithium-ion batteries are increasingly favored as an alternative to fossil fuels. However, their performance, lifespan, and safety are highly influenced by operating temperatures. Consequently, extensive research is underway to develop more efficient battery thermal management systems (BTMS), taking into account the predicted average output of battery packs.

This study conducts a numerical analysis of the performance of an air-cooled battery pack used in a formula-style racing car. Unlike traditional approaches that use a constant heat source, the simulation here employs the actual electric current consumed by the vehicle's motor, estimated through a vehicle dynamics simulation on the race track. The battery cells are represented using an equivalent circuit model (ECM), consisting of three parallel resistance-capacitor (RC) elements, evaluated at three different temperatures.

We compare two scenarios: one using a time-averaged constant current, and the other applying a variable, transient current derived from vehicle dynamics simulations. Our findings reveal that the scenario with transient current results in a 6 °C (12.9%) increase in maximum cell temperature. This highlights the significance of incorporating realistic drive cycles in BTMS design and highlights the importance of dynamic current profiles in accurately predicting battery performance and temperature management.

在汽车工业寻求更清洁能源的过程中,锂离子电池作为化石燃料的替代品越来越受到青睐。然而,它们的性能、寿命和安全性受工作温度的影响很大。因此,考虑到电池组的预测平均输出功率,人们正在广泛研究开发更高效的电池热管理系统(BTMS)。本研究对用于方程式赛车的风冷电池组的性能进行了数值分析。与使用恒定热源的传统方法不同,这里的模拟采用了通过赛道上的车辆动力学模拟估算出的车辆电机消耗的实际电流。电池单元使用等效电路模型(ECM)表示,该模型由三个并联电阻电容(RC)元件组成,并在三种不同温度下进行评估。我们对两种方案进行了比较:一种方案使用时间平均恒定电流,另一种方案使用从车辆动力学模拟中得出的可变瞬态电流。我们的研究结果表明,采用瞬态电流的方案会导致电池最高温度上升 6 °C(12.9%)。这凸显了在 BTMS 设计中纳入现实驱动循环的重要性,并强调了动态电流曲线在准确预测电池性能和温度管理方面的重要性。
{"title":"Numerical study of an air-cooled battery pack: Effects of time-averaging heat generation in a case study","authors":"","doi":"10.1016/j.nxener.2024.100175","DOIUrl":"10.1016/j.nxener.2024.100175","url":null,"abstract":"<div><p>In the quest for cleaner energy sources in the automotive industry, lithium-ion batteries are increasingly favored as an alternative to fossil fuels. However, their performance, lifespan, and safety are highly influenced by operating temperatures. Consequently, extensive research is underway to develop more efficient battery thermal management systems (BTMS), taking into account the predicted average output of battery packs.</p><p>This study conducts a numerical analysis of the performance of an air-cooled battery pack used in a formula-style racing car. Unlike traditional approaches that use a constant heat source, the simulation here employs the actual electric current consumed by the vehicle's motor, estimated through a vehicle dynamics simulation on the race track. The battery cells are represented using an equivalent circuit model (ECM), consisting of three parallel resistance-capacitor (RC) elements, evaluated at three different temperatures.</p><p>We compare two scenarios: one using a time-averaged constant current, and the other applying a variable, transient current derived from vehicle dynamics simulations. Our findings reveal that the scenario with transient current results in a 6<!--> <!-->°C (12.9%) increase in maximum cell temperature. This highlights the significance of incorporating realistic drive cycles in BTMS design and highlights the importance of dynamic current profiles in accurately predicting battery performance and temperature management.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000802/pdfft?md5=80522db139b4629b3765cf0fca6580a2&pid=1-s2.0-S2949821X24000802-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Next Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1