Pub Date : 2024-06-27DOI: 10.1016/j.nxener.2024.100158
Zhuoya Tong , Xiaobo Zhu
Lithium-ion batteries (LIBs) is now a cornerstone technology to curb carbon emission by enabling electric vehicles and grid-scale energy storage. However, LIBs are highly materials-intensive, the cost and availability of the key materials, especially the lithium-containing cathode materials, are critical for the goal of decarbonization. High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is a promising cobalt-free cathode material to cater to the surging demand for low-cost and high-energy-density LIBs. In this paper, the advantages of LNMO are quantified in terms of performance and sustainability, then the growing interest in the research and development (R&D) of LNMO is assessed by analyzing 559 related patents registered across 22 authorities. The analysis paints a comprehensive picture, including geographical distribution of patenting activities, major developers, and influential patents. Furthermore, the patents are categorized into four key innovation directions. A gradual shift from materials engineering to electrolyte design indicates that the development of novel high-voltage compatible electrolytes is expected to unlock LNMO for next-generation, sustainable, and high-performance batteries.
{"title":"A patent landscape analysis on the high-voltage spinel LiNi0.5Mn1.5O4 for next-generation lithium-ion batteries","authors":"Zhuoya Tong , Xiaobo Zhu","doi":"10.1016/j.nxener.2024.100158","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100158","url":null,"abstract":"<div><p>Lithium-ion batteries (LIBs) is now a cornerstone technology to curb carbon emission by enabling electric vehicles and grid-scale energy storage. However, LIBs are highly materials-intensive, the cost and availability of the key materials, especially the lithium-containing cathode materials, are critical for the goal of decarbonization. High-voltage spinel LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) is a promising cobalt-free cathode material to cater to the surging demand for low-cost and high-energy-density LIBs. In this paper, the advantages of LNMO are quantified in terms of performance and sustainability, then the growing interest in the research and development (R&D) of LNMO is assessed by analyzing 559 related patents registered across 22 authorities. The analysis paints a comprehensive picture, including geographical distribution of patenting activities, major developers, and influential patents. Furthermore, the patents are categorized into four key innovation directions. A gradual shift from materials engineering to electrolyte design indicates that the development of novel high-voltage compatible electrolytes is expected to unlock LNMO for next-generation, sustainable, and high-performance batteries.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100158"},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000632/pdfft?md5=964892078325a940170712220b99ac4e&pid=1-s2.0-S2949821X24000632-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1016/j.nxener.2024.100159
Qianyu Hu , Kunfeng Chen , Jinyu Li , Tingting Zhao , Feng Liang , Dongfeng Xue
Solid-state electrolytes have been demonstrated immense potential with their high density and safety for Li, Na batteries. The discovery of novel crystals is of fundamental scientific and technological interest in solid-state chemistry. The discovery, synthesis and application of energetically favourable solid-state electrolytes has been bottlenecked by expensive trial-and-error approaches. Machine learning has brought breakthroughs to solid-state electrolytes. Numerous solid-state electrolyte candidates have been screened by different models at multiscale, i.e., interatomic potentials, molecular dynamics, ionic conductivity. Machine learning method also accelerate the synthesis prediction, mechanism discovery and interface design. This review would answer the question what can be done for solid-state electrolytes by machine learning, including descriptor, model, algorithm etc. This paper will promote fast integration between scientists in materials, software, computing discipline.
{"title":"Speeding up the development of solid state electrolyte by machine learning","authors":"Qianyu Hu , Kunfeng Chen , Jinyu Li , Tingting Zhao , Feng Liang , Dongfeng Xue","doi":"10.1016/j.nxener.2024.100159","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100159","url":null,"abstract":"<div><p>Solid-state electrolytes have been demonstrated immense potential with their high density and safety for Li, Na batteries. The discovery of novel crystals is of fundamental scientific and technological interest in solid-state chemistry. The discovery, synthesis and application of energetically favourable solid-state electrolytes has been bottlenecked by expensive trial-and-error approaches. Machine learning has brought breakthroughs to solid-state electrolytes. Numerous solid-state electrolyte candidates have been screened by different models at multiscale, i.e., interatomic potentials, molecular dynamics, ionic conductivity. Machine learning method also accelerate the synthesis prediction, mechanism discovery and interface design. This review would answer the question what can be done for solid-state electrolytes by machine learning, including descriptor, model, algorithm etc. This paper will promote fast integration between scientists in materials, software, computing discipline.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100159"},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000644/pdfft?md5=2bd009f86f076ba0df79c928fe114a12&pid=1-s2.0-S2949821X24000644-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1016/j.nxener.2024.100154
Sergio Freeman, Ertan Agar
Utilizing a macro-scale energy model alongside 44 years of New England’s hourly weather data from MERRA-2, this study investigates the benefits of various combinations of renewable energy technologies, particularly wind and solar, and their integration with long-duration energy storage (LDES) systems. The potential of these renewable energy sources to enhance both the reliability and affordability of New England’s power system is evaluated. The findings demonstrate that incorporating LDES into the technology mix leads to a remarkable 55% reduction in overall system costs compared to relying solely on short-duration energy storage (SDES), such as lithium-ion batteries. Additionally, the cost reductions of LDES lead to approximately a 35% increase in the utilization of solar generation. The results suggest that total system costs for LDES are more responsive to relative decreases in power-capacity costs than decreases in energy-capacity costs. Furthermore, the analysis indicates that a combination of different LDES storage technologies can offer the most cost-effective solution for wind-solar power systems. Overall, by examining the interplay between different storage technologies and their impact on system costs, this research contributes significantly to the discourse on sustainable energy solutions.
{"title":"The benefits of long-duration energy storage for New England’s energy system decarbonization goals","authors":"Sergio Freeman, Ertan Agar","doi":"10.1016/j.nxener.2024.100154","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100154","url":null,"abstract":"<div><p>Utilizing a macro-scale energy model alongside 44 years of New England’s hourly weather data from MERRA-2, this study investigates the benefits of various combinations of renewable energy technologies, particularly wind and solar, and their integration with long-duration energy storage (LDES) systems. The potential of these renewable energy sources to enhance both the reliability and affordability of New England’s power system is evaluated. The findings demonstrate that incorporating LDES into the technology mix leads to a remarkable 55% reduction in overall system costs compared to relying solely on short-duration energy storage (SDES), such as lithium-ion batteries. Additionally, the cost reductions of LDES lead to approximately a 35% increase in the utilization of solar generation. The results suggest that total system costs for LDES are more responsive to relative decreases in power-capacity costs than decreases in energy-capacity costs. Furthermore, the analysis indicates that a combination of different LDES storage technologies can offer the most cost-effective solution for wind-solar power systems. Overall, by examining the interplay between different storage technologies and their impact on system costs, this research contributes significantly to the discourse on sustainable energy solutions.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100154"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000590/pdfft?md5=dd58c04a32bf37398f8b0608b4cf226d&pid=1-s2.0-S2949821X24000590-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1016/j.nxener.2024.100153
Jin Zhao, Jaber A. Abu Qahouq
A parameterized mathematical model for Lithium-ion battery cell is presented in this paper for performance analysis with a particular focus on battery discharge behavior and electrochemical impedance spectroscopy profile. The model utilizes various physical properties as input and consists of two major sub-models in a complementary manner. The first sub-model is an adapted Doyle-Fuller-Newman (DFN) framework to simulate electrochemical, thermodynamic, and transport phenomena within the battery. The second sub-model is a calibrated solid-electrolyte interphase (SEI) layer formation model. This model emphasizes the electrical dynamic response in terms of the reaction process, layer growth, and conductance change. The equivalent circuit component values are derived from the outputs of both sub-models, reflecting the battery’s changing physical parameters. The simulated discharge curves and electrochemical impedance spectroscopy (EIS) profiles are then provided with a comparison against empirical results for validation, which exhibit good agreement. This modeling methodology aims to bridge the gap between the physical model and the equivalent circuit model (ECM), enabling more accurate battery performance predictions and operation status tracking.
{"title":"Modeling and validation for performance analysis and impedance spectroscopy characterization of lithium-ion batteries","authors":"Jin Zhao, Jaber A. Abu Qahouq","doi":"10.1016/j.nxener.2024.100153","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100153","url":null,"abstract":"<div><p>A parameterized mathematical model for Lithium-ion battery cell is presented in this paper for performance analysis with a particular focus on battery discharge behavior and electrochemical impedance spectroscopy profile. The model utilizes various physical properties as input and consists of two major sub-models in a complementary manner. The first sub-model is an adapted Doyle-Fuller-Newman (DFN) framework to simulate electrochemical, thermodynamic, and transport phenomena within the battery. The second sub-model is a calibrated solid-electrolyte interphase (SEI) layer formation model. This model emphasizes the electrical dynamic response in terms of the reaction process, layer growth, and conductance change. The equivalent circuit component values are derived from the outputs of both sub-models, reflecting the battery’s changing physical parameters. The simulated discharge curves and electrochemical impedance spectroscopy (EIS) profiles are then provided with a comparison against empirical results for validation, which exhibit good agreement. This modeling methodology aims to bridge the gap between the physical model and the equivalent circuit model (ECM), enabling more accurate battery performance predictions and operation status tracking.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100153"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000589/pdfft?md5=3c67d452a9765517e0c40f77725bbffd&pid=1-s2.0-S2949821X24000589-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1016/j.nxener.2024.100157
Thomas Stringer, Monserrat Ramírez-Melgarejo
The Paris Agreement's ambitious target of limiting the global temperature rise to 1.5 °C remains elusive, with the world falling short of its climate commitments. The electricity sector, responsible for a substantial 39% of global carbon emissions, plays a pivotal role in curbing climate change. Transitioning to renewable energy sources is not just an environmental imperative but also a pressing economic challenge, especially for governments tasked with financing renewable projects. This study explores the economic dimensions of decarbonizing electricity grids, shedding light on the costs and benefits. This research quantifies the costs of current fossil fuel-based electricity production versus achieving net-zero emissions across ten Latin American countries by evaluating annual electricity generation costs and estimating the expenses of transitioning to renewables. We find that decarbonizing these countries’ electricity grids would lead to annual savings close to USD 21 billion annually, potentially contributing positively to their economies. The study also compares the energy policies for each of the ten Latin American nations included, evaluating the role of renewable-oriented policies in decarbonizing power generation. We also find that policies vary in effectiveness across countries, and have to be in line with geographical constraints and economic realities.
{"title":"Decarbonization pathways in Latin America: Assessing the economic and policy implications of transitioning to renewable energy sources","authors":"Thomas Stringer, Monserrat Ramírez-Melgarejo","doi":"10.1016/j.nxener.2024.100157","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100157","url":null,"abstract":"<div><p>The Paris Agreement's ambitious target of limiting the global temperature rise to 1.5<!--> <!-->°C remains elusive, with the world falling short of its climate commitments. The electricity sector, responsible for a substantial 39% of global carbon emissions, plays a pivotal role in curbing climate change. Transitioning to renewable energy sources is not just an environmental imperative but also a pressing economic challenge, especially for governments tasked with financing renewable projects. This study explores the economic dimensions of decarbonizing electricity grids, shedding light on the costs and benefits. This research quantifies the costs of current fossil fuel-based electricity production versus achieving net-zero emissions across ten Latin American countries by evaluating annual electricity generation costs and estimating the expenses of transitioning to renewables. We find that decarbonizing these countries’ electricity grids would lead to annual savings close to USD 21 billion annually, potentially contributing positively to their economies. The study also compares the energy policies for each of the ten Latin American nations included, evaluating the role of renewable-oriented policies in decarbonizing power generation. We also find that policies vary in effectiveness across countries, and have to be in line with geographical constraints and economic realities.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100157"},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000620/pdfft?md5=21b6e5f1e88a6fae09f0b3c08d4c6f3e&pid=1-s2.0-S2949821X24000620-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1016/j.nxener.2024.100155
Niyamat I. Beedri , Habib M. Pathan , Sunita Salunke-Gawali
This study explores the utilization of Delonix regia (DR) (Gulmohar flower) as a natural photosensitizer in the fabrication of self-powered photosensors via dye-sensitized solar cells (DSSCs). Various photoanodes, including ZnO, ZnO/TiO2, and ZnO/TiO2/Nb2O5, were investigated for their performance enhancement in DR-based photosensors. The photoanodes were fabricated using different deposition methods sensitized with DR photosensitizer and characterized through X-ray diffraction analysis, Field emission scanning electron microscopy (FE-SEM), UV–visible, Fluorescence spectroscopy, and Fourier transform infrared spectroscopy (FTIR) analysis. The absorbance spectrum results indicate improved photosensitizer adsorption in visible light for the ZnO/TiO2/Nb2O5/DR photoanode compared to other configurations. The scanning electron microscopy (SEM) cross-section image of ZnO/TiO2/Nb2O5 confirmed the formation of a multilayer photoanode. Chronoamperometry experiments were conducted to evaluate the photo sensing behavior, focusing on sensitivity, photoresponsivity, specific detectivity, and quantum efficiency within the solar spectrum range. Among the devices, ZnO/TiO2/Nb2O5 exhibited the highest photoresponsivity (1.2 × 10 −3 A/W) and photodetectivity (26.78 × 104 Jones), demonstrating promising advancements in DR-sensitized photosensors. This research highlights the exceptional performance of DR-sensitized photoanodes, particularly ZnO/TiO2/Nb2O5, in advancing the capabilities of photo-sensing devices. The investigated configuration exhibited a rapid response speed of 723 ms and a remarkable sensitivity of 89.87% in detecting photo signals. These findings emphasize the potential of DR photosensitizers to enhance photo-sensing activities, with significant implications for diverse applications in photodetection. By leveraging the unique properties of DR, particularly its incorporation into ZnO/TiO2/Nb2O5, this study underscores the promising prospects for developing efficient self-powered photosensors. The insights gleaned from this work pave the way for further exploration and optimization in organic photosensors.
本研究探讨了如何利用Delonix regia(DR)(Gulmohar花)作为天然光敏剂,通过染料敏化太阳能电池(DSSC)制造自供电光传感器。研究了各种光阳极,包括 ZnO、ZnO/TiO2 和 ZnO/TiO2/Nb2O5,以提高它们在基于 DR 的光传感器中的性能。这些光阳极是在 DR 光敏剂的感化下采用不同的沉积方法制造的,并通过 X 射线衍射分析、场发射扫描电子显微镜(FE-SEM)、紫外可见光、荧光光谱和傅立叶变换红外光谱(FTIR)分析对其进行了表征。吸收光谱结果表明,与其他配置相比,ZnO/TiO2/Nb2O5/DR 光阳极在可见光下对光敏剂的吸附能力更强。ZnO/TiO2/Nb2O5 的扫描电子显微镜(SEM)横截面图像证实了多层光阳极的形成。为了评估光传感行为,我们进行了时变实验,重点是太阳光谱范围内的灵敏度、光致发光率、特定检测率和量子效率。在这些器件中,ZnO/TiO2/Nb2O5 表现出最高的光致发光率(1.2 × 10 -3 A/W)和光检测率(26.78 × 104 Jones),表明 DR 感光光敏传感器有望取得进展。这项研究凸显了 DR 感光光阳极,尤其是 ZnO/TiO2/Nb2O5 在提高光传感设备性能方面的卓越表现。所研究的配置在检测光信号方面具有 723 毫秒的快速响应速度和 89.87% 的出色灵敏度。这些发现强调了 DR 光敏剂增强光传感活动的潜力,对光检测领域的各种应用具有重要意义。通过利用 DR 的独特性质,特别是将其掺入 ZnO/TiO2/Nb2O5 中,本研究强调了开发高效自供电光敏剂的广阔前景。从这项工作中获得的启示为进一步探索和优化有机光传感器铺平了道路。
{"title":"Natural photosensitizer extraction from Delonix regia flowers for future photosensor for DSSCs applications","authors":"Niyamat I. Beedri , Habib M. Pathan , Sunita Salunke-Gawali","doi":"10.1016/j.nxener.2024.100155","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100155","url":null,"abstract":"<div><p>This study explores the utilization of <em>Delonix regia</em> (DR) (Gulmohar flower) as a natural photosensitizer in the fabrication of self-powered photosensors via dye-sensitized solar cells (DSSCs). Various photoanodes, including ZnO, ZnO/TiO<sub>2</sub>, and ZnO/TiO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>, were investigated for their performance enhancement in DR-based photosensors. The photoanodes were fabricated using different deposition methods sensitized with DR photosensitizer and characterized through X-ray diffraction analysis, Field emission scanning electron microscopy (FE-SEM), UV–visible, Fluorescence spectroscopy, and Fourier transform infrared spectroscopy (FTIR) analysis. The absorbance spectrum results indicate improved photosensitizer adsorption in visible light for the ZnO/TiO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>/DR photoanode compared to other configurations. The scanning electron microscopy (SEM) cross-section image of ZnO/TiO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub> confirmed the formation of a multilayer photoanode. Chronoamperometry experiments were conducted to evaluate the photo sensing behavior, focusing on sensitivity, photoresponsivity, specific detectivity, and quantum efficiency within the solar spectrum range. Among the devices, ZnO/TiO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub> exhibited the highest photoresponsivity (1.2 × 10 <sup>−3</sup> A/W) and photodetectivity (26.78 × 10<sup>4</sup> Jones), demonstrating promising advancements in DR-sensitized photosensors. This research highlights the exceptional performance of DR-sensitized photoanodes, particularly ZnO/TiO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>, in advancing the capabilities of photo-sensing devices. The investigated configuration exhibited a rapid response speed of 723 ms and a remarkable sensitivity of 89.87% in detecting photo signals. These findings emphasize the potential of DR photosensitizers to enhance photo-sensing activities, with significant implications for diverse applications in photodetection. By leveraging the unique properties of DR, particularly its incorporation into ZnO/TiO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>, this study underscores the promising prospects for developing efficient self-powered photosensors. The insights gleaned from this work pave the way for further exploration and optimization in organic photosensors.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100155"},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000607/pdfft?md5=f5afee5c02880181027b8e53dd1010a0&pid=1-s2.0-S2949821X24000607-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1016/j.nxener.2024.100152
Huiyuan Cheng , Shanshan Ding , Mengmeng Hao , Lianzhou Wang , Julian A. Steele
Zero-dimensional metal halide perovskite quantum dots (PQDs) display distinct chemical, physical, electrical, and optical properties compared to their bulk counterparts. These unique characteristics make PQDs highly promising materials for a broad range of applications spanning solar cells and light-emitting diodes (LEDs), to lasers and quantum technologies. Despite the recent advances, the translations of PQDs into commercially viable materials are hindered by several drawbacks; for example, an unclear understanding of their formation mechanism(s), the complex chemistry and dynamic instabilities at the PQDs surface, and the inefficient or unbalanced charge transportation in PQDs-based devices. In this review, we present an in-depth analysis of the current progress and challenges in the field of PQDs and their applications. Additionally, we offer insights into potential future research directions in this exciting area of study.
{"title":"Perovskite quantum dots: What’s next?","authors":"Huiyuan Cheng , Shanshan Ding , Mengmeng Hao , Lianzhou Wang , Julian A. Steele","doi":"10.1016/j.nxener.2024.100152","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100152","url":null,"abstract":"<div><p>Zero-dimensional metal halide perovskite quantum dots (PQDs) display distinct chemical, physical, electrical, and optical properties compared to their bulk counterparts. These unique characteristics make PQDs highly promising materials for a broad range of applications spanning solar cells and light-emitting diodes (LEDs), to lasers and quantum technologies. Despite the recent advances, the translations of PQDs into commercially viable materials are hindered by several drawbacks; for example, an unclear understanding of their formation mechanism(s), the complex chemistry and dynamic instabilities at the PQDs surface, and the inefficient or unbalanced charge transportation in PQDs-based devices. In this review, we present an in-depth analysis of the current progress and challenges in the field of PQDs and their applications. Additionally, we offer insights into potential future research directions in this exciting area of study.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"4 ","pages":"Article 100152"},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000577/pdfft?md5=4c9d35aad2c199df8ed0fa7ea98ede16&pid=1-s2.0-S2949821X24000577-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141423454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The maximum output power extracted from the Photovoltaic (PV) modules is mainly dependent on ambient temperature and solar irradiance. The photovoltaic modules performance is hugely influenced by the Partial Shading (PS) effect, which results in the reduction of output power. It is caused by shadows of buildings, trees, moving clouds and towers. Under PS conditions, shaded modules receive less irradiance as compared to the unshaded modules, and this leads to overheating of PV array. The present work has been developed by a technique based on Dual Exponential Sawtooth (DES) pattern to reconfigure the PV modules so as to increase the PV output power under PS conditions along with the energy savings and economical aspects. In this technique, the PV modules of Total Cross Tied (TCT) technique and their physical locations are arranged as per DES pattern to distribute the shading effect over the entire array without altering the electrical connections of the PV modules. The DES arrangement gives the enhanced power of 41.48% by reducing the effect on any row of the shaded modules. Further, it provides the details about power sharing percentage as the number of shaded modules increase and also the affect of dynamic shade variation over the entire PV array. The proposed method validation with the existing methods for the analysis, simulation and hardware experimentation shows better performance in terms of mismatch losses and fill factor. Further, the analysis has been extended for units generated and energy savings with each module rating of 1.5 KW on 4 × 4 PV modules.
{"title":"Performance enhancement and techno-economic analysis of photovoltaic modules under dynamic weather conditions using dual exponential sawtooth method","authors":"Muhilan Paramasivam , Rakesh Namani , Senthilkumar Subramaniam , Malavya Udugula , Chandana Karnati","doi":"10.1016/j.nxener.2024.100149","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100149","url":null,"abstract":"<div><p>The maximum output power extracted from the Photovoltaic (PV) modules is mainly dependent on ambient temperature and solar irradiance. The photovoltaic modules performance is hugely influenced by the Partial Shading (PS) effect, which results in the reduction of output power. It is caused by shadows of buildings, trees, moving clouds and towers. Under PS conditions, shaded modules receive less irradiance as compared to the unshaded modules, and this leads to overheating of PV array. The present work has been developed by a technique based on Dual Exponential Sawtooth (DES) pattern to reconfigure the PV modules so as to increase the PV output power under PS conditions along with the energy savings and economical aspects. In this technique, the PV modules of Total Cross Tied (TCT) technique and their physical locations are arranged as per DES pattern to distribute the shading effect over the entire array without altering the electrical connections of the PV modules. The DES arrangement gives the enhanced power of 41.48% by reducing the effect on any row of the shaded modules. Further, it provides the details about power sharing percentage as the number of shaded modules increase and also the affect of dynamic shade variation over the entire PV array. The proposed method validation with the existing methods for the analysis, simulation and hardware experimentation shows better performance in terms of mismatch losses and fill factor. Further, the analysis has been extended for units generated and energy savings with each module rating of 1.5<!--> <!-->KW on 4<!--> <!-->×<!--> <!-->4 PV modules.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"4 ","pages":"Article 100149"},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000541/pdfft?md5=b06febfd7baa4eab6e82c2b3f053f188&pid=1-s2.0-S2949821X24000541-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141298208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1016/j.nxener.2024.100142
Dallin Stout, Chase Christen, Todd P. Otanicar
Recent studies have demonstrated that a mixture of two differently sized solid particles decreases mixture porosity while increasing thermal conductivity. This impact is limited up to temperatures of ∼400 °C at which monodisperse distributions with larger particles yield higher thermal conductivities. In this work, a numerical model of the Gen3 Particle Pilot Plant (G3P3) 20 kWt prototype heat exchanger constructed by Sandia National Laboratory (SNL) is validated for monodisperse particles distributions at its working temperatures (290–500 °C) and both particle and sCO2 (supercritical carbon dioxide) mass flow rates (100 g/s). The validated model is then used to simulate the performance of bimodal particle distributions at working G3P3 temperatures and predicts increases in the overall heat transfer coefficient of up to 25–40% with optimal bimodal particle mixtures when compared to monodispersed particle distributions of the respective mixtures’ large particles. At these optimal particle mixtures, the average particle wall convection coefficient contributes ∼35–45% of the specific thermal resistance while the particle near-wall contact resistance contributes ∼15–25%.
{"title":"Bimodal particle distributions for improved heat transfer in flowing packed bed heat exchangers","authors":"Dallin Stout, Chase Christen, Todd P. Otanicar","doi":"10.1016/j.nxener.2024.100142","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100142","url":null,"abstract":"<div><p>Recent studies have demonstrated that a mixture of two differently sized solid particles decreases mixture porosity while increasing thermal conductivity. This impact is limited up to temperatures of ∼400<!--> <!-->°C at which monodisperse distributions with larger particles yield higher thermal conductivities. In this work, a numerical model of the Gen3 Particle Pilot Plant (G3P3) 20<!--> <!-->kWt prototype heat exchanger constructed by Sandia National Laboratory (SNL) is validated for monodisperse particles distributions at its working temperatures (290–500<!--> <!-->°C) and both particle and sCO<sub>2</sub> (supercritical carbon dioxide) mass flow rates (100 g/s). The validated model is then used to simulate the performance of bimodal particle distributions at working G3P3 temperatures and predicts increases in the overall heat transfer coefficient of up to 25–40% with optimal bimodal particle mixtures when compared to monodispersed particle distributions of the respective mixtures’ large particles. At these optimal particle mixtures, the average particle wall convection coefficient contributes ∼35–45% of the specific thermal resistance while the particle near-wall contact resistance contributes ∼15–25%.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"4 ","pages":"Article 100142"},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000474/pdfft?md5=01e77f9757c6c0db9d6a46dcc1b2ce97&pid=1-s2.0-S2949821X24000474-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141286512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1016/j.nxener.2024.100150
Mahmut Kaplan , Melda Ozdinc Carpinlioglu
In this paper available experimental data of nanorefrigerant, NRF cooling process are processed using MATLAB to determine the coefficient of performance COP as a function of Reynolds number, Re of NRF, evaporator and ambient temperatures, Te and Ta as a novelty. The cooling process performance assessment of NRF is provided in comparison with a pure refrigerant, R through relative COP term, COPr. The used data ranges with 20–70 nm of Al2O3 in R134a are at varying volume fraction, φ of 0.075–0.303% and volumetric flow rate, Q of 6.5–11 L/h for Ta in 294–306 K and Te in 288–309 K. Re calculations are based on the thermophysical parameters evaluated at Te not only in the cited experimental ranges of Q, φ but also extrapolated for the extended range of Q of 15–25 L/h for a generalization purpose. Since data processing is under the interactive influence of the parameters the functional relationships of COP, Re, φ, Te are expressed as 3D graphical plots which are the start of a trial-error procedure. The experimental data are expressed in terms of fitted equations for functional relationships between various non-dimensional parameters as Re, COP, (COP*φ), (COP*Te/Ta*φ), (Re*Te/Ta*φ), (Re*Te/Ta), and COPr to provide a practical assistance for whom designing and using NRF cooling. A functional relationship of Re*(Te/Ta) with COPr at varying φ is found as the most critical output of the study due to the practice of the appeared parameters in cooling performance assessment. COPr > 1 corresponds to φ > 0.151% for the processed data ranges.
{"title":"Performance assessment of a sample nanorefrigerant cooling process as a function of flow Reynolds number, evaporator and ambient temperatures","authors":"Mahmut Kaplan , Melda Ozdinc Carpinlioglu","doi":"10.1016/j.nxener.2024.100150","DOIUrl":"https://doi.org/10.1016/j.nxener.2024.100150","url":null,"abstract":"<div><p>In this paper available experimental data of nanorefrigerant, NRF cooling process are processed using MATLAB to determine the coefficient of performance COP as a function of Reynolds number, Re of NRF, evaporator and ambient temperatures, <em>T</em><sub><em>e</em></sub> and <em>T</em><sub><em>a</em></sub> as a novelty. The cooling process performance assessment of NRF is provided in comparison with a pure refrigerant, R through relative COP term, COP<sub>r</sub>. The used data ranges with 20–70 nm of Al<sub>2</sub>O<sub>3</sub> in R134a are at varying volume fraction, <em>φ</em> of 0.075–0.303% and volumetric flow rate, <em>Q</em> of 6.5–11 L/h for <em>T</em><sub><em>a</em></sub> in 294–306 K and <em>T</em><sub><em>e</em></sub> in 288–309 K. Re calculations are based on the thermophysical parameters evaluated at <em>T</em><sub><em>e</em></sub> not only in the cited experimental ranges of <em>Q</em>, <em>φ</em> but also extrapolated for the extended range of <em>Q</em> of 15–25 L/h for a generalization purpose<em>.</em> Since data processing is under the interactive influence of the parameters the functional relationships of COP, Re, <em>φ</em>, <em>T</em><sub><em>e</em></sub> are expressed as 3D graphical plots which are the start of a trial-error procedure. The experimental data are expressed in terms of fitted equations for functional relationships between various non-dimensional parameters as Re, COP, (COP*<em>φ</em>), (COP*<em>T</em><sub><em>e</em></sub>/<em>T</em><sub><em>a</em></sub>*<em>φ</em>), (Re*<em>T</em><sub><em>e</em></sub>/<em>T</em><sub><em>a</em></sub>*<em>φ),</em> (Re*<em>T<sub>e</sub></em>/<em>T<sub>a</sub></em>)<em>,</em> and COP<sub>r</sub> to provide a practical assistance for whom designing and using NRF cooling. A functional relationship of Re*(<em>T</em><sub><em>e</em></sub>/<em>T</em><sub><em>a</em></sub>) with COP<sub>r</sub> at varying <em>φ</em> is found as the most critical output of the study due to the practice of the appeared parameters in cooling performance assessment. COP<sub>r</sub> <!-->><!--> <!-->1 corresponds to <em>φ</em> <!-->><!--> <!-->0.151% for the processed data ranges.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"4 ","pages":"Article 100150"},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000553/pdfft?md5=a59708dc7ec072f6389d3789ca84a921&pid=1-s2.0-S2949821X24000553-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141290269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}