首页 > 最新文献

Communications Materials最新文献

英文 中文
Mechanically rechargeable zinc-air batteries for two- and three-wheeler electric vehicles in emerging markets 用于新兴市场两轮和三轮电动车的锌空气机械充电电池
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1038/s43246-024-00662-6
Akhil Kongara, Arun Kumar Samuel, Gunjan Kapadia, Aravind Kumar Chandiran
Mechanically rechargeable zinc-air batteries are considered promising for powering electric vehicles due to their high theoretical energy density, but a few practical hurdles impede their implementation. Understanding the key technical blockades that restrict their implementation will enable quick deployment of these batteries in electric vehicles. This Review analyzes the performance of various on-road electric vehicle segments powered by lithium-ion batteries and compares this with the current rechargeable zinc-air battery development. We discuss the theoretical limits and vehicle-specific blockades involved in achieving the performance of mechanically rechargeable zinc-air battery-powered electric vehicles, equivalent to those powered by lithium-ion batteries. Based on the identified blockades, we present ideas on future research direction on positive and negative electrodes, and battery operation and architecture. Finally, we discuss the conditions under which these batteries can be implemented in various electric vehicle segments. Mechanically rechargeable zinc-air batteries are promising for powering electric vehicles but their implementation is restricted. This Review analyzes the performance of lithium-ion battery-powered electric vehicles and applies these thoughts to vehicles powered by rechargeable zinc-air batteries.
机械可充电锌空气电池因其理论能量密度高而被认为有望为电动汽车提供动力,但一些实际障碍阻碍了它们的应用。了解限制其应用的关键技术障碍,将有助于在电动汽车中快速部署这些电池。本综述分析了由锂离子电池驱动的各种公路电动汽车的性能,并将其与目前开发的可充电锌空气电池进行了比较。我们讨论了在实现机械可充电锌空气电池驱动电动汽车的性能(相当于锂离子电池驱动电动汽车的性能)方面存在的理论限制和特定车辆的障碍。根据所发现的障碍,我们就正极和负极以及电池操作和结构提出了未来的研究方向。最后,我们讨论了这些电池在不同电动汽车领域的应用条件。机械可充电锌空气电池有望为电动汽车提供动力,但其应用受到限制。本综述分析了以锂离子电池为动力的电动汽车的性能,并将这些想法应用于以可充电锌-空气电池为动力的汽车。
{"title":"Mechanically rechargeable zinc-air batteries for two- and three-wheeler electric vehicles in emerging markets","authors":"Akhil Kongara, Arun Kumar Samuel, Gunjan Kapadia, Aravind Kumar Chandiran","doi":"10.1038/s43246-024-00662-6","DOIUrl":"10.1038/s43246-024-00662-6","url":null,"abstract":"Mechanically rechargeable zinc-air batteries are considered promising for powering electric vehicles due to their high theoretical energy density, but a few practical hurdles impede their implementation. Understanding the key technical blockades that restrict their implementation will enable quick deployment of these batteries in electric vehicles. This Review analyzes the performance of various on-road electric vehicle segments powered by lithium-ion batteries and compares this with the current rechargeable zinc-air battery development. We discuss the theoretical limits and vehicle-specific blockades involved in achieving the performance of mechanically rechargeable zinc-air battery-powered electric vehicles, equivalent to those powered by lithium-ion batteries. Based on the identified blockades, we present ideas on future research direction on positive and negative electrodes, and battery operation and architecture. Finally, we discuss the conditions under which these batteries can be implemented in various electric vehicle segments. Mechanically rechargeable zinc-air batteries are promising for powering electric vehicles but their implementation is restricted. This Review analyzes the performance of lithium-ion battery-powered electric vehicles and applies these thoughts to vehicles powered by rechargeable zinc-air batteries.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-16"},"PeriodicalIF":7.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00662-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic control of phonon transport in magnetic insulator thulium iron garnet 磁性绝缘体铥铁榴石中声子传输的磁控制
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1038/s43246-024-00682-2
Geun-Hee Lee, Phuoc Cao Van, Jong-Ryul Jeong, Se Kwon Kim, Kab-Jin Kim
The coupling between magnons and phonons and the associated phenomena have long been a focus of research in condensed matter physics. Contrary to its recognized role in magnon relaxation, its impact on phonon transport remains largely unexplored. Here, we fill this gap by investigating the effect of magnon-phonon coupling on phonon excitation, relaxation, and transport with magneto-optical reflectometry. Through simultaneous measurements of magnon and phonon populations in magnetic insulator thulium iron garnet, we observe the excitation of excessive phonons driven by non-equilibrium magnons, demonstrating the magnetic control of phonons. Furthermore, our time-resolved experiments reveal the magnetic field-dependent phononic thermal conductivity, signaling the potential of magnetic manipulation of heat transport. Our finding indicates that phonons can be controlled by magnetic means through magnon-phonon coupling and thereby opens a new avenue to harness magneto-thermoelectric effects in magnetic insulators. The coupling between magnons and phonons is an important aspect of condensed matter physics, but most research is related to magnon relaxation effects rather than the impact on phonon transport. Here, the effect of magnon-phonon coupling on phonon excitation, relaxation, and transport is investigated by time-resolved magneto-optical reflectometry.
长期以来,磁子与声子之间的耦合及其相关现象一直是凝聚态物理学的研究重点。与公认的磁子弛豫作用相反,它对声子传输的影响在很大程度上仍未被探索。在这里,我们利用磁光反射仪研究了磁子-声子耦合对声子激发、弛豫和传输的影响,从而填补了这一空白。通过同时测量磁绝缘体铥铁榴石中的磁子和声子群,我们观察到非平衡磁子驱动的过度声子激发,证明了声子的磁控制。此外,我们的时间分辨实验还揭示了与磁场相关的声子热导率,表明磁性操纵热传输的潜力。我们的发现表明,声子可以通过磁子-声子耦合以磁力手段进行控制,从而为利用磁绝缘体中的磁热电效应开辟了一条新途径。磁子与声子之间的耦合是凝聚态物理学的一个重要方面,但大多数研究都与磁子弛豫效应有关,而不是对声子传输的影响。这里,我们通过时间分辨磁光反射仪研究了磁子-声子耦合对声子激发、弛豫和传输的影响。
{"title":"Magnetic control of phonon transport in magnetic insulator thulium iron garnet","authors":"Geun-Hee Lee, Phuoc Cao Van, Jong-Ryul Jeong, Se Kwon Kim, Kab-Jin Kim","doi":"10.1038/s43246-024-00682-2","DOIUrl":"10.1038/s43246-024-00682-2","url":null,"abstract":"The coupling between magnons and phonons and the associated phenomena have long been a focus of research in condensed matter physics. Contrary to its recognized role in magnon relaxation, its impact on phonon transport remains largely unexplored. Here, we fill this gap by investigating the effect of magnon-phonon coupling on phonon excitation, relaxation, and transport with magneto-optical reflectometry. Through simultaneous measurements of magnon and phonon populations in magnetic insulator thulium iron garnet, we observe the excitation of excessive phonons driven by non-equilibrium magnons, demonstrating the magnetic control of phonons. Furthermore, our time-resolved experiments reveal the magnetic field-dependent phononic thermal conductivity, signaling the potential of magnetic manipulation of heat transport. Our finding indicates that phonons can be controlled by magnetic means through magnon-phonon coupling and thereby opens a new avenue to harness magneto-thermoelectric effects in magnetic insulators. The coupling between magnons and phonons is an important aspect of condensed matter physics, but most research is related to magnon relaxation effects rather than the impact on phonon transport. Here, the effect of magnon-phonon coupling on phonon excitation, relaxation, and transport is investigated by time-resolved magneto-optical reflectometry.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-6"},"PeriodicalIF":7.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00682-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse electronic landscape of the kagome metal YbTi3Bi4 可可金属 YbTi3Bi4 的多样化电子景观
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-03 DOI: 10.1038/s43246-024-00681-3
Anup Pradhan Sakhya, Brenden R. Ortiz, Barun Ghosh, Milo Sprague, Mazharul Islam Mondal, Matthew Matzelle, Iftakhar Bin Elius, Nathan Valadez, David G. Mandrus, Arun Bansil, Madhab Neupane
Kagome lattices have emerged as an ideal platform for exploring exotic quantum phenomena in materials. Here, we report the discovery of Ti-based kagome metal YbTi3Bi4 which we characterize using angle-resolved photoemission spectroscopy (ARPES) and magneto-transport, in combination with density functional theory calculations. Our ARPES results reveal the complex fermiology of YbTi3Bi4 and provide spectroscopic evidence of four flat bands. Our measurements also show the presence of multiple van Hove singularities originating from Ti 3d orbitals and a linearly-dispersing gapped Dirac-like bulk state at the $$overline{,{mbox{K}},}$$ point in accord with our theoretical calculations. Our study establishes YbTi3Bi4 as a platform for exploring exotic phases in the wider LnTi3Bi4 (Ln = lanthanide) family of materials. Kagome lattices have emerged as an ideal platform for exploring exotic quantum phenomena in materials. Here, the discovery of a Ti-based kagome metal YbTi3Bi4 is reported, showing spectroscopic evidence of four flat bands originating from both Yb 4f and Ti 3d orbitals, multiple van Hove singularities, and a linearly dispersing gapped Dirac-like bulk state.
卡戈米晶格已成为探索材料中奇异量子现象的理想平台。在此,我们报告了钛基卡戈米金属 YbTi3Bi4 的发现,并结合密度泛函理论计算,使用角度分辨光发射光谱(ARPES)和磁传输对其进行了表征。我们的 ARPES 结果揭示了 YbTi3Bi4 的复杂费米学,并提供了四个平坦带的光谱证据。我们的测量结果还显示,在 $$overline,{mbox{K}},}$ 点存在多个源于 Ti 3d 轨道的范霍夫奇点和线性弥散的间隙狄拉克样体态,这与我们的理论计算结果一致。我们的研究将 YbTi3Bi4 树立为探索更广泛的 LnTi3Bi4(Ln = 镧系元素)材料家族中奇异相的平台。卡戈米晶格已成为探索材料中奇异量子现象的理想平台。本文报告了钛基卡戈米金属 YbTi3Bi4 的发现,其光谱显示了源自镱 4f 和钛 3d 轨道的四条平带、多个范霍夫奇点以及线性弥散的间隙狄拉克样体态。
{"title":"Diverse electronic landscape of the kagome metal YbTi3Bi4","authors":"Anup Pradhan Sakhya, Brenden R. Ortiz, Barun Ghosh, Milo Sprague, Mazharul Islam Mondal, Matthew Matzelle, Iftakhar Bin Elius, Nathan Valadez, David G. Mandrus, Arun Bansil, Madhab Neupane","doi":"10.1038/s43246-024-00681-3","DOIUrl":"10.1038/s43246-024-00681-3","url":null,"abstract":"Kagome lattices have emerged as an ideal platform for exploring exotic quantum phenomena in materials. Here, we report the discovery of Ti-based kagome metal YbTi3Bi4 which we characterize using angle-resolved photoemission spectroscopy (ARPES) and magneto-transport, in combination with density functional theory calculations. Our ARPES results reveal the complex fermiology of YbTi3Bi4 and provide spectroscopic evidence of four flat bands. Our measurements also show the presence of multiple van Hove singularities originating from Ti 3d orbitals and a linearly-dispersing gapped Dirac-like bulk state at the $$overline{,{mbox{K}},}$$ point in accord with our theoretical calculations. Our study establishes YbTi3Bi4 as a platform for exploring exotic phases in the wider LnTi3Bi4 (Ln = lanthanide) family of materials. Kagome lattices have emerged as an ideal platform for exploring exotic quantum phenomena in materials. Here, the discovery of a Ti-based kagome metal YbTi3Bi4 is reported, showing spectroscopic evidence of four flat bands originating from both Yb 4f and Ti 3d orbitals, multiple van Hove singularities, and a linearly dispersing gapped Dirac-like bulk state.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00681-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the limits for coherent optical control of a mechanically decoupled defect center in hexagonal boron nitride 探测六方氮化硼中机械解耦缺陷中心的相干光控制极限
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-03 DOI: 10.1038/s43246-024-00686-y
Michael K. Koch, Vibhav Bharadwaj, Alexander Kubanek
The coherent control of a two-level system is among the most essential challenges in modern quantum optics. Understanding its fundamental limitations is crucial, also for the realization of next generation quantum devices. The quantum coherence of a two-level system is fragile in particular, when the two levels are connected via an optical transition, which, at the same time, enables the manipulation of the system. When such quantum emitters are located in solids the coherence suffers from the interaction of the optical transition with the solid state environment, which requires the sample to be cooled to temperatures of a few Kelvin or below. Here, we use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive. We operate the system at the threshold where the mechanical isolation collapses in order to study the onset and temperature-dependence of dephasing and independently of spectral diffusion. The insights on the underlying physical decoherence mechanisms reveal a limit in temperature until which coherent driving of the system is possible. This study enables to increase the operation temperature of hBN-based quantum devices, therefore reducing the need for cryogenic cooling. The coherent control of a two-level system is at the core of quantum devices and understanding decoherence mechanisms is crucial for increasing their operating temperatures. Here, a mechanically isolated quantum emitter in hexagonal boron nitride is used to explore the individual mechanisms affecting the coherence of an optical transition under resonant drive.
两级系统的相干控制是现代量子光学最基本的挑战之一。了解其基本局限性对于实现下一代量子设备也至关重要。两级系统的量子相干性非常脆弱,尤其是当两级系统通过光学转换连接在一起时。当这种量子发射器位于固体中时,其相干性会受到光学转变与固态环境相互作用的影响,这就要求将样品冷却到几开尔文或更低的温度。在这里,我们利用六方氮化硼中机械隔离的量子发射器来探索在共振驱动下影响光学转变相干性的各种机制。我们在机械隔离崩溃的阈值下运行该系统,以研究去相干的开始和温度依赖性,并独立于光谱扩散。对基本物理退相干机制的深入研究揭示了一个温度极限,在此温度极限之前,系统的相干驱动是可能的。这项研究有助于提高基于 hBN 的量子器件的工作温度,从而减少对低温冷却的需求。两级系统的相干控制是量子器件的核心,了解退相干机制对于提高其工作温度至关重要。在此,我们利用六方氮化硼中机械隔离的量子发射器来探索在共振驱动下影响光学转变相干性的各种机制。
{"title":"Probing the limits for coherent optical control of a mechanically decoupled defect center in hexagonal boron nitride","authors":"Michael K. Koch, Vibhav Bharadwaj, Alexander Kubanek","doi":"10.1038/s43246-024-00686-y","DOIUrl":"10.1038/s43246-024-00686-y","url":null,"abstract":"The coherent control of a two-level system is among the most essential challenges in modern quantum optics. Understanding its fundamental limitations is crucial, also for the realization of next generation quantum devices. The quantum coherence of a two-level system is fragile in particular, when the two levels are connected via an optical transition, which, at the same time, enables the manipulation of the system. When such quantum emitters are located in solids the coherence suffers from the interaction of the optical transition with the solid state environment, which requires the sample to be cooled to temperatures of a few Kelvin or below. Here, we use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive. We operate the system at the threshold where the mechanical isolation collapses in order to study the onset and temperature-dependence of dephasing and independently of spectral diffusion. The insights on the underlying physical decoherence mechanisms reveal a limit in temperature until which coherent driving of the system is possible. This study enables to increase the operation temperature of hBN-based quantum devices, therefore reducing the need for cryogenic cooling. The coherent control of a two-level system is at the core of quantum devices and understanding decoherence mechanisms is crucial for increasing their operating temperatures. Here, a mechanically isolated quantum emitter in hexagonal boron nitride is used to explore the individual mechanisms affecting the coherence of an optical transition under resonant drive.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00686-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Giant antisymmetric magnetoresistance arising across optically controlled domain walls in the magnetic Weyl semimetal Co3Sn2S2 磁性韦尔半金属 Co3Sn2S2 中光学控制畴壁产生的巨大反对称磁阻
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-02 DOI: 10.1038/s43246-024-00688-w
Kohei Fujiwara, Kazuma Ogawa, Naotaka Yoshikawa, Koji Kobayashi, Kentaro Nomura, Ryo Shimano, Atsushi Tsukazaki
Domain walls (DWs) in magnetic materials host various interesting magneto-transport phenomena. Recent theoretical proposals focusing on DWs of magnetic Weyl semimetals (mWSMs) suggest the emergence of even more exotic transport owing to topologically protected Weyl domains with opposite chirality. However, techniques for controlling and characterizing DWs in mWSMs have not yet matured sufficiently to identify the distinct features of electrical conduction on DWs. Here, by adopting an optical technique to manipulate magnetic domains in mWSM Co3Sn2S2 Hall-bar devices, we discover giant antisymmetric magnetoresistance arising across a DW formed by serially connected upward- and downward-magnetized Weyl domains. This phenomenon originates from the large tangent of the Hall angle associated with the intrinsic anomalous Hall effect in the oppositely magnetized Weyl domains. Furthermore, we quantitatively evaluate DW resistance by systematically controlling the number of DWs. These results underscore the promising avenue of Weyl DW engineering for advanced research on topological magnets. Domain walls in magnetic Weyl semimetals are a source of exotic transport owing to topologically protected domains with opposite chirality. Here, utilizing an optical technique to manipulate magnetic domains in Co3Sn2S2 Hall-bar devices, the authors discover giant antisymmetric magnetoresistance across a domain wall formed by serially connected upward- and downward-magnetized Weyl domains.
磁性材料中的畴壁(DWs)承载着各种有趣的磁传输现象。最近针对磁性韦尔半金属(mWSMs)的畴壁提出的理论建议表明,由于具有相反手性的拓扑保护韦尔畴,会出现更为奇特的传输现象。然而,控制和表征 mWSM 中 DW 的技术尚未成熟到足以识别 DW 上电导的独特特征。在这里,通过采用光学技术操纵 mWSM Co3Sn2S2 霍尔条器件中的磁畴,我们发现了由上下磁化的 Weyl 磁畴串联形成的 DW 上产生的巨大非对称磁阻。这种现象源于霍尔角的大正切,而霍尔角的大正切与对置磁化韦尔域中的固有反常霍尔效应有关。此外,我们还通过系统控制 DW 的数量对 DW 电阻进行了定量评估。这些结果突出表明,Weyl DW 工程在拓扑磁体的高级研究中大有可为。由于具有相反手性的拓扑保护畴,磁性韦尔半金属中的畴壁是奇异传输的来源。在这里,作者利用光学技术操纵 Co3Sn2S2 霍尔条器件中的磁畴,发现了由上下磁化的韦尔畴串联形成的畴壁上的巨大不对称磁阻。
{"title":"Giant antisymmetric magnetoresistance arising across optically controlled domain walls in the magnetic Weyl semimetal Co3Sn2S2","authors":"Kohei Fujiwara, Kazuma Ogawa, Naotaka Yoshikawa, Koji Kobayashi, Kentaro Nomura, Ryo Shimano, Atsushi Tsukazaki","doi":"10.1038/s43246-024-00688-w","DOIUrl":"10.1038/s43246-024-00688-w","url":null,"abstract":"Domain walls (DWs) in magnetic materials host various interesting magneto-transport phenomena. Recent theoretical proposals focusing on DWs of magnetic Weyl semimetals (mWSMs) suggest the emergence of even more exotic transport owing to topologically protected Weyl domains with opposite chirality. However, techniques for controlling and characterizing DWs in mWSMs have not yet matured sufficiently to identify the distinct features of electrical conduction on DWs. Here, by adopting an optical technique to manipulate magnetic domains in mWSM Co3Sn2S2 Hall-bar devices, we discover giant antisymmetric magnetoresistance arising across a DW formed by serially connected upward- and downward-magnetized Weyl domains. This phenomenon originates from the large tangent of the Hall angle associated with the intrinsic anomalous Hall effect in the oppositely magnetized Weyl domains. Furthermore, we quantitatively evaluate DW resistance by systematically controlling the number of DWs. These results underscore the promising avenue of Weyl DW engineering for advanced research on topological magnets. Domain walls in magnetic Weyl semimetals are a source of exotic transport owing to topologically protected domains with opposite chirality. Here, utilizing an optical technique to manipulate magnetic domains in Co3Sn2S2 Hall-bar devices, the authors discover giant antisymmetric magnetoresistance across a domain wall formed by serially connected upward- and downward-magnetized Weyl domains.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-6"},"PeriodicalIF":7.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00688-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Face-centered cubic carbon as a fourth basic carbon allotrope with properties of intrinsic semiconductors and ultra-wide bandgap 作者更正:面心立方碳是具有本征半导体特性和超宽带隙的第四种基本碳同素异形体
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1038/s43246-024-00683-1
Igor Konyashin, Ruslan Muydinov, Antonio Cammarata, Andrey Bondarev, Marin Rusu, Athanasios Koliogiorgos, Tomáš Polcar, Daniel Twitchen, Pierre-Olivier Colard, Bernd Szyszka, Nicola Palmer
{"title":"Author Correction: Face-centered cubic carbon as a fourth basic carbon allotrope with properties of intrinsic semiconductors and ultra-wide bandgap","authors":"Igor Konyashin, Ruslan Muydinov, Antonio Cammarata, Andrey Bondarev, Marin Rusu, Athanasios Koliogiorgos, Tomáš Polcar, Daniel Twitchen, Pierre-Olivier Colard, Bernd Szyszka, Nicola Palmer","doi":"10.1038/s43246-024-00683-1","DOIUrl":"10.1038/s43246-024-00683-1","url":null,"abstract":"","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-1"},"PeriodicalIF":7.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00683-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Achieving liquid processors by colloidal suspensions for reservoir computing 作者更正:通过胶体悬浮实现液体处理器,用于水库计算
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1038/s43246-024-00685-z
Raphael Fortulan, Noushin Raeisi Kheirabadi, Alessandro Chiolerio, Andrew Adamatzky
{"title":"Author Correction: Achieving liquid processors by colloidal suspensions for reservoir computing","authors":"Raphael Fortulan, Noushin Raeisi Kheirabadi, Alessandro Chiolerio, Andrew Adamatzky","doi":"10.1038/s43246-024-00685-z","DOIUrl":"10.1038/s43246-024-00685-z","url":null,"abstract":"","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-1"},"PeriodicalIF":7.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00685-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic analysis of low but stable perovskite solar cell device performance using electron spin resonance 利用电子自旋共振对低性能但稳定的过氧化物太阳能电池装置进行微观分析
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-24 DOI: 10.1038/s43246-024-00675-1
Xiangtao Zou, Takahiro Watanabe, Haru Kimata, Dong Xue, Ai Shimazaki, Minh Anh Truong, Atsushi Wakamiya, Kazuhiro Marumoto
Perovskite solar cells have attracted much attention as next-generation solar cells. However, a typical hole-transport material, spiro-OMeTAD, has associated difficulties including tedious synthesis and high cost. To overcome these shortcomings, an easily synthesized and low-cost hole-transport material has been developed: HND-2NOMe. Although HND-2NOMe has high local charge mobility because of the quasi-planar structure, its lower device performance is a weak point, the cause of which has not yet been clarified. Here, we analyse the source of the lower performance by clarifying the internal states from a microscopic viewpoint using electron spin resonance. We observe hole diffusion from perovskite to HND-2NOMe under dark conditions, indicating hole barrier formation at the perovskite/HND-2NOMe interface, leading to lower performance. Although such a barrier is formed, less hole accumulation for the HND-2NOMe-based cells under solar irradiation occurs, which is related to the stable performance. The sources of the lower but stable performance are crucially important for providing guidelines for improving the device performance. Hole-transport materials possessing high charge mobility are important in perovskite solar cells but the source of lower performance remains a mystery. Here, the microscopic mechanism for low but stable perovskite solar cell performance using these materials is analysed using electron spin resonance.
作为下一代太阳能电池,过氧化物太阳能电池备受关注。然而,一种典型的空穴传输材料--螺-OMeTAD--存在合成繁琐、成本高昂等问题。为了克服这些缺点,我们开发了一种易于合成且成本低廉的空穴传输材料:HND-2NOMe 。虽然 HND-2NOMe 因其准平面结构而具有较高的局部电荷迁移率,但其较低的器件性能却是一个薄弱环节,其原因尚未明确。在这里,我们利用电子自旋共振从微观角度阐明了内部状态,从而分析了性能较低的原因。在黑暗条件下,我们观察到空穴从包晶石向 HND-2NOMe 扩散,这表明在包晶石/HND-2NOMe 界面形成了空穴势垒,从而导致性能降低。虽然形成了这种势垒,但基于 HND-2NOMe 的电池在太阳照射下的空穴积累较少,这与性能稳定有关。性能较低但稳定的原因对于为提高器件性能提供指导至关重要。具有高电荷迁移率的空穴传输材料在过氧化物太阳能电池中非常重要,但性能降低的原因仍是一个谜。在此,我们利用电子自旋共振分析了使用这些材料的过氧化物太阳能电池性能低但稳定的微观机制。
{"title":"Microscopic analysis of low but stable perovskite solar cell device performance using electron spin resonance","authors":"Xiangtao Zou, Takahiro Watanabe, Haru Kimata, Dong Xue, Ai Shimazaki, Minh Anh Truong, Atsushi Wakamiya, Kazuhiro Marumoto","doi":"10.1038/s43246-024-00675-1","DOIUrl":"10.1038/s43246-024-00675-1","url":null,"abstract":"Perovskite solar cells have attracted much attention as next-generation solar cells. However, a typical hole-transport material, spiro-OMeTAD, has associated difficulties including tedious synthesis and high cost. To overcome these shortcomings, an easily synthesized and low-cost hole-transport material has been developed: HND-2NOMe. Although HND-2NOMe has high local charge mobility because of the quasi-planar structure, its lower device performance is a weak point, the cause of which has not yet been clarified. Here, we analyse the source of the lower performance by clarifying the internal states from a microscopic viewpoint using electron spin resonance. We observe hole diffusion from perovskite to HND-2NOMe under dark conditions, indicating hole barrier formation at the perovskite/HND-2NOMe interface, leading to lower performance. Although such a barrier is formed, less hole accumulation for the HND-2NOMe-based cells under solar irradiation occurs, which is related to the stable performance. The sources of the lower but stable performance are crucially important for providing guidelines for improving the device performance. Hole-transport materials possessing high charge mobility are important in perovskite solar cells but the source of lower performance remains a mystery. Here, the microscopic mechanism for low but stable perovskite solar cell performance using these materials is analysed using electron spin resonance.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00675-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of converse flexoelectric effect in topological semimetals 观察拓扑半金属中的反向柔电效应
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-24 DOI: 10.1038/s43246-024-00677-z
Hidefumi Takahashi, Yusuke Kurosaka, Kenta Kimura, Akitoshi Nakano, Shintaro Ishiwata
A strong coupling between electric polarization and elastic deformation in solids is an important factor in creating useful electromechanical nanodevices. Such coupling is typically allowed in insulating materials with inversion symmetry breaking as exemplified by the piezoelectric effect in ferroelectric materials. Therefore, materials with metallicity and centrosymmetry have tended to be out of scope in this perspective. Here, we report the observation of giant elastic deformation by the application of an alternating electric current in topological semimetals (V,Mo)Te2, regardless of the centrosymmetry. Considering the crystal and band structures and the asymmetric measurement configurations in addition to the absence of the electromechanical effect in a trivial semimetal TiTe2, the observed effect is discussed in terms of a Berry-phase-derived converse flexoelectric effect in metals. The observation of the flexoelectric effect in topological semimetals paves a way for a new type of nanoscale electromechanical sensors and energy harvesting. A strong coupling between electric polarization and elastic deformation is important for creating electromechanical nanodevices, but such coupling typically requires inversion symmetry breaking and is elusive in metals. Here, a current-induced giant elastic deformation is reported in topological semimetals VTe2 and MoTe2, regardless of centrosymmetry, due to the Berry phase enhancement of the flexoelectric response.
在固体中,电极化与弹性变形之间的强耦合是制造有用的机电纳米器件的一个重要因素。这种耦合通常在具有反转对称性的绝缘材料中得以实现,铁电材料的压电效应就是一个例子。因此,具有金属性和中心对称性的材料往往不在此研究范围内。在这里,我们报告了在拓扑半金属 (V,Mo)Te2 中观察到的交变电流作用下的巨弹性形变,与中心对称无关。考虑到晶体和带状结构以及非对称测量配置,再加上在微不足道的半金属 TiTe2 中不存在机电效应,观察到的效应将根据金属中贝里相衍生的反向挠电效应进行讨论。在拓扑半金属中观察到的挠电效应为新型纳米级机电传感器和能量收集铺平了道路。电极化与弹性形变之间的强耦合对于创建机电纳米器件非常重要,但这种耦合通常需要反转对称性破坏,在金属中难以实现。这里报告了拓扑半金属 VTe2 和 MoTe2 中电流诱导的巨弹性形变,无论其中心对称性如何,其原因是贝里相增强了柔电响应。
{"title":"Observation of converse flexoelectric effect in topological semimetals","authors":"Hidefumi Takahashi, Yusuke Kurosaka, Kenta Kimura, Akitoshi Nakano, Shintaro Ishiwata","doi":"10.1038/s43246-024-00677-z","DOIUrl":"10.1038/s43246-024-00677-z","url":null,"abstract":"A strong coupling between electric polarization and elastic deformation in solids is an important factor in creating useful electromechanical nanodevices. Such coupling is typically allowed in insulating materials with inversion symmetry breaking as exemplified by the piezoelectric effect in ferroelectric materials. Therefore, materials with metallicity and centrosymmetry have tended to be out of scope in this perspective. Here, we report the observation of giant elastic deformation by the application of an alternating electric current in topological semimetals (V,Mo)Te2, regardless of the centrosymmetry. Considering the crystal and band structures and the asymmetric measurement configurations in addition to the absence of the electromechanical effect in a trivial semimetal TiTe2, the observed effect is discussed in terms of a Berry-phase-derived converse flexoelectric effect in metals. The observation of the flexoelectric effect in topological semimetals paves a way for a new type of nanoscale electromechanical sensors and energy harvesting. A strong coupling between electric polarization and elastic deformation is important for creating electromechanical nanodevices, but such coupling typically requires inversion symmetry breaking and is elusive in metals. Here, a current-induced giant elastic deformation is reported in topological semimetals VTe2 and MoTe2, regardless of centrosymmetry, due to the Berry phase enhancement of the flexoelectric response.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-6"},"PeriodicalIF":7.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00677-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Substantial enhancement of perpendicular magnetic anisotropy in van der Waals ferromagnetic Fe3GaTe2 film due to pressure application 施压导致范德华铁磁性 Fe3GaTe2 薄膜中垂直磁各向异性的大幅增强
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-22 DOI: 10.1038/s43246-024-00665-3
Riku Iimori, Shaojie Hu, Akihiro Mitsuda, Takashi Kimura
Van der Waals (vdW) two-dimensional (2D) materials have unleashed unprecedented opportunities to probe emerging physics that could be potential candidates for various functional applications. In particular, vdW 2D magnetic materials exhibit significant potential for advanced spintronic devices. Recently, Fe3GaTe2 has been discovered to possess the room-temperature ferromagnetic property with an intrinsic perpendicular magnetic anisotropy (PMA). Furthermore, considerably large anomalous Hall and Nernst angles have been reported recently. These groundbreaking findings pave the way for significant advances in high density random-access memory as well as energy harvesting devices based on spin conversion. Enhancements in the PMA and Curie temperature contribute to improved performance with reliable operation in a wide temperature range above room temperature. Moreover, the exploration of giant anomalous Hall and Nernst angles is a crucial factor for the efficient operation of spintronic devices. In this study, we demonstrate that the application of pressure to the Fe3GaTe2 2D ferromagnetic film strengthens the interlayer coupling, resulting in an improved PMA property. In addition, the application of pressure has been found to significantly increase the anomalous Hall angle. Our findings suggest that the application of pressure effectively controls the vdW interlayer coupling, thereby manipulating the ferromagnetic and spin-conversion properties of the 2D materials. Van der Waals 2D magnetic materials are promising for spintronic devices due to their tunable large anomalous Hall and Nernst angles. Here, the magneto-transport properties of Fe3GaTe2 films are investigated under pressure, demonstrating a robust perpendicular magnetic anisotropy at room temperature and an enhancement of the anomalous Hall angle.
范德瓦(vdW)二维(2D)材料为探究新兴物理学带来了前所未有的机遇,这些新兴物理学可能成为各种功能应用的潜在候选材料。特别是,vdW 二维磁性材料在先进的自旋电子器件方面展现出巨大的潜力。最近,人们发现 Fe3GaTe2 具有室温铁磁特性和内在垂直磁各向异性(PMA)。此外,最近还报道了相当大的反常霍尔角和奈尔角。这些突破性的发现为高密度随机存取存储器以及基于自旋转换的能量收集设备的重大进展铺平了道路。PMA 和居里温度的提高有助于改善性能,在室温以上的宽温度范围内可靠运行。此外,探索巨反常霍尔角和奈恩斯特角是自旋电子器件高效运行的关键因素。在本研究中,我们证明了对 Fe3GaTe2 二维铁磁薄膜施加压力可增强层间耦合,从而改善 PMA 特性。此外,我们还发现施加压力能显著增加反常霍尔角。我们的研究结果表明,施加压力可有效控制范德华层间耦合,从而操纵二维材料的铁磁性和自旋转换特性。范德华二维磁性材料因其可调的大反常霍尔角和奈恩斯特角而有望用于自旋电子器件。本文研究了 Fe3GaTe2 薄膜在压力下的磁传输特性,结果表明其在室温下具有很强的垂直磁各向异性,并增强了反常霍尔角。
{"title":"Substantial enhancement of perpendicular magnetic anisotropy in van der Waals ferromagnetic Fe3GaTe2 film due to pressure application","authors":"Riku Iimori, Shaojie Hu, Akihiro Mitsuda, Takashi Kimura","doi":"10.1038/s43246-024-00665-3","DOIUrl":"10.1038/s43246-024-00665-3","url":null,"abstract":"Van der Waals (vdW) two-dimensional (2D) materials have unleashed unprecedented opportunities to probe emerging physics that could be potential candidates for various functional applications. In particular, vdW 2D magnetic materials exhibit significant potential for advanced spintronic devices. Recently, Fe3GaTe2 has been discovered to possess the room-temperature ferromagnetic property with an intrinsic perpendicular magnetic anisotropy (PMA). Furthermore, considerably large anomalous Hall and Nernst angles have been reported recently. These groundbreaking findings pave the way for significant advances in high density random-access memory as well as energy harvesting devices based on spin conversion. Enhancements in the PMA and Curie temperature contribute to improved performance with reliable operation in a wide temperature range above room temperature. Moreover, the exploration of giant anomalous Hall and Nernst angles is a crucial factor for the efficient operation of spintronic devices. In this study, we demonstrate that the application of pressure to the Fe3GaTe2 2D ferromagnetic film strengthens the interlayer coupling, resulting in an improved PMA property. In addition, the application of pressure has been found to significantly increase the anomalous Hall angle. Our findings suggest that the application of pressure effectively controls the vdW interlayer coupling, thereby manipulating the ferromagnetic and spin-conversion properties of the 2D materials. Van der Waals 2D magnetic materials are promising for spintronic devices due to their tunable large anomalous Hall and Nernst angles. Here, the magneto-transport properties of Fe3GaTe2 films are investigated under pressure, demonstrating a robust perpendicular magnetic anisotropy at room temperature and an enhancement of the anomalous Hall angle.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00665-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Communications Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1