Pub Date : 2024-10-30DOI: 10.1016/j.nxener.2024.100206
Pisong Cui , Huimin Liu , Xunyong Jiang
Due to their high surface tension and mobility, liquid metals present a challenge for direct coating onto current collectors. Herein, the researchers prepared a semisolid liquid metal by mixing GaInSn liquid metal with copper particle fillers. This semisolid liquid metal's viscosity is suitable for coating and strongly bonding with the current collector without a binder. Though promising, the lithium storage performance of such semisolid liquid metals has remained largely unexplored. The electrodes displayed favorable electrical conductivity and a high initial discharge capacity of 214 mAh g−1. Their discharge process involved a self-healing mechanism through the liquid-state transformation of the active component, analogous to metallic liquid systems. This work overcame the persistent liquid metal coating difficulty by modulating viscosity while revealing their notable lithium storage capabilities.
由于液态金属具有较高的表面张力和流动性,在集电极上直接镀膜是一项挑战。为此,研究人员将 GaInSn 液态金属与铜颗粒填料混合,制备出一种半固态液态金属。这种半固态液态金属的粘度适合涂覆,并能在不使用粘合剂的情况下与电流收集器牢固结合。虽然这种半固态液态金属的储锂性能前景广阔,但在很大程度上仍未得到开发。这些电极显示出良好的导电性和高达 214 mAh g-1 的初始放电容量。它们的放电过程涉及一种通过活性成分的液态转化进行自我修复的机制,类似于金属液态系统。这项研究通过调节粘度克服了长期存在的液态金属涂层难题,同时揭示了其显著的锂存储能力。
{"title":"Exploring semisolid liquid metal anode for lithium-ion battery","authors":"Pisong Cui , Huimin Liu , Xunyong Jiang","doi":"10.1016/j.nxener.2024.100206","DOIUrl":"10.1016/j.nxener.2024.100206","url":null,"abstract":"<div><div>Due to their high surface tension and mobility, liquid metals present a challenge for direct coating onto current collectors. Herein, the researchers prepared a semisolid liquid metal by mixing GaInSn liquid metal with copper particle fillers. This semisolid liquid metal's viscosity is suitable for coating and strongly bonding with the current collector without a binder. Though promising, the lithium storage performance of such semisolid liquid metals has remained largely unexplored. The electrodes displayed favorable electrical conductivity and a high initial discharge capacity of 214 mAh g<sup>−1</sup>. Their discharge process involved a self-healing mechanism through the liquid-state transformation of the active component, analogous to metallic liquid systems. This work overcame the persistent liquid metal coating difficulty by modulating viscosity while revealing their notable lithium storage capabilities.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100206"},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1016/j.nxener.2024.100207
Merin K. Wilson , Dhanya P. Jacob , Aldrin Antony , M.K. Jayaraj , S. Jayalekshmi
Globally, energy demands are massive, and environmental issues are rising against our sustainability. To maximize the use of renewable energy sources, development of efficient energy storage systems is mandatory. Lithium-ion batteries (LIBs) play an indispensable role in powering portable devices and electric vehicles, due to their high specific capacity and long cycle life. Manganese oxide (Mn3O4) is an environmentally friendly anode active material with high theoretical specific capacity of 936 mAh g−1 for applications in Li-ion cells.
In the present work, Mn3O4-functionalized carbon nanotubes (FCNT) nanocomposite, coated on carbon cloth (CC) current collector and termed as Mn3O4-FCNT @CC, is used as the anode material. Li-ion coin cells based on this nanocomposite anode show discharge capacity of 1371 mAh g−1 and charge capacity of 1141 mAh g−1 at current density of 100 mA g−1 with initial Coulombic efficiency of 83%. After 70 cycles, the charge-discharge capacities of the cells are 953 mAh g−1 and 958 mAh g−1, respectively, with capacity retention of 91% at current rate of 100 mA g−1. These cells are found to deliver reversible charge capacity of 575 mAh g−1 after 100 cycles at 1C (∼1 A g−1) and offer prospects of stable operation at high current rates.
在全球范围内,能源需求巨大,环境问题也日益严重,不利于我们的可持续发展。为了最大限度地利用可再生能源,必须开发高效的储能系统。锂离子电池(LIB)具有比容量大、循环寿命长的特点,在为便携式设备和电动汽车供电方面发挥着不可或缺的作用。氧化锰(Mn3O4)是一种环境友好型阳极活性材料,理论比容量高达 936 mAh g-1,可应用于锂离子电池。在电流密度为 100 mA g-1 时,基于这种纳米复合阳极的锂离子纽扣电池的放电容量为 1371 mAh g-1,充电容量为 1141 mAh g-1,初始库仑效率为 83%。经过 70 次循环后,电池的充放电容量分别为 953 mAh g-1 和 958 mAh g-1,在 100 mA g-1 的电流密度下,容量保持率为 91%。这些电池在 1C 条件下循环 100 次后,可提供 575 mAh g-1 的可逆充电容量(∼1 A g-1),并有望在高电流速率下稳定运行。
{"title":"Integrating manganese oxide nanoparticles with functionalized carbon nanotubes on carbon cloth to serve as a stable anode for high-capacity Li-ion cells","authors":"Merin K. Wilson , Dhanya P. Jacob , Aldrin Antony , M.K. Jayaraj , S. Jayalekshmi","doi":"10.1016/j.nxener.2024.100207","DOIUrl":"10.1016/j.nxener.2024.100207","url":null,"abstract":"<div><div>Globally, energy demands are massive, and environmental issues are rising against our sustainability. To maximize the use of renewable energy sources, development of efficient energy storage systems is mandatory. Lithium-ion batteries (LIBs) play an indispensable role in powering portable devices and electric vehicles, due to their high specific capacity and long cycle life. Manganese oxide (Mn<sub>3</sub>O<sub>4</sub>) is an environmentally friendly anode active material with high theoretical specific capacity of 936 mAh g<sup>−1</sup> for applications in Li-ion cells.</div><div>In the present work, Mn<sub>3</sub>O<sub>4</sub>-functionalized carbon nanotubes (FCNT) nanocomposite, coated on carbon cloth (CC) current collector and termed as Mn<sub>3</sub>O<sub>4</sub>-FCNT @CC, is used as the anode material. Li-ion coin cells based on this nanocomposite anode show discharge capacity of 1371<!--> <!-->mAh<!--> <!-->g<sup>−1</sup> and charge capacity of 1141<!--> <!-->mAh<!--> <!-->g<sup>−1</sup> at current density of 100 mA g<sup>−1</sup> with initial Coulombic efficiency of 83%. After 70 cycles, the charge-discharge capacities of the cells are 953<!--> <!-->mAh<!--> <!-->g<sup>−1</sup> and 958<!--> <!-->mAh<!--> <!-->g<sup>−1</sup>, respectively, with capacity retention of 91% at current rate of 100 mA g<sup>−1</sup>. These cells are found to deliver reversible charge capacity of 575<!--> <!-->mAh<!--> <!-->g<sup>−1</sup> after 100 cycles at 1C (∼1 A g<sup>−1</sup>) and offer prospects of stable operation at high current rates.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100207"},"PeriodicalIF":0.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1016/j.nxener.2024.100202
Mohammad Waseem , G. Sree Lakshmi , Mumtaz Ahmad , Mohd Suhaib
The desirable characteristics of an energy storage system (ESS) to fulfill the energy requirement in electric vehicles (EVs) are high specific energy, significant storage capacity, longer life cycles, high operating efficiency, and low cost. In order to advance electric transportation, it is important to identify the significant characteristics, pros and cons, new scientific developments, potential barriers, and imminent prospects of various energy storage technology. The objective of current research is to analyse and find out the optimal storage technology among different electro-chemical, chemical, electrical, mechanical, and hybrid storage system. Different batteries including lead-acid, nickel-based, lithium-ion, flow, metal-air, solid state, and ZEBRA along with their operating parameters are reviewed. The potential roles of fuel cell, ultracapacitor, flywheel and hybrid storage system technology in EVs are explored. Performance parameters of various battery system are analysed through radar based specified technique to conclude the best storage medium in electric mobility. Additionally, the current study compiles a critical analysis of 264 publications from various sources.
{"title":"Energy storage technology and its impact in electric vehicle: Current progress and future outlook","authors":"Mohammad Waseem , G. Sree Lakshmi , Mumtaz Ahmad , Mohd Suhaib","doi":"10.1016/j.nxener.2024.100202","DOIUrl":"10.1016/j.nxener.2024.100202","url":null,"abstract":"<div><div>The desirable characteristics of an energy storage system (ESS) to fulfill the energy requirement in electric vehicles (EVs) are high specific energy, significant storage capacity, longer life cycles, high operating efficiency, and low cost. In order to advance electric transportation, it is important to identify the significant characteristics, pros and cons, new scientific developments, potential barriers, and imminent prospects of various energy storage technology. The objective of current research is to analyse and find out the optimal storage technology among different electro-chemical, chemical, electrical, mechanical, and hybrid storage system. Different batteries including lead-acid, nickel-based, lithium-ion, flow, metal-air, solid state, and ZEBRA along with their operating parameters are reviewed. The potential roles of fuel cell, ultracapacitor, flywheel and hybrid storage system technology in EVs are explored. Performance parameters of various battery system are analysed through radar based specified technique to conclude the best storage medium in electric mobility. Additionally, the current study compiles a critical analysis of 264 publications from various sources.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100202"},"PeriodicalIF":0.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effective separation and high mobility of photogenerated charge carriers are important in order to enhance the photocatalytic activity of material. The one-dimensional nanostructures are providing the path for the photogenerated charge carriers resulting higher photocatalytic activity. Herein, highly crystalline Titanium dioxide (TiO2) nanowires (TNWs) having anatase phase were synthesized using hydrothermal method by varying the reaction time and temperatures. The synthesized TNWs were characterized using various techniques. Structural study revealed the formation of anatase TiO2 along with a minor percentage of the rutile phase. Morphological study indicates the growth of TiO2 nanowires originated from spheres-wires-flakes as a function of reaction time and temperature. FE-TEM image of TiO2 nanowires prepared at 150 ℃ for 72 h shows complete formation of nano-wires with 7–10 nm diameter. Photocatalytic performance of the synthesized TiO2 nanowires was investigated by observing the hydrogen (H2) generation via water splitting and degradation of aqueous methylene blue (MB) dye under a 400 W mercury vapor lamp respectively. Among the prepared samples, the TiO2 nanowires prepared at 150 ℃ for 48 h showed the highest H2 generation of 7464.28 μmol/0.1 gm higher than the Degussa TiO2. Further, the same nanostructured TiO2 shows the 100% MB degradation within 30 min (Kapp = 13.54 × 10−2 min−1).
{"title":"Enhanced photocatalytic performance of hydrothermally synthesized TiO2 nanowires for H2 production via water splitting","authors":"Niteen Jawale, Govind Umarji, Shubhangi Damkale, Sudhir Arbuj","doi":"10.1016/j.nxener.2024.100205","DOIUrl":"10.1016/j.nxener.2024.100205","url":null,"abstract":"<div><div>The effective separation and high mobility of photogenerated charge carriers are important in order to enhance the photocatalytic activity of material. The one-dimensional nanostructures are providing the path for the photogenerated charge carriers resulting higher photocatalytic activity. Herein, highly crystalline Titanium dioxide (TiO<sub>2</sub>) nanowires (TNWs) having anatase phase were synthesized using hydrothermal method by varying the reaction time and temperatures. The synthesized TNWs were characterized using various techniques. Structural study revealed the formation of anatase TiO<sub>2</sub> along with a minor percentage of the rutile phase. Morphological study indicates the growth of TiO<sub>2</sub> nanowires originated from spheres-wires-flakes as a function of reaction time and temperature. FE-TEM image of TiO<sub>2</sub> nanowires prepared at 150<!--> <!-->℃ for 72 h shows complete formation of nano-wires with 7–10 nm diameter. Photocatalytic performance of the synthesized TiO<sub>2</sub> nanowires was investigated by observing the hydrogen (H<sub>2</sub>) generation via water splitting and degradation of aqueous methylene blue (MB) dye under a 400 W mercury vapor lamp respectively. Among the prepared samples, the TiO<sub>2</sub> nanowires prepared at 150<!--> <!-->℃ for 48 h showed the highest H<sub>2</sub> generation of 7464.28<!--> <!-->μmol/0.1 gm higher than the Degussa TiO<sub>2</sub>. Further, the same nanostructured TiO<sub>2</sub> shows the 100% MB degradation within 30 min (K<em>app</em> <!-->=<!--> <!-->13.54<!--> <!-->×<!--> <!-->10<sup>−2</sup> min<sup>−1</sup>).</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100205"},"PeriodicalIF":0.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.nxener.2024.100204
Shuo Li , Shan Wang , Yanxuan Chen , Xianliang Meng , Lin Wang , Junsheng Zhu
Zinc-ion batteries have drawn much attention due to their good safety and low cost. In this work, a straightforward 1-pot pyrolysis process has been utilized to prepare novel K0.5Mn2O4·1.5H2O/rGO (KMrGO) composites. In KMrGO, the layered structure of reduced graphene oxide (rGO) can efficiently improve the electrical conductivity of K0.5Mn2O4·1.5H2O, enabling KMrGO to demonstrate high zinc storage performance. Although a very small amount of rGO (∼1.8%) has been introduced, the reversible capacity of KMrGO reaches 230.1 mAh g−1 after 250 cycles at 0.2 A g−1. Even after 1200 cycles at a high current density of 1 A g−1, KMrGO remains a good capacity retention of 70.2%. Considering the simple preparation of KMrGO, this method can provide a new route for synthesizing other metal dioxide/rGO composites.
{"title":"Facile synthesis of K0.5Mn2O4·1.5H2O/rGO composites with ultrahigh zinc storage properties","authors":"Shuo Li , Shan Wang , Yanxuan Chen , Xianliang Meng , Lin Wang , Junsheng Zhu","doi":"10.1016/j.nxener.2024.100204","DOIUrl":"10.1016/j.nxener.2024.100204","url":null,"abstract":"<div><div>Zinc-ion batteries have drawn much attention due to their good safety and low cost. In this work, a straightforward 1-pot pyrolysis process has been utilized to prepare novel K<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>·1.5H<sub>2</sub>O/rGO (KMrGO) composites. In KMrGO, the layered structure of reduced graphene oxide (rGO) can efficiently improve the electrical conductivity of K<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>·1.5H<sub>2</sub>O, enabling KMrGO to demonstrate high zinc storage performance. Although a very small amount of rGO (∼1.8%) has been introduced, the reversible capacity of KMrGO reaches 230.1 mAh g<sup>−1</sup> after 250 cycles at 0.2 A g<sup>−1</sup>. Even after 1200 cycles at a high current density of 1 A g<sup>−1</sup>, KMrGO remains a good capacity retention of 70.2%. Considering the simple preparation of KMrGO, this method can provide a new route for synthesizing other metal dioxide/rGO composites.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100204"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.nxener.2024.100203
Farzad Ghafoorian , Seyed Reza Mirmotahari , Mohammad Eydizadeh , Mehdi Mehrpooya
The Darrieus vertical axis wind turbine is categorized as a lift-based power generation turbomachine. However, the challenge of self-starting capability poses a potential obstacle for this turbine. This study addressed this issue by incorporating a Savonius rotor and introducing a Darrieus-Savonius hybrid rotor to enhance the aerodynamic performance and self-starting capability. The results demonstrated a substantial increase in power coefficient by 64% at tip speed ratio (TSR) = 1.4. Furthermore, the curtain installation was investigated as a mechanism to improve rotor performance. The findings indicated that the multiplication of a curtain enhanced the self-starting capability by controlling the positive pressure gradient on the suction and pressure sides of the rotor blades. Notably, considering the flow physics and rotor efficiency in the presence of the curtain with walls featuring different angles, it was established that the optimal angles for the upper and lower walls are 20° and 45°, respectively. This configuration led to a 35% increase in rotor efficiency compared to the solo hybrid rotor. The hybrid rotor demonstrated superior performance within the low-TSR range values, while the Darrieus control case exhibited better efficiency in the high-TSR range. Despite the enhancement in performance attributed to the curtain installation, the high-TSR range still lagged behind the Darrieus control case.
达里厄斯垂直轴风力涡轮机属于升力发电涡轮机。然而,自启动能力的挑战对这种涡轮机构成了潜在的障碍。为解决这一问题,本研究采用了萨沃尼乌斯转子,并引入了达里厄斯-萨沃尼乌斯混合转子,以提高气动性能和自启动能力。结果表明,在叶尖速度比 (TSR) = 1.4 时,功率系数大幅提高了 64%。此外,还研究了帘幕安装作为提高转子性能的机制。研究结果表明,通过控制转子叶片吸入侧和压力侧的正压力梯度,帘幕的增殖增强了自启动能力。值得注意的是,考虑到帘幕存在时的流动物理和转子效率,帘幕壁具有不同的角度,确定上下壁的最佳角度分别为 20° 和 45°。与单独的混合转子相比,这种配置使转子效率提高了 35%。混合式转子在低 TSR 值范围内表现出卓越的性能,而达里厄斯控制案例在高 TSR 值范围内表现出更高的效率。尽管帘式安装提高了性能,但高 TSR 范围仍然落后于达里厄斯控制情况。
{"title":"A systematic investigation on the hybrid Darrieus-Savonius vertical axis wind turbine aerodynamic performance and self-starting capability improvement by installing a curtain","authors":"Farzad Ghafoorian , Seyed Reza Mirmotahari , Mohammad Eydizadeh , Mehdi Mehrpooya","doi":"10.1016/j.nxener.2024.100203","DOIUrl":"10.1016/j.nxener.2024.100203","url":null,"abstract":"<div><div>The Darrieus vertical axis wind turbine is categorized as a lift-based power generation turbomachine. However, the challenge of self-starting capability poses a potential obstacle for this turbine. This study addressed this issue by incorporating a Savonius rotor and introducing a Darrieus-Savonius hybrid rotor to enhance the aerodynamic performance and self-starting capability. The results demonstrated a substantial increase in power coefficient by 64% at tip speed ratio (TSR)<!--> <!-->=<!--> <!-->1.4. Furthermore, the curtain installation was investigated as a mechanism to improve rotor performance. The findings indicated that the multiplication of a curtain enhanced the self-starting capability by controlling the positive pressure gradient on the suction and pressure sides of the rotor blades. Notably, considering the flow physics and rotor efficiency in the presence of the curtain with walls featuring different angles, it was established that the optimal angles for the upper and lower walls are 20° and 45°, respectively. This configuration led to a 35% increase in rotor efficiency compared to the solo hybrid rotor. The hybrid rotor demonstrated superior performance within the low-TSR range values, while the Darrieus control case exhibited better efficiency in the high-TSR range. Despite the enhancement in performance attributed to the curtain installation, the high-TSR range still lagged behind the Darrieus control case.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100203"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1016/j.nxener.2024.100201
Laxman Kumar Kundarapu , M. Maruthi Prasanna , Sreenivas Jayanti
The standard industrial vanadium redox flow battery (VRFB) stack is made of thick graphite bipolar plates to support the flow field required for optimal circulation of electrolyte. These thick plates suffer from electrolyte seepage, poor mechanical properties, and high machining and processing costs. In the present study, we report on the use of metallic bipolar plates for the construction of the VRFB cell. We show, through comprehensive electrochemical and hydrodynamic investigations, that Hastelloy C276, a corrosion-resistant high Nickel alloy, is a suitable bipolar plate material in VRFB cells. We show further that surface texture modification, in the form of a mix of concave and convex spherical indentations on the metallic bipolar plate, can have beneficial effects on cell performance. Comparative experiments on medium-size cells of a nominal area of 440 cm2 operating in the current density range of 75–125 mA/cm2 show that discharge energy gains of 25% or higher can be obtained together with a 10–15% reduction in pressure drop in comparison with similar cells with flat bipolar plates. It is posited that the concave indentations spread over the entire area ensure uniform electrolyte circulation while regions of low and high electrode compression create flow channeling possibilities that lead to reduced pressure drop.
{"title":"Indented metallic bipolar plates for vanadium redox flow batteries","authors":"Laxman Kumar Kundarapu , M. Maruthi Prasanna , Sreenivas Jayanti","doi":"10.1016/j.nxener.2024.100201","DOIUrl":"10.1016/j.nxener.2024.100201","url":null,"abstract":"<div><div>The standard industrial vanadium redox flow battery (VRFB) stack is made of thick graphite bipolar plates to support the flow field required for optimal circulation of electrolyte. These thick plates suffer from electrolyte seepage, poor mechanical properties, and high machining and processing costs. In the present study, we report on the use of metallic bipolar plates for the construction of the VRFB cell. We show, through comprehensive electrochemical and hydrodynamic investigations, that Hastelloy C276, a corrosion-resistant high Nickel alloy, is a suitable bipolar plate material in VRFB cells. We show further that surface texture modification, in the form of a mix of concave and convex spherical indentations on the metallic bipolar plate, can have beneficial effects on cell performance. Comparative experiments on medium-size cells of a nominal area of 440 cm<sup>2</sup> operating in the current density range of 75–125 mA/cm<sup>2</sup> show that discharge energy gains of 25% or higher can be obtained together with a 10–15% reduction in pressure drop in comparison with similar cells with flat bipolar plates. It is posited that the concave indentations spread over the entire area ensure uniform electrolyte circulation while regions of low and high electrode compression create flow channeling possibilities that lead to reduced pressure drop.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100201"},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1016/j.nxener.2024.100199
Amir Hassan , Yaroslavl Utkin
Methane dry reforming (DRM) holds promise as a pathway for converting methane into valuable synthesis gas (syngas) and high-value chemicals. In this study, we investigate the crystallographic plane interactions between nickel oxide (NiO) and a modified ceria-zirconia-praseodymium oxide support (CeZrPrOx) to elucidate their influence on catalytic activity in methane dry reforming. X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) techniques were employed to characterize the catalyst. Our findings reveal that specific crystallographic planes significantly impact the catalytic performance of NiO/CeZrPrOx catalyst. The (111), (110), and (100) facets of the support material are examined for their interactions with NiO. We observe that the (110) plane of the support exhibits strong interaction with NiO, leading to enhanced catalytic activity. This interaction facilitates superior anchoring of Ni nanoparticles, lowering sintering and promoting a strong metal-support interaction effect (SMSI). Additionally, our analysis suggests that the (110) interface is particularly favorable for methane dry reforming. Overall, this study highlights the importance of crystallographic plane interactions in NiO/CeZrPrOx catalysts and offers valuable insights for optimizing catalyst design for methane conversion processes.
{"title":"Dry reforming of methane and interaction between NiO and CeZrPrOx oxide in different crystallographic plane","authors":"Amir Hassan , Yaroslavl Utkin","doi":"10.1016/j.nxener.2024.100199","DOIUrl":"10.1016/j.nxener.2024.100199","url":null,"abstract":"<div><div>Methane dry reforming (DRM) holds promise as a pathway for converting methane into valuable synthesis gas (syngas) and high-value chemicals. In this study, we investigate the crystallographic plane interactions between nickel oxide (NiO) and a modified ceria-zirconia-praseodymium oxide support (CeZrPrOx) to elucidate their influence on catalytic activity in methane dry reforming. X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) techniques were employed to characterize the catalyst. Our findings reveal that specific crystallographic planes significantly impact the catalytic performance of NiO/CeZrPrOx catalyst. The (111), (110), and (100) facets of the support material are examined for their interactions with NiO. We observe that the (110) plane of the support exhibits strong interaction with NiO, leading to enhanced catalytic activity. This interaction facilitates superior anchoring of Ni nanoparticles, lowering sintering and promoting a strong metal-support interaction effect (SMSI). Additionally, our analysis suggests that the (110) interface is particularly favorable for methane dry reforming. Overall, this study highlights the importance of crystallographic plane interactions in NiO/CeZrPrOx catalysts and offers valuable insights for optimizing catalyst design for methane conversion processes.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100199"},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1016/j.nxener.2024.100200
Mahmoud Hazhir
By increasing the penetration of renewable resources in power systems, which are mostly inverter-based, voltage and frequency control has faced many challenges. Unlike the synchronous generators in large power systems, these sources have no resistance against load changes due to their low inertia, therefore, controlling the voltage and frequency of inverter-based microgrids requires new approaches. In this article, by taking feedback from the output voltage and current of the inverter and using the Proportional Integral controller, the desired control signal to be applied to the inverter is obtained in a way that initially creates a phase and voltage difference between the DGs in the microgrid, the power flow is established in a way that without the need for any communication link, the balance of energy production and consumption is established in an island mode, and at the end, the voltage and frequency of Distributed Generations are restored to their nominal values. The presented control logic is also implemented in Simulink MATLAB software and its results are measured and evaluated.
{"title":"Hierarchical control of inverter-based microgrid with droop approach and proportional-integral controller","authors":"Mahmoud Hazhir","doi":"10.1016/j.nxener.2024.100200","DOIUrl":"10.1016/j.nxener.2024.100200","url":null,"abstract":"<div><div>By increasing the penetration of renewable resources in power systems, which are mostly inverter-based, voltage and frequency control has faced many challenges. Unlike the synchronous generators in large power systems, these sources have no resistance against load changes due to their low inertia, therefore, controlling the voltage and frequency of inverter-based microgrids requires new approaches. In this article, by taking feedback from the output voltage and current of the inverter and using the Proportional Integral controller, the desired control signal to be applied to the inverter is obtained in a way that initially creates a phase and voltage difference between the DGs in the microgrid, the power flow is established in a way that without the need for any communication link, the balance of energy production and consumption is established in an island mode, and at the end, the voltage and frequency of Distributed Generations are restored to their nominal values. The presented control logic is also implemented in Simulink MATLAB software and its results are measured and evaluated.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100200"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.nxener.2024.100198
Kieran Heeley , Rafael L. Orozco , Imogen Sheppard , Lynne E. Macaskie , John Love , Bushra Al-Duri
Alkali metal salts and supported transition metals have been the dominant catalysts used to maximise hydrogen production from supercritical water gasification (SCWG). Recently, FeCl3 has emerged as an alternative to these that has been found to be more effective in some cases reported in literature. However, to these authors’ knowledge, few studies exist that study this catalyst with none that involve microalgae as the feedstock. Investigation is reported into the effect of FeCl3 on the SCWG of Chlorella vulgaris for a range of temperatures (400–600 °C) and biomass concentrations (1–3 wt%), with comparisons made to other catalysts (KOH, Ru/C and their combinations). A significant decrease in hydrogen yield, carbon conversion and energy efficiency was observed with the addition of FeCl3, due to a reduced pH which suppressed the water gas shift reaction and catalysed of char forming reactions. This was in contrary to Ru/C and KOH catalysts, where those outcomes increased. Additionally, when FeCl3 was used with Ru/C, the ruthenium was poisoned, nullifying its positive effects. Consequently, FeCl3 is not a suitable catalyst for hydrogen production from microalgae, either alone or in conjunction with a ruthenium catalyst.
{"title":"Assessment of Iron(III) chloride as a catalyst for the production of hydrogen from the supercritical water gasification of microalgae","authors":"Kieran Heeley , Rafael L. Orozco , Imogen Sheppard , Lynne E. Macaskie , John Love , Bushra Al-Duri","doi":"10.1016/j.nxener.2024.100198","DOIUrl":"10.1016/j.nxener.2024.100198","url":null,"abstract":"<div><div>Alkali metal salts and supported transition metals have been the dominant catalysts used to maximise hydrogen production from supercritical water gasification (SCWG). Recently, FeCl<sub>3</sub> has emerged as an alternative to these that has been found to be more effective in some cases reported in literature. However, to these authors’ knowledge, few studies exist that study this catalyst with none that involve microalgae as the feedstock. Investigation is reported into the effect of FeCl<sub>3</sub> on the SCWG of <em>Chlorella vulgaris</em> for a range of temperatures (400–600<!--> <!-->°C) and biomass concentrations (1–3<!--> <!-->wt%), with comparisons made to other catalysts (KOH, Ru/C and their combinations). A significant decrease in hydrogen yield, carbon conversion and energy efficiency was observed with the addition of FeCl<sub>3</sub>, due to a reduced pH which suppressed the water gas shift reaction and catalysed of char forming reactions. This was in contrary to Ru/C and KOH catalysts, where those outcomes increased. Additionally, when FeCl<sub>3</sub> was used with Ru/C, the ruthenium was poisoned, nullifying its positive effects. Consequently, FeCl<sub>3</sub> is not a suitable catalyst for hydrogen production from microalgae, either alone or in conjunction with a ruthenium catalyst.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100198"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}