Pub Date : 2024-09-30DOI: 10.1038/s43246-024-00640-y
Nikita Das, Chandan Maity
Control over the catalytic activity of artificial catalytic systems in aqueous media is of high interest for biomimetic artificial catalysts. The activity of catalytic systems can be controlled via introducing stimuli-responsive feature in the structure of the catalytic systems. However, temperature, pH or light have been predominantly used as stimulus. Aqueous catalytic system whose activity can be turned ‘ON/OFF’ employing mechanical force has not been demonstrated. Here we show how catalytic activity of an aqueous catalytic system can be switched ‘ON/OFF’ via the application/ceasing ultrasound stimulus. We demonstrate that the accessibility of imidazole, a catalyst moiety, can be modulated via the presence/absence of the ultrasound stimulus, resulting temporal control over the rate of ester hydrolysis reactions in aqueous buffer solution. This generic approach enables using a large range of organocatalysts for the preparation of molecules and/or materials in aqueous media for their application to material science, and in biomedical field. It is challenging to control the activity of artificial organocatalyst systems in aqueous media. Here, the organocatalytic activity of an aqueous catalytic system can be turned on or off for ester hydrolysis reactions using ultrasound stimulus.
{"title":"Mechanical force-switchable aqueous organocatalysis","authors":"Nikita Das, Chandan Maity","doi":"10.1038/s43246-024-00640-y","DOIUrl":"10.1038/s43246-024-00640-y","url":null,"abstract":"Control over the catalytic activity of artificial catalytic systems in aqueous media is of high interest for biomimetic artificial catalysts. The activity of catalytic systems can be controlled via introducing stimuli-responsive feature in the structure of the catalytic systems. However, temperature, pH or light have been predominantly used as stimulus. Aqueous catalytic system whose activity can be turned ‘ON/OFF’ employing mechanical force has not been demonstrated. Here we show how catalytic activity of an aqueous catalytic system can be switched ‘ON/OFF’ via the application/ceasing ultrasound stimulus. We demonstrate that the accessibility of imidazole, a catalyst moiety, can be modulated via the presence/absence of the ultrasound stimulus, resulting temporal control over the rate of ester hydrolysis reactions in aqueous buffer solution. This generic approach enables using a large range of organocatalysts for the preparation of molecules and/or materials in aqueous media for their application to material science, and in biomedical field. It is challenging to control the activity of artificial organocatalyst systems in aqueous media. Here, the organocatalytic activity of an aqueous catalytic system can be turned on or off for ester hydrolysis reactions using ultrasound stimulus.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00640-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1038/s43246-024-00648-4
Norihiro Aiga, Toshiki Sugimoto
The static and dynamic behaviour of strongly correlated many-body protons in nanoscale hydrogen-bond networks plays crucial roles in a wide range of physicochemical, biological and geological phenomena in nature. However, because of the difficulty of probing and manipulating the proton configuration in nanomaterials, controlling the cooperative behaviour of many-body protons remains challenging. By combining proton-order sensitive nonlinear optical spectroscopy and well-defined interface modification at molecular/atomic scale, we demonstrate the possibility of extensively tuning the emergent physical properties of strongly correlated protons beyond the thermodynamic constraints of bulk hydrogen bonds. Focusing on heteroepitaxially grown crystalline ice films as a model of a strongly correlated and frustrated proton system, we show that the emergence and disappearance of a high-Tc proton order on the nano- to mesoscale is readily switched by angstrom-scale interface engineering. These results pave a way to designing and controlling emergent properties of correlated proton systems. The ordering and dynamics of protons in nanoscale hydrogen-bond networks are crucial for a wide range of physicochemical, biological and geological phenomena in nature. Here, combining vibrational spectroscopy and Angstrom-scale interface engineering of crystalline ice films, an extensive tuning of strongly correlated proton ordering is demonstrated beyond the thermodynamic constraints of bulk hydrogen bonds.
{"title":"Tuning the thermodynamic ordering of strongly correlated protons in ice by angstrom-scale interface modification","authors":"Norihiro Aiga, Toshiki Sugimoto","doi":"10.1038/s43246-024-00648-4","DOIUrl":"10.1038/s43246-024-00648-4","url":null,"abstract":"The static and dynamic behaviour of strongly correlated many-body protons in nanoscale hydrogen-bond networks plays crucial roles in a wide range of physicochemical, biological and geological phenomena in nature. However, because of the difficulty of probing and manipulating the proton configuration in nanomaterials, controlling the cooperative behaviour of many-body protons remains challenging. By combining proton-order sensitive nonlinear optical spectroscopy and well-defined interface modification at molecular/atomic scale, we demonstrate the possibility of extensively tuning the emergent physical properties of strongly correlated protons beyond the thermodynamic constraints of bulk hydrogen bonds. Focusing on heteroepitaxially grown crystalline ice films as a model of a strongly correlated and frustrated proton system, we show that the emergence and disappearance of a high-Tc proton order on the nano- to mesoscale is readily switched by angstrom-scale interface engineering. These results pave a way to designing and controlling emergent properties of correlated proton systems. The ordering and dynamics of protons in nanoscale hydrogen-bond networks are crucial for a wide range of physicochemical, biological and geological phenomena in nature. Here, combining vibrational spectroscopy and Angstrom-scale interface engineering of crystalline ice films, an extensive tuning of strongly correlated proton ordering is demonstrated beyond the thermodynamic constraints of bulk hydrogen bonds.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-8"},"PeriodicalIF":7.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00648-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1038/s43246-024-00653-7
Raphael Fortulan, Noushin Raeisi Kheirabadi, Alessandro Chiolerio, Andrew Adamatzky
The increasing use of machine learning, with its significant computational and environmental costs, has motivated the exploration of unconventional computing substrates. Liquid substrates, such as colloids, are of particular interest due to their ability to conform to various shapes while exhibiting complex dynamics resulting from the collective behaviour of the constituent colloidal particles. This study explores the potential of using a PEDOT:PSS colloidal suspension as a physical reservoir for reservoir computing in spoken digit recognition. Reservoir computing uses high-dimensional dynamical systems to perform tasks with different substrates, including physical ones. Here, a physical reservoir is implemented that encodes temporal data by exploiting the rich dynamics inherent in colloidal suspensions, thus avoiding reliance on conventional computing hardware. The reservoir processes audio input encoded as spike sequences, which are then classified using a trained readout layer to identify spoken digits. Evaluation across different speaker scenarios shows that the colloidal reservoir achieves high accuracy in classification tasks, demonstrating its viability as a physical reservoir substrate. Reservoir computing is a neural network framework suitable for processing temporal and sequential information. Here, a polymeric colloidal suspension is investigated as a physical reservoir for reservoir computing in spoken digit recognition.
{"title":"Achieving liquid processors by colloidal suspensions for reservoir computing","authors":"Raphael Fortulan, Noushin Raeisi Kheirabadi, Alessandro Chiolerio, Andrew Adamatzky","doi":"10.1038/s43246-024-00653-7","DOIUrl":"10.1038/s43246-024-00653-7","url":null,"abstract":"The increasing use of machine learning, with its significant computational and environmental costs, has motivated the exploration of unconventional computing substrates. Liquid substrates, such as colloids, are of particular interest due to their ability to conform to various shapes while exhibiting complex dynamics resulting from the collective behaviour of the constituent colloidal particles. This study explores the potential of using a PEDOT:PSS colloidal suspension as a physical reservoir for reservoir computing in spoken digit recognition. Reservoir computing uses high-dimensional dynamical systems to perform tasks with different substrates, including physical ones. Here, a physical reservoir is implemented that encodes temporal data by exploiting the rich dynamics inherent in colloidal suspensions, thus avoiding reliance on conventional computing hardware. The reservoir processes audio input encoded as spike sequences, which are then classified using a trained readout layer to identify spoken digits. Evaluation across different speaker scenarios shows that the colloidal reservoir achieves high accuracy in classification tasks, demonstrating its viability as a physical reservoir substrate. Reservoir computing is a neural network framework suitable for processing temporal and sequential information. Here, a polymeric colloidal suspension is investigated as a physical reservoir for reservoir computing in spoken digit recognition.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00653-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1038/s43246-024-00638-6
Pankaj Bharmoria, Lukas Naimovičius, Deyaa Abol-Fotouh, Mila Miroshnichenko, Justas Lekavičius, Gabriele De Luca, Umair Saeed, Karolis Kazlauskas, Nicolas Candau, Paulius Baronas, Anna Roig, Kasper Moth-Poulsen
Biopolymers currently utilized as substitutes for synthetic polymers in photonics applications are predominantly confined to linear optical color responses. Herein we expand their applications in non-linear optics by integrating with triplet-triplet annihilation photon upconversion crystals. A photon upconverting biomaterial is prepared by cultivating Pd(II) meso-tetraphenyl tetrabenzoporphine: 9,10-diphenyl anthracene (sensitizer: annihilator) crystals on bacterial cellulose hydrogel that serves both as host and template for the crystallization of photon upconversion chromophores. Coating with gelatin improves the material’s optical transparency by adjusting the refractive indices. The prepared material shows an upconversion of 633 nm red light to 443 nm blue light, indicated by quadratic to linear dependence on excitation power density (non-linearly). Notably, components of this material are physically dis-assembled to retrieve 66 ± 1% of annihilator, at the end of life. Whereas, the residual clean biomass is subjected to biodegradation, showcasing the sustainability of the developed photonics material. Biopolymers used in photonics are mainly limited to linear optical color responses. Here, photon upconversion crystals incorporated into bacterial cellulose films demonstrate non-linear optical applications in biopolymers.
{"title":"Photon upconversion crystals doped bacterial cellulose composite films as recyclable photonic bioplastics","authors":"Pankaj Bharmoria, Lukas Naimovičius, Deyaa Abol-Fotouh, Mila Miroshnichenko, Justas Lekavičius, Gabriele De Luca, Umair Saeed, Karolis Kazlauskas, Nicolas Candau, Paulius Baronas, Anna Roig, Kasper Moth-Poulsen","doi":"10.1038/s43246-024-00638-6","DOIUrl":"10.1038/s43246-024-00638-6","url":null,"abstract":"Biopolymers currently utilized as substitutes for synthetic polymers in photonics applications are predominantly confined to linear optical color responses. Herein we expand their applications in non-linear optics by integrating with triplet-triplet annihilation photon upconversion crystals. A photon upconverting biomaterial is prepared by cultivating Pd(II) meso-tetraphenyl tetrabenzoporphine: 9,10-diphenyl anthracene (sensitizer: annihilator) crystals on bacterial cellulose hydrogel that serves both as host and template for the crystallization of photon upconversion chromophores. Coating with gelatin improves the material’s optical transparency by adjusting the refractive indices. The prepared material shows an upconversion of 633 nm red light to 443 nm blue light, indicated by quadratic to linear dependence on excitation power density (non-linearly). Notably, components of this material are physically dis-assembled to retrieve 66 ± 1% of annihilator, at the end of life. Whereas, the residual clean biomass is subjected to biodegradation, showcasing the sustainability of the developed photonics material. Biopolymers used in photonics are mainly limited to linear optical color responses. Here, photon upconversion crystals incorporated into bacterial cellulose films demonstrate non-linear optical applications in biopolymers.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00638-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1038/s43246-024-00647-5
Estefani Marchiori, Giulio Romagnoli, Lukas Schneider, Boris Gross, Pardis Sahafi, Andrew Jordan, Raffi Budakian, Priya R. Baral, Arnaud Magrez, Jonathan S. White, Martino Poggio
Surfaces – by breaking bulk symmetries, introducing roughness, or hosting defects – can significantly influence magnetic order in magnetic materials. Determining their effect on the complex nanometer-scale phases present in certain non-centrosymmetric magnets is an outstanding problem requiring high-resolution magnetic microscopy. Here, we use scanning SQUID microscopy to image the surface of bulk Cu2OSeO3 at low temperature and in a magnetic field applied along $$leftlangle 100rightrangle$$ . Real-space maps measured as a function of applied field reveal the microscopic structure of the magnetic phases and their transitions. In low applied field, we observe a magnetic texture consistent with an in-plane stripe phase, pointing to the existence of a distinct surface state. In the low-temperature skyrmion phase, the surface is populated by clusters of disordered skyrmions, which emerge from rupturing domains of the tilted spiral phase. Furthermore, we displace individual skyrmions from their pinning sites by applying an electric potential to the scanning probe, thereby demonstrating local skyrmion control at the surface of a magnetoelectric insulator. Surfaces can significantly influence magnetic order by breaking bulk symmetries, introducing roughness, or hosting defects. Here, a microscopy study of the surface of bulk Cu2OSeO3 reveals magnetic textures associated with distinct surface states, such as in-plane magnetic stripes that are absent in the bulk, and demonstrates the local displacement of individual skyrmions by an applied electric field.
{"title":"Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu2OSeO3","authors":"Estefani Marchiori, Giulio Romagnoli, Lukas Schneider, Boris Gross, Pardis Sahafi, Andrew Jordan, Raffi Budakian, Priya R. Baral, Arnaud Magrez, Jonathan S. White, Martino Poggio","doi":"10.1038/s43246-024-00647-5","DOIUrl":"10.1038/s43246-024-00647-5","url":null,"abstract":"Surfaces – by breaking bulk symmetries, introducing roughness, or hosting defects – can significantly influence magnetic order in magnetic materials. Determining their effect on the complex nanometer-scale phases present in certain non-centrosymmetric magnets is an outstanding problem requiring high-resolution magnetic microscopy. Here, we use scanning SQUID microscopy to image the surface of bulk Cu2OSeO3 at low temperature and in a magnetic field applied along $$leftlangle 100rightrangle$$ . Real-space maps measured as a function of applied field reveal the microscopic structure of the magnetic phases and their transitions. In low applied field, we observe a magnetic texture consistent with an in-plane stripe phase, pointing to the existence of a distinct surface state. In the low-temperature skyrmion phase, the surface is populated by clusters of disordered skyrmions, which emerge from rupturing domains of the tilted spiral phase. Furthermore, we displace individual skyrmions from their pinning sites by applying an electric potential to the scanning probe, thereby demonstrating local skyrmion control at the surface of a magnetoelectric insulator. Surfaces can significantly influence magnetic order by breaking bulk symmetries, introducing roughness, or hosting defects. Here, a microscopy study of the surface of bulk Cu2OSeO3 reveals magnetic textures associated with distinct surface states, such as in-plane magnetic stripes that are absent in the bulk, and demonstrates the local displacement of individual skyrmions by an applied electric field.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00647-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Slot-die coating (SDC) technology is a potential approach to mass produce large-area, high-performance perovskite solar cells (PSCs) at low cost. However, when the interface in contact with the perovskite ink has low wettability, the SDC cannot form a uniform pinhole-free perovskite film, which reduces the performance of the PSC. To address this issue, in this study, the wettability of the hole transport layer (HTL) interface was investigated in depth by analyzing the variation of wettability with process and its correlation with the roughness of the HTL interface. As a result, it was found that SDC could increase the roughness of the HTL interface to improve wettability and form a uniform high-quality perovskite layer without pinholes, and furthermore, SDC-based NiOx/Me-4PACz HTL suppressed energy losses at the HTL/perovskite interface. In addition, a unit cell achieved 19.17% of efficiency with long-term stability and lab cell-sized modules showed up to 17.42%. Slot-die coating is promising for the large-scale and low-cost manufacture of perovskite solar cells. Here, the effect of wettability of the hole transport layer is investigated, finding that increased surface roughness improves wettability and prevents pinhole formation, favoring solar cell efficiency.
{"title":"Influence of interfacial roughness on slot-die coatings for scaling-up high-performance perovskite solar cells","authors":"Sushil Shivaji Sangale, Dilpreet Singh Mann, Hyun-Jung Lee, Sung-Nam Kwon, Seok-In Na","doi":"10.1038/s43246-024-00645-7","DOIUrl":"10.1038/s43246-024-00645-7","url":null,"abstract":"Slot-die coating (SDC) technology is a potential approach to mass produce large-area, high-performance perovskite solar cells (PSCs) at low cost. However, when the interface in contact with the perovskite ink has low wettability, the SDC cannot form a uniform pinhole-free perovskite film, which reduces the performance of the PSC. To address this issue, in this study, the wettability of the hole transport layer (HTL) interface was investigated in depth by analyzing the variation of wettability with process and its correlation with the roughness of the HTL interface. As a result, it was found that SDC could increase the roughness of the HTL interface to improve wettability and form a uniform high-quality perovskite layer without pinholes, and furthermore, SDC-based NiOx/Me-4PACz HTL suppressed energy losses at the HTL/perovskite interface. In addition, a unit cell achieved 19.17% of efficiency with long-term stability and lab cell-sized modules showed up to 17.42%. Slot-die coating is promising for the large-scale and low-cost manufacture of perovskite solar cells. Here, the effect of wettability of the hole transport layer is investigated, finding that increased surface roughness improves wettability and prevents pinhole formation, favoring solar cell efficiency.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-10"},"PeriodicalIF":7.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00645-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1038/s43246-024-00641-x
Yasmeen Shamiya, Aishik Chakraborty, Alap Ali Zahid, Nicholas Bainbridge, Jingyuan Guan, Biao Feng, Dominic Pjontek, Subrata Chakrabarti, Arghya Paul
Nanofiber-based hydrogel delivery systems have recently shown great potential in biomedical applications, specifically due to their high surface-to-volume ratio of ultra-fine nanofibers and their ability to carry low solubility drugs. Herein, we introduce a visible light-triggered in situ-gelling drug vehicle (GAP Gel) composed of ascorbyl palmitate (AP) nanofibers and gelatin methacryloyl polymer. AP nanofibers form self-assembled structures through intermolecular interactions with a hydrophobic drug-loading core. We demonstrate that the hydrophilic periphery of AP nanofibers allows them to interact with other hydrophilic molecules via hydrogen bonds. The presence of AP nanofibers significantly enhances the viscoelasticity of GAP Gel in a concentration-dependent manner. Further, GAP Gel shows in vitro biocompatibility and sustained drug delivery efficacy when loaded with a hydrophobic antibiotic. Likewise, GAP Gel shows excellent in vivo biocompatibility when implanted in immunocompetent mice in various forms. Lastly, GAP Gels maintain cell viability when cultured in a 3D-environment over 7 days, establishing it as a promising and versatile hydrogel platform for the delivery of biotherapeutics. Nanofiber-based hydrogels are useful delivery systems in biomedical applications due to their drug loading capability and controlled release. Here, a biocompatible visible light-triggered in situ-gelling drug delivery system is demonstrated consisting of ascorbyl palmitate nanofibers and gelatin methacryloyl polymer.
基于纳米纤维的水凝胶给药系统最近在生物医学应用中显示出巨大的潜力,特别是由于其超细纳米纤维的高表面体积比和携带低溶解度药物的能力。在此,我们介绍一种由抗坏血酸棕榈酸酯(AP)纳米纤维和明胶甲基丙烯酰聚合物组成的可见光触发原位胶凝药物载体(GAP Gel)。抗坏血酸棕榈酸酯(AP)纳米纤维通过分子间相互作用与疏水性载药核心形成自组装结构。我们证明,AP 纳米纤维的亲水性外围使其能够通过氢键与其他亲水性分子相互作用。AP 纳米纤维的存在以浓度依赖的方式显著增强了 GAP 凝胶的粘弹性。此外,GAP 凝胶在负载疏水性抗生素时显示出体外生物相容性和持续给药效果。同样,当 GAP 凝胶以各种形式植入免疫功能正常的小鼠体内时,也显示出良好的体内生物相容性。最后,GAP 凝胶在三维环境中培养 7 天后仍能保持细胞活力,从而使其成为一种前景广阔的多功能水凝胶平台,用于输送生物治疗药物。基于纳米纤维的水凝胶具有药物负载能力和可控释放特性,是生物医学应用中非常有用的递送系统。本文展示了一种由抗坏血酸棕榈酸酯纳米纤维和明胶甲基丙烯酰聚合物组成的生物相容性可见光触发原位胶凝给药系统。
{"title":"Ascorbyl palmitate nanofiber-reinforced hydrogels for drug delivery in soft issues","authors":"Yasmeen Shamiya, Aishik Chakraborty, Alap Ali Zahid, Nicholas Bainbridge, Jingyuan Guan, Biao Feng, Dominic Pjontek, Subrata Chakrabarti, Arghya Paul","doi":"10.1038/s43246-024-00641-x","DOIUrl":"10.1038/s43246-024-00641-x","url":null,"abstract":"Nanofiber-based hydrogel delivery systems have recently shown great potential in biomedical applications, specifically due to their high surface-to-volume ratio of ultra-fine nanofibers and their ability to carry low solubility drugs. Herein, we introduce a visible light-triggered in situ-gelling drug vehicle (GAP Gel) composed of ascorbyl palmitate (AP) nanofibers and gelatin methacryloyl polymer. AP nanofibers form self-assembled structures through intermolecular interactions with a hydrophobic drug-loading core. We demonstrate that the hydrophilic periphery of AP nanofibers allows them to interact with other hydrophilic molecules via hydrogen bonds. The presence of AP nanofibers significantly enhances the viscoelasticity of GAP Gel in a concentration-dependent manner. Further, GAP Gel shows in vitro biocompatibility and sustained drug delivery efficacy when loaded with a hydrophobic antibiotic. Likewise, GAP Gel shows excellent in vivo biocompatibility when implanted in immunocompetent mice in various forms. Lastly, GAP Gels maintain cell viability when cultured in a 3D-environment over 7 days, establishing it as a promising and versatile hydrogel platform for the delivery of biotherapeutics. Nanofiber-based hydrogels are useful delivery systems in biomedical applications due to their drug loading capability and controlled release. Here, a biocompatible visible light-triggered in situ-gelling drug delivery system is demonstrated consisting of ascorbyl palmitate nanofibers and gelatin methacryloyl polymer.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00641-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1038/s43246-024-00637-7
Lucas Carolus van Laake, Johannes Tesse Bastiaan Overvelde
Soft robotic actuation concepts meet and sometimes exceed their natural counterparts. In contrast, artificially recreating natural levels of autonomy is still an unmet challenge. Here, we come to this conclusion after defining a measure of energy- and control-autonomy and classifying a representative selection of soft robots. We argue that, in order to advance the field, we should focus our attention on interactions between soft robots and their environment, because in nature autonomy is also achieved in interdependence. If we better understand how interactions with an environment are leveraged in nature, this will enable us to design bio-inspired soft robots with much greater autonomy in the future. Naturally occurring organisms continue to provide inspiration for advanced functionality in soft robots. This Perspective discusses how achieving autonomy in robots will require interactions with their environment to be taken into consideration in their design.
{"title":"Bio-inspired autonomy in soft robots","authors":"Lucas Carolus van Laake, Johannes Tesse Bastiaan Overvelde","doi":"10.1038/s43246-024-00637-7","DOIUrl":"10.1038/s43246-024-00637-7","url":null,"abstract":"Soft robotic actuation concepts meet and sometimes exceed their natural counterparts. In contrast, artificially recreating natural levels of autonomy is still an unmet challenge. Here, we come to this conclusion after defining a measure of energy- and control-autonomy and classifying a representative selection of soft robots. We argue that, in order to advance the field, we should focus our attention on interactions between soft robots and their environment, because in nature autonomy is also achieved in interdependence. If we better understand how interactions with an environment are leveraged in nature, this will enable us to design bio-inspired soft robots with much greater autonomy in the future. Naturally occurring organisms continue to provide inspiration for advanced functionality in soft robots. This Perspective discusses how achieving autonomy in robots will require interactions with their environment to be taken into consideration in their design.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-8"},"PeriodicalIF":7.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00637-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1038/s43246-024-00628-8
Lara G. Dresser, Casper Kunstmann-Olsen, Donato Conteduca, Christopher M. Hofmair, Nathan Smith, Laura Clark, Steven Johnson, J. Carlos Penedo, Mark C. Leake, Steven D. Quinn
Detergent-induced vesicle interactions, critical for applications including virus inactivation, varies according to the detergent type and membrane composition, but the underlying mechanistic details remain underexplored. Here, we use a lipid mixing assay based on Förster resonance energy transfer (FRET), and single-vesicle characterization approaches to identify that sub-micron-sized vesicles are induced to fuse by the non-ionic detergent Triton-X-100. We demonstrate that the process is a multi-step mechanism, characterized by discrete values of FRET efficiency between membrane-embedded fluorophores, and involves permeabilization, vesicle docking, hemi-fusion and full lipid mixing at sub-solubilizing detergent concentrations. We also dissect the kinetics of vesicle fusion to surface-tethered vesicles using a label-free quartz-crystal microbalance with dissipation monitoring approach, opening a platform for biotechnology applications. The presented strategies provide mechanistic insight into the dynamics of vesicle fusion and have implications for applications including drug delivery and sensor development where transport and manipulation of encapsulated cargo is essential. Detergent-induced membrane interactions are important for biotechnology applications but their mechanism is still not well understood. Here, sub-micron-sized vesicles are shown to fuse by a non-ionic detergent, involving permeabilization, vesicle docking, hemi-fusion, and full lipid mixing steps.
{"title":"Multiple intermediates in the detergent-induced fusion of lipid vesicles","authors":"Lara G. Dresser, Casper Kunstmann-Olsen, Donato Conteduca, Christopher M. Hofmair, Nathan Smith, Laura Clark, Steven Johnson, J. Carlos Penedo, Mark C. Leake, Steven D. Quinn","doi":"10.1038/s43246-024-00628-8","DOIUrl":"10.1038/s43246-024-00628-8","url":null,"abstract":"Detergent-induced vesicle interactions, critical for applications including virus inactivation, varies according to the detergent type and membrane composition, but the underlying mechanistic details remain underexplored. Here, we use a lipid mixing assay based on Förster resonance energy transfer (FRET), and single-vesicle characterization approaches to identify that sub-micron-sized vesicles are induced to fuse by the non-ionic detergent Triton-X-100. We demonstrate that the process is a multi-step mechanism, characterized by discrete values of FRET efficiency between membrane-embedded fluorophores, and involves permeabilization, vesicle docking, hemi-fusion and full lipid mixing at sub-solubilizing detergent concentrations. We also dissect the kinetics of vesicle fusion to surface-tethered vesicles using a label-free quartz-crystal microbalance with dissipation monitoring approach, opening a platform for biotechnology applications. The presented strategies provide mechanistic insight into the dynamics of vesicle fusion and have implications for applications including drug delivery and sensor development where transport and manipulation of encapsulated cargo is essential. Detergent-induced membrane interactions are important for biotechnology applications but their mechanism is still not well understood. Here, sub-micron-sized vesicles are shown to fuse by a non-ionic detergent, involving permeabilization, vesicle docking, hemi-fusion, and full lipid mixing steps.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00628-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1038/s43246-024-00639-5
Swarbhanu Ghosh, Parisa A. Ariya
Anthropogenic climate change drastically affects our planet, with CO2 being the most critical gaseous driver. Despite the existing carbon dioxide capture and transformation, there is much need for innovative carbon dioxide hydrogenation catalysts with excellent selectivity. Here, we present a fast, effective, and sustainable route for coupling diverse alcohols, amines and amides with CO2 via heterogenization of a natural metal-based homogeneous catalyst through decorating on functionalized graphene oxide (GO). Combined synthetic, experimental, and theoretical studies unravel mechanistic routes to convergent 4‑electron reduction of CO2 under mild conditions. We successfully replace the toxic and expensive ruthenium species with inexpensive, ubiquitously available and recyclable iron. This iron-based functionalized graphene oxide (denoted as Fe@GO-EDA, where EDA represents ethylenediamine) functions as an efficient catalyst for the selective conversion of CO2 into a formaldehyde oxidation level, thus opening the door for interesting molecular structures using CO2 as a C1 source. Overall, this work describes an intriguing heterogeneous platform for the selective synthesis of valuable methylene-bridged compounds via 4‑electron reduction of CO2. Carbon dioxide in the atmosphere can be captured and transformed to useful chemicals with hydrogenation catalysts. Here, iron-functionalized graphene oxide-based catalyst functions as an effective catalyst for the selective conversion of carbon dioxide into a formaldehyde oxidation level.
人为气候变化严重影响着我们的地球,而二氧化碳是最关键的气体驱动因素。尽管已有二氧化碳捕获和转化技术,但我们仍亟需具有优异选择性的创新型二氧化碳氢化催化剂。在此,我们提出了一种快速、有效、可持续的路线,通过在功能化氧化石墨烯(GO)上装饰天然金属基均相催化剂,将多种醇、胺和酰胺与二氧化碳进行异质化偶联。结合合成、实验和理论研究,我们揭示了在温和条件下实现 CO2 4 电子还原的机理路线。我们成功地用廉价、普遍可用且可回收的铁取代了有毒且昂贵的钌。这种铁基功能化氧化石墨烯(标记为 Fe@GO-EDA,其中 EDA 代表乙二胺)可作为一种高效催化剂,将 CO2 选择性地转化为甲醛氧化级,从而为利用 CO2 作为 C1 源的有趣分子结构打开了大门。总之,这项工作描述了一个有趣的异质平台,可通过 CO2 的 4 电子还原选择性合成有价值的亚甲基桥化合物。
{"title":"Selective reductive conversion of CO2 to CH2-bridged compounds by using a Fe-functionalized graphene oxide-based catalyst","authors":"Swarbhanu Ghosh, Parisa A. Ariya","doi":"10.1038/s43246-024-00639-5","DOIUrl":"10.1038/s43246-024-00639-5","url":null,"abstract":"Anthropogenic climate change drastically affects our planet, with CO2 being the most critical gaseous driver. Despite the existing carbon dioxide capture and transformation, there is much need for innovative carbon dioxide hydrogenation catalysts with excellent selectivity. Here, we present a fast, effective, and sustainable route for coupling diverse alcohols, amines and amides with CO2 via heterogenization of a natural metal-based homogeneous catalyst through decorating on functionalized graphene oxide (GO). Combined synthetic, experimental, and theoretical studies unravel mechanistic routes to convergent 4‑electron reduction of CO2 under mild conditions. We successfully replace the toxic and expensive ruthenium species with inexpensive, ubiquitously available and recyclable iron. This iron-based functionalized graphene oxide (denoted as Fe@GO-EDA, where EDA represents ethylenediamine) functions as an efficient catalyst for the selective conversion of CO2 into a formaldehyde oxidation level, thus opening the door for interesting molecular structures using CO2 as a C1 source. Overall, this work describes an intriguing heterogeneous platform for the selective synthesis of valuable methylene-bridged compounds via 4‑electron reduction of CO2. Carbon dioxide in the atmosphere can be captured and transformed to useful chemicals with hydrogenation catalysts. Here, iron-functionalized graphene oxide-based catalyst functions as an effective catalyst for the selective conversion of carbon dioxide into a formaldehyde oxidation level.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-17"},"PeriodicalIF":7.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00639-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}