首页 > 最新文献

Communications Materials最新文献

英文 中文
Reducing inhomogeneous broadening of spin and optical transitions of nitrogen-vacancy centers in high-pressure, high-temperature diamond 减少高压高温金刚石中氮空位中心自旋和光学转变的非均相展宽
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-11 DOI: 10.1038/s43246-024-00660-8
Rémi Blinder, Yuliya Mindarava, Thai Hien Tran, Ali Momenzadeh, Sen Yang, Petr Siyushev, Hitoshi Sumiya, Kenji Tamasaku, Taito Osaka, Norio Morishita, Haruki Takizawa, Shinobu Onoda, Hideyuki Hara, Fedor Jelezko, Jörg Wrachtrup, Junichi Isoya
With their optical addressability of individual spins and long coherence time, nitrogen-vacancy (NV) centers in diamond are often called “atom-like solid spin-defects”. As observed with trapped atomic ions, quantum interference mediated by indistinguishable photons was demonstrated between remote NV centers. In high sensitivity DC magnetometry at room temperature, NV ensembles are potentially rivaling with alkali-atom vapor cells. However, local strain induces center-to-center variation of both optical and spin transitions of NV centers. Therefore, advanced engineering of diamond growth toward crystalline perfection is demanded. Here, we report on the synthesis of high-quality HPHT (high-pressure, high-temperature) crystals, demonstrating a small inhomogeneous broadening of the spin transitions, of T2* = 1.28 μs, approaching the limit for crystals with natural 13C abundance, that we determine as T2* = 1.48 μs. The contribution from strain and local charges to the inhomogeneous broadening is lowered to ~17 kHz full width at half maximum for NV ensemble within a > 10 mm3 volume. Looking at optical transitions in low nitrogen crystals, we examine the variation of zero-phonon-line optical transition frequencies at low temperatures, showing a strain contribution below 2 GHz for a large fraction of single NV centers. Nitrogen-vacancy centers in diamond offer a promising platform for quantum applications but their optical and spin properties can be hampered by imperfections of the host crystal. Here, nitrogen-vacancy centers are created in high-pressure high-temperature diamond of high crystalline quality, demonstrating a small inhomogeneous broadening of the spin and optical transitions.
金刚石中的氮空位(NV)中心具有单个自旋的光学可寻址性和长相干时间,通常被称为 "类原子固体自旋缺陷"。正如在被困的原子离子中观察到的那样,在遥远的 NV 中心之间,由不可分辨的光子介导的量子干涉已经得到证实。在室温下的高灵敏度直流磁测量中,NV 组合有可能与碱原子蒸汽电池相媲美。然而,局部应变会导致 NV 中心的光学和自旋转变在中心与中心之间发生变化。因此,需要对金刚石的生长进行先进的工程设计,以实现完美的结晶。在此,我们报告了高质量 HPHT(高压高温)晶体的合成过程,结果表明自旋跃迁的非均质拓宽很小,T2* = 1.28 μs,接近天然 13C 丰度晶体的极限,我们将其确定为 T2* = 1.48 μs。对于 10 立方毫米体积内的 NV 集合,应变和局部电荷对不均匀展宽的贡献降低到约 17 kHz 的半最大全宽。我们研究了低氮晶体中的光学转变,考察了零声子线光学转变频率在低温下的变化,结果表明,对于很大一部分单个 NV 中心,应变的贡献低于 2 GHz。金刚石中的氮空位中心为量子应用提供了一个前景广阔的平台,但其光学和自旋特性可能会受到主晶体缺陷的影响。在这里,氮空位中心是在高结晶质量的高压高温金刚石中产生的,显示了自旋和光学转变的微小不均匀拓宽。
{"title":"Reducing inhomogeneous broadening of spin and optical transitions of nitrogen-vacancy centers in high-pressure, high-temperature diamond","authors":"Rémi Blinder, Yuliya Mindarava, Thai Hien Tran, Ali Momenzadeh, Sen Yang, Petr Siyushev, Hitoshi Sumiya, Kenji Tamasaku, Taito Osaka, Norio Morishita, Haruki Takizawa, Shinobu Onoda, Hideyuki Hara, Fedor Jelezko, Jörg Wrachtrup, Junichi Isoya","doi":"10.1038/s43246-024-00660-8","DOIUrl":"10.1038/s43246-024-00660-8","url":null,"abstract":"With their optical addressability of individual spins and long coherence time, nitrogen-vacancy (NV) centers in diamond are often called “atom-like solid spin-defects”. As observed with trapped atomic ions, quantum interference mediated by indistinguishable photons was demonstrated between remote NV centers. In high sensitivity DC magnetometry at room temperature, NV ensembles are potentially rivaling with alkali-atom vapor cells. However, local strain induces center-to-center variation of both optical and spin transitions of NV centers. Therefore, advanced engineering of diamond growth toward crystalline perfection is demanded. Here, we report on the synthesis of high-quality HPHT (high-pressure, high-temperature) crystals, demonstrating a small inhomogeneous broadening of the spin transitions, of T2* = 1.28 μs, approaching the limit for crystals with natural 13C abundance, that we determine as T2* = 1.48 μs. The contribution from strain and local charges to the inhomogeneous broadening is lowered to ~17 kHz full width at half maximum for NV ensemble within a > 10 mm3 volume. Looking at optical transitions in low nitrogen crystals, we examine the variation of zero-phonon-line optical transition frequencies at low temperatures, showing a strain contribution below 2 GHz for a large fraction of single NV centers. Nitrogen-vacancy centers in diamond offer a promising platform for quantum applications but their optical and spin properties can be hampered by imperfections of the host crystal. Here, nitrogen-vacancy centers are created in high-pressure high-temperature diamond of high crystalline quality, demonstrating a small inhomogeneous broadening of the spin and optical transitions.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-10"},"PeriodicalIF":7.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00660-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconducting flux qubit with ferromagnetic Josephson π-junction operating at zero magnetic field 在零磁场下运行的带铁磁约瑟夫森 π 结的超导通量量子比特
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-11 DOI: 10.1038/s43246-024-00659-1
Sunmi Kim, Leonid V. Abdurakhimov, Duong Pham, Wei Qiu, Hirotaka Terai, Sahel Ashhab, Shiro Saito, Taro Yamashita, Kouichi Semba
Conventional superconducting flux qubits require the application of a precisely tuned magnetic field to set the operation point at half a flux quantum through the qubit loop, which complicates the on-chip integration of this type of device. It has been proposed that by inducing a π-phase shift in the superconducting order parameter using a precisely controlled nanoscale-thickness superconductor/ferromagnet/superconductor Josephson junction, commonly referred to as π-junction, it is possible to realize a flux qubit operating at zero magnetic flux. Here, we report the realization of a zero-flux-biased flux qubit based on three NbN/AlN/NbN Josephson junctions and a NbN/PdNi/NbN ferromagnetic π-junction. The qubit lifetime is in the microsecond range, which we argue is limited by quasiparticle excitations in the metallic ferromagnet layer. Our results pave the way for developing quantum coherent devices, including qubits and sensors, that utilize the interplay between ferromagnetism and superconductivity. Conventional superconducting flux qubits require a finely tuned magnetic field to operate, hindering their on-chip integration. Here, ferromagnetic Josephson junctions with a π-phase shift in the superconducting order parameter allow the realization of a flux qubit operating at zero magnetic field.
传统的超导通量量子比特需要应用精确调谐的磁场,将操作点设置在通过量子比特环的半个通量量子处,这使得这类器件的片上集成变得复杂。有人提出,通过使用精确控制的纳米厚度超导体/铁磁体/超导体约瑟夫森结(通常称为π结)在超导阶参数中诱导π相移,就有可能实现在零磁通量下工作的磁通量比特。在此,我们报告了基于三个 NbN/AlN/NbN 约瑟夫森结和一个 NbN/PdNi/NbN 铁磁 π 结实现的零磁通偏置磁通量量子比特。我们认为,这是受金属铁磁层中准粒子激发的限制。我们的研究成果为利用铁磁性和超导性之间的相互作用开发量子相干器件(包括量子比特和传感器)铺平了道路。传统的超导通量量子比特需要微调磁场才能运行,这阻碍了它们在芯片上的集成。在这里,铁磁约瑟夫森结在超导阶参数上具有π相移,从而实现了在零磁场下运行的磁通量量子比特。
{"title":"Superconducting flux qubit with ferromagnetic Josephson π-junction operating at zero magnetic field","authors":"Sunmi Kim, Leonid V. Abdurakhimov, Duong Pham, Wei Qiu, Hirotaka Terai, Sahel Ashhab, Shiro Saito, Taro Yamashita, Kouichi Semba","doi":"10.1038/s43246-024-00659-1","DOIUrl":"10.1038/s43246-024-00659-1","url":null,"abstract":"Conventional superconducting flux qubits require the application of a precisely tuned magnetic field to set the operation point at half a flux quantum through the qubit loop, which complicates the on-chip integration of this type of device. It has been proposed that by inducing a π-phase shift in the superconducting order parameter using a precisely controlled nanoscale-thickness superconductor/ferromagnet/superconductor Josephson junction, commonly referred to as π-junction, it is possible to realize a flux qubit operating at zero magnetic flux. Here, we report the realization of a zero-flux-biased flux qubit based on three NbN/AlN/NbN Josephson junctions and a NbN/PdNi/NbN ferromagnetic π-junction. The qubit lifetime is in the microsecond range, which we argue is limited by quasiparticle excitations in the metallic ferromagnet layer. Our results pave the way for developing quantum coherent devices, including qubits and sensors, that utilize the interplay between ferromagnetism and superconductivity. Conventional superconducting flux qubits require a finely tuned magnetic field to operate, hindering their on-chip integration. Here, ferromagnetic Josephson junctions with a π-phase shift in the superconducting order parameter allow the realization of a flux qubit operating at zero magnetic field.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00659-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of dislocation cells on hydrogen embrittlement in wrought and additively manufactured Inconel 718 位错单元对锻造和加成型 Inconel 718 氢脆的影响
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-10 DOI: 10.1038/s43246-024-00654-6
Claudia-Tatiana Santos Maldonado, Alfredo Zafra, Emilio Martínez Pañeda, Paul Sandmann, Roberto Morana, Minh-Son Pham
Hydrogen embrittlement (HE) is a major issue for the mechanical integrity of high-strength alloys exposed to hydrogen-rich environments, with diffusion and trapping of hydrogen being critical phenomena. Here, the role of microstructure on hydrogen diffusion, trapping and embrittlement in additively manufactured (AM) and wrought Inconel 718 is compared, revealing the key role played by dislocation cells. Trapping behaviour in hydrogen-saturated alloys is analysed by thermal desorption spectroscopy and numerical simulations. A high density of hydrogen traps in cell walls, attributed to dense dislocations and Laves phases, are responsible for the local accumulation of hydrogen, causing significant loss in strength, and triggering cracking along dislocation cell walls. The influential role of dislocation cells alters fracture behaviour from intergranular in the wrought alloy to intragranular for the AM alloy, due to the large proportion of dislocation cells in AM alloys. In addition, the cellular network of dislocations accelerates hydrogen diffusion, enabling faster and deeper penetration of hydrogen in the AM alloy. These results indicate that the higher HE susceptibility of nickel superalloys is intrinsically associated with the interaction of hydrogen with dislocation walls. Hydrogen embrittlement is a major issue in alloys used in hydrogen-rich environments, such as in jet engines. In this study, the presence of a large number of dislocation cells in an additively manufactured nickel superalloy promotes hydrogen diffusion and fracture, as compared to a wrought alloy with fewer dislocation cells.
氢脆(HE)是暴露在富氢环境中的高强度合金机械完整性的一个主要问题,其中氢的扩散和捕获是关键现象。本文比较了微观结构对添加制造(AM)和锻造 Inconel 718 中氢扩散、捕集和脆化的作用,揭示了位错电池所起的关键作用。通过热解吸光谱和数值模拟分析了氢饱和合金中的捕获行为。由于致密位错和 Laves 相的存在,晶胞壁中的氢陷阱密度很高,导致氢在局部积聚,造成强度显著下降,并引发沿位错晶胞壁的裂纹。位错晶胞的影响作用改变了断裂行为,从锻造合金的晶间断裂转变为 AM 合金的晶内断裂,这是由于 AM 合金中位错晶胞所占比例较大。此外,位错蜂窝网络加速了氢扩散,使氢在 AM 合金中的渗透更快、更深。这些结果表明,镍超合金较高的氢脆敏感性与氢与位错壁的相互作用有内在联系。氢脆是在喷气发动机等富氢环境中使用的合金的一个主要问题。在这项研究中,与位错单元较少的锻造合金相比,在添加制造的镍超合金中存在大量位错单元会促进氢扩散和断裂。
{"title":"Influence of dislocation cells on hydrogen embrittlement in wrought and additively manufactured Inconel 718","authors":"Claudia-Tatiana Santos Maldonado, Alfredo Zafra, Emilio Martínez Pañeda, Paul Sandmann, Roberto Morana, Minh-Son Pham","doi":"10.1038/s43246-024-00654-6","DOIUrl":"10.1038/s43246-024-00654-6","url":null,"abstract":"Hydrogen embrittlement (HE) is a major issue for the mechanical integrity of high-strength alloys exposed to hydrogen-rich environments, with diffusion and trapping of hydrogen being critical phenomena. Here, the role of microstructure on hydrogen diffusion, trapping and embrittlement in additively manufactured (AM) and wrought Inconel 718 is compared, revealing the key role played by dislocation cells. Trapping behaviour in hydrogen-saturated alloys is analysed by thermal desorption spectroscopy and numerical simulations. A high density of hydrogen traps in cell walls, attributed to dense dislocations and Laves phases, are responsible for the local accumulation of hydrogen, causing significant loss in strength, and triggering cracking along dislocation cell walls. The influential role of dislocation cells alters fracture behaviour from intergranular in the wrought alloy to intragranular for the AM alloy, due to the large proportion of dislocation cells in AM alloys. In addition, the cellular network of dislocations accelerates hydrogen diffusion, enabling faster and deeper penetration of hydrogen in the AM alloy. These results indicate that the higher HE susceptibility of nickel superalloys is intrinsically associated with the interaction of hydrogen with dislocation walls. Hydrogen embrittlement is a major issue in alloys used in hydrogen-rich environments, such as in jet engines. In this study, the presence of a large number of dislocation cells in an additively manufactured nickel superalloy promotes hydrogen diffusion and fracture, as compared to a wrought alloy with fewer dislocation cells.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-13"},"PeriodicalIF":7.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00654-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-zero-wear with super-hard WB4 and a self-repairing tribo-chemical layer 采用超硬 WB4 和自修复三重化学涂层,近乎零磨损
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1038/s43246-024-00667-1
Guixin Hou, Shengyu Zhu, Hui Tan, Wenyuan Chen, Jiao Chen, Qichun Sun, Juanjuan Chen, Jun Cheng, Peixuan Li, William Yi Wang, Jun Yang, Weimin Liu
Achieving near-zero-wear remains a major challenge in mechanical engineering and material science. Current ultra-low wear materials are typically developed based on the self-consumption strategy. Here, we demonstrate a new self-repairing approach to achieve near-zero-wear. We find that the WB4-βB/WC tribo-pair has a low wear rate of 10−8 mm3 N−1 m−1 in low vacuum conditions, under a maximum Hertzian contact stress of 2.23 GPa over 1 × 105 friction cycles. Additionally, we observe an abnormal wear phenomenon after 5 × 104 friction cycles, characterized by an increase in the dimensions of the tribo-pair. This near-zero-wear mechanism is attributed to the synergistic action of the super-hard WB4-βB substrate and the self-repairing tribo-oxide layer. This research provides a new approach for advancing wear-resistant materials and enhancing material longevity. Expanding the range of ultra-low-wear material systems would benefit a number of applications. Here, near-zero-wear is reported in a WB4-βB/WC tribo-pair system, attributed to surface self-repair in a certain wear regime.
实现近零磨损仍然是机械工程和材料科学领域的一大挑战。目前的超低磨损材料通常是基于自消耗策略开发的。在这里,我们展示了一种实现近零磨损的新型自修复方法。我们发现,在低真空条件下,WB4-βB/WC 三元对在 1 × 105 次摩擦循环中的最大赫兹接触应力为 2.23 GPa,磨损率低至 10-8 mm3 N-1 m-1。此外,我们还观察到在 5 × 104 次摩擦循环后出现的异常磨损现象,其特征是三元对的尺寸增大。这种近乎零磨损的机制归因于超硬 WB4-βB 衬底和自修复三氧化物层的协同作用。这项研究为改进耐磨材料和提高材料寿命提供了一种新方法。扩大超低磨损材料系统的范围将有利于多种应用。本文报告了 WB4-βB/WC 三氧化对体系的近零磨损,这归因于在特定磨损机制下的表面自我修复。
{"title":"Near-zero-wear with super-hard WB4 and a self-repairing tribo-chemical layer","authors":"Guixin Hou, Shengyu Zhu, Hui Tan, Wenyuan Chen, Jiao Chen, Qichun Sun, Juanjuan Chen, Jun Cheng, Peixuan Li, William Yi Wang, Jun Yang, Weimin Liu","doi":"10.1038/s43246-024-00667-1","DOIUrl":"10.1038/s43246-024-00667-1","url":null,"abstract":"Achieving near-zero-wear remains a major challenge in mechanical engineering and material science. Current ultra-low wear materials are typically developed based on the self-consumption strategy. Here, we demonstrate a new self-repairing approach to achieve near-zero-wear. We find that the WB4-βB/WC tribo-pair has a low wear rate of 10−8 mm3 N−1 m−1 in low vacuum conditions, under a maximum Hertzian contact stress of 2.23 GPa over 1 × 105 friction cycles. Additionally, we observe an abnormal wear phenomenon after 5 × 104 friction cycles, characterized by an increase in the dimensions of the tribo-pair. This near-zero-wear mechanism is attributed to the synergistic action of the super-hard WB4-βB substrate and the self-repairing tribo-oxide layer. This research provides a new approach for advancing wear-resistant materials and enhancing material longevity. Expanding the range of ultra-low-wear material systems would benefit a number of applications. Here, near-zero-wear is reported in a WB4-βB/WC tribo-pair system, attributed to surface self-repair in a certain wear regime.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-10"},"PeriodicalIF":7.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00667-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host-guest charge transfer for scalable single crystal epitaxy of a metal-organic framework 用于金属有机框架可扩展单晶外延的主客体电荷转移
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1038/s43246-024-00657-3
Arthur Mantel, Berthold Stöger, Alexander Prado-Roller, Hidetsugu Shiozawa
Methods to grow large crystals provide the foundation for material science and technology. Here we demonstrate single crystal homoepitaxy of a metal-organic framework (MOF) built of zinc, acetate and terephthalate ions, that encapsulate arrays of octahedral zinc dimethyl sulfoxide (DMSO) complex cations within its one-dimensional (1D) channels. The three-dimensional framework is built of two-dimensional Zn-terephthalate square lattices interconnected by anionic acetate pillars through diatomic zinc nodes. The charge of the anionic framework is neutralized by the 1D arrays of $${{rm{Zn}}}{({{rm{DMSO}}})}_{6}^{2+}$$ cations that fill every second 1D channel of the framework. It is demonstrated that the repeatable and scalable epitaxy allows square cuboids of this charge-transfer MOF to grow stepwise to sizes in the centimeter range. The continuous growth with no size limits can be attributed to the ionic nature of the anionic framework with cationic 1D molecular fillers. These findings pave the way for epitaxial growth of bulk crystals of MOFs. Bulk crystal growth of metal-organic frameworks remains a challenge. Here, a single crystal of a metal-organic framework is grown homoepitaxially in the centimeter range, assisted by the ionic nature of the anionic framework with cationic 1D molecular fillers.
生长大晶体的方法为材料科学和技术奠定了基础。在这里,我们展示了一种由锌、醋酸根离子和对苯二甲酸根离子构建的金属有机框架(MOF)的单晶同源外延,该框架的一维(1D)通道中封装了八面体二甲基亚砜(DMSO)锌络阳离子阵列。三维框架由二维锌-对苯二甲酸盐方格组成,阴离子醋酸盐柱通过二原子锌节点相互连接。阴离子框架的电荷由填充框架每第二个一维通道的 $${{rm{Zn}}{({{{rm{DMSO}})}_{6}^{2+}$ 阳离子一维阵列中和。实验证明,通过可重复和可扩展的外延,这种电荷转移 MOF 的正方体立方体可以逐步增长到厘米大小。这种无尺寸限制的连续生长可归因于带有阳离子一维分子填料的阴离子框架的离子性质。这些发现为 MOFs 体晶的外延生长铺平了道路。金属有机框架的块状晶体生长仍然是一项挑战。在这里,利用带有阳离子一维分子填料的阴离子框架的离子性质,在厘米范围内同外延生长出了金属有机框架的单晶体。
{"title":"Host-guest charge transfer for scalable single crystal epitaxy of a metal-organic framework","authors":"Arthur Mantel, Berthold Stöger, Alexander Prado-Roller, Hidetsugu Shiozawa","doi":"10.1038/s43246-024-00657-3","DOIUrl":"10.1038/s43246-024-00657-3","url":null,"abstract":"Methods to grow large crystals provide the foundation for material science and technology. Here we demonstrate single crystal homoepitaxy of a metal-organic framework (MOF) built of zinc, acetate and terephthalate ions, that encapsulate arrays of octahedral zinc dimethyl sulfoxide (DMSO) complex cations within its one-dimensional (1D) channels. The three-dimensional framework is built of two-dimensional Zn-terephthalate square lattices interconnected by anionic acetate pillars through diatomic zinc nodes. The charge of the anionic framework is neutralized by the 1D arrays of $${{rm{Zn}}}{({{rm{DMSO}}})}_{6}^{2+}$$ cations that fill every second 1D channel of the framework. It is demonstrated that the repeatable and scalable epitaxy allows square cuboids of this charge-transfer MOF to grow stepwise to sizes in the centimeter range. The continuous growth with no size limits can be attributed to the ionic nature of the anionic framework with cationic 1D molecular fillers. These findings pave the way for epitaxial growth of bulk crystals of MOFs. Bulk crystal growth of metal-organic frameworks remains a challenge. Here, a single crystal of a metal-organic framework is grown homoepitaxially in the centimeter range, assisted by the ionic nature of the anionic framework with cationic 1D molecular fillers.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-6"},"PeriodicalIF":7.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00657-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low excess noise and high quantum efficiency avalanche photodiodes for beyond 2 µm wavelength detection 用于 2 µm 以上波长检测的低过量噪声和高量子效率雪崩光电二极管
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1038/s43246-024-00627-9
Hyemin Jung, Seunghyun Lee, Xiao Jin, Yifan Liu, Theodore. J. Ronningen, Christopher. H. Grein, John. P. R. David, Sanjay Krishna
The rising concentration of greenhouse gases, especially methane and carbon dioxide, is driving global temperature increases and exacerbating the climate crisis. Monitoring these gases requires detectors that operate in the extended short-wavelength infrared range (~2.4 µm), covering methane (1.65 µm) and carbon dioxide (2.05 µm) wavelengths. Here, we present a high-performance linear mode avalanche photodetector (APD) with an InGaAs/GaAsSb type-II superlattice absorber and an AlGaAsSb multiplier, matched to InP substrates. This APD achieves a room temperature gain of 178, an external quantum efficiency of 3560% at 2 µm, low excess noise (less than 2 at gains below 20), and a small temperature coefficient of breakdown (7.58 mV/K·µm). These results indicate that a manufacturable semiconductor material-based APD could significantly advance high-sensitivity receivers for greenhouse gas monitoring, potentially enabling their commercial production and widespread use. Photodetectors for monitoring greenhouse gas emissions must cover the extended short-wavelength infrared range. Here, antimonide-based materials on a InP substrate enable a high-performance avalanche photodiode with detectivity beyond 2 µm wavelength.
温室气体(尤其是甲烷和二氧化碳)浓度的上升正在推动全球气温上升,加剧气候危机。对这些气体的监测需要能在扩展的短波红外范围(~2.4 µm)内工作的探测器,其中包括甲烷(1.65 µm)和二氧化碳(2.05 µm)波长。在这里,我们展示了一种高性能线性模式雪崩光电探测器(APD),它采用 InGaAs/GaAsSb II 型超晶格吸收器和 AlGaAsSb 倍增器,与 InP 衬底相匹配。这种 APD 的室温增益为 178,2 µm 时的外部量子效率为 3560%,过量噪声低(增益低于 20 时小于 2),击穿温度系数小(7.58 mV/K-µm)。这些结果表明,可制造的基于半导体材料的 APD 可以大大推进温室气体监测用高灵敏度接收器的发展,并有可能实现其商业化生产和广泛应用。用于监测温室气体排放的光电探测器必须覆盖扩展的短波长红外范围。在这里,基于 InP 衬底的锑基材料实现了高性能雪崩光电二极管,其探测能力超过 2 微米波长。
{"title":"Low excess noise and high quantum efficiency avalanche photodiodes for beyond 2 µm wavelength detection","authors":"Hyemin Jung, Seunghyun Lee, Xiao Jin, Yifan Liu, Theodore. J. Ronningen, Christopher. H. Grein, John. P. R. David, Sanjay Krishna","doi":"10.1038/s43246-024-00627-9","DOIUrl":"10.1038/s43246-024-00627-9","url":null,"abstract":"The rising concentration of greenhouse gases, especially methane and carbon dioxide, is driving global temperature increases and exacerbating the climate crisis. Monitoring these gases requires detectors that operate in the extended short-wavelength infrared range (~2.4 µm), covering methane (1.65 µm) and carbon dioxide (2.05 µm) wavelengths. Here, we present a high-performance linear mode avalanche photodetector (APD) with an InGaAs/GaAsSb type-II superlattice absorber and an AlGaAsSb multiplier, matched to InP substrates. This APD achieves a room temperature gain of 178, an external quantum efficiency of 3560% at 2 µm, low excess noise (less than 2 at gains below 20), and a small temperature coefficient of breakdown (7.58 mV/K·µm). These results indicate that a manufacturable semiconductor material-based APD could significantly advance high-sensitivity receivers for greenhouse gas monitoring, potentially enabling their commercial production and widespread use. Photodetectors for monitoring greenhouse gas emissions must cover the extended short-wavelength infrared range. Here, antimonide-based materials on a InP substrate enable a high-performance avalanche photodiode with detectivity beyond 2 µm wavelength.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00627-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast low-temperature irradiation creep driven by athermal defect dynamics 热缺陷动力学驱动的快速低温辐照蠕变
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1038/s43246-024-00655-5
Alexander Feichtmayer, Max Boleininger, Johann Riesch, Daniel R. Mason, Luca Reali, Till Höschen, Maximilian Fuhr, Thomas Schwarz-Selinger, Rudolf Neu, Sergei L. Dudarev
The occurrence of high stress concentrations in reactor components is a still intractable phenomenon encountered in fusion reactor design. Here, we observe and quantitatively model a non-linear high-dose radiation mediated microstructure evolution effect that facilitates fast stress relaxation in the most challenging low-temperature limit. In situ observations of a tensioned tungsten wire exposed to a high-energy ion beam show that internal stress of up to 2 GPa relaxes within minutes, with the extent and time-scale of relaxation accurately predicted by a parameter-free multiscale model informed by atomistic simulations. As opposed to conventional notions of radiation creep, the effect arises from the self-organisation of nanoscale crystal defects, athermally coalescing into extended polarized dislocation networks that compensate and alleviate the external stress. The creep behavior of actively cooled alloys exposed to neutron irradiation in fusion reactors is expected to critically affect the operation of reactor components. Here, experiments and simulations of a 16 μm thick tungsten wire exposed to low-temperature irradiation reveal stress relaxation rates far exceeding those associated with thermal creep.
在聚变反应堆设计中,反应堆部件出现高应力集中仍然是一个难以解决的现象。在这里,我们观察到了一种非线性高剂量辐射介导的微结构演化效应,并建立了定量模型,这种效应有助于在最具挑战性的低温极限下实现快速应力松弛。我们对暴露在高能离子束下的拉伸钨丝进行了现场观测,结果表明,高达 2 GPa 的内应力在几分钟内就会松弛,松弛的程度和时间尺度可通过原子模拟的无参数多尺度模型准确预测。与传统的辐射蠕变概念不同,这种效应源于纳米级晶体缺陷的自组织,通过热凝聚成扩展的极化位错网络,从而补偿并减轻了外部应力。在聚变反应堆中,暴露于中子辐照的活性冷却合金的蠕变行为预计将严重影响反应堆部件的运行 。
{"title":"Fast low-temperature irradiation creep driven by athermal defect dynamics","authors":"Alexander Feichtmayer, Max Boleininger, Johann Riesch, Daniel R. Mason, Luca Reali, Till Höschen, Maximilian Fuhr, Thomas Schwarz-Selinger, Rudolf Neu, Sergei L. Dudarev","doi":"10.1038/s43246-024-00655-5","DOIUrl":"10.1038/s43246-024-00655-5","url":null,"abstract":"The occurrence of high stress concentrations in reactor components is a still intractable phenomenon encountered in fusion reactor design. Here, we observe and quantitatively model a non-linear high-dose radiation mediated microstructure evolution effect that facilitates fast stress relaxation in the most challenging low-temperature limit. In situ observations of a tensioned tungsten wire exposed to a high-energy ion beam show that internal stress of up to 2 GPa relaxes within minutes, with the extent and time-scale of relaxation accurately predicted by a parameter-free multiscale model informed by atomistic simulations. As opposed to conventional notions of radiation creep, the effect arises from the self-organisation of nanoscale crystal defects, athermally coalescing into extended polarized dislocation networks that compensate and alleviate the external stress. The creep behavior of actively cooled alloys exposed to neutron irradiation in fusion reactors is expected to critically affect the operation of reactor components. Here, experiments and simulations of a 16 μm thick tungsten wire exposed to low-temperature irradiation reveal stress relaxation rates far exceeding those associated with thermal creep.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00655-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decylammonium sulfate post-treatment for efficient hole-conductor-free printable perovskite solar cells with reduced voltage loss 硫酸癸基铵后处理用于高效无空穴导体可印刷型过氧化物太阳能电池,可降低电压损耗
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1038/s43246-024-00643-9
Zexiong Qiu, Jiale Liu, Chuanzhou Han, Chaoyang Wang, Junwei Xiang, Ziwei Zheng, Minhao Xia, Yang Zhou, Anyi Mei, Hongwei Han
Hole-conductor-free printable mesoscopic perovskite solar cells (p-MPSCs) have attracted widespread attention for their low cost, up-scalability, and exceptional stability. However, the high defect density of perovskite and the absence of interfacial barrier layer between perovskite and carbon electrode cause profound open-circuit voltage (VOC) loss, which results in uncompetitive power conversion efficiency (PCE). Herein, an anion-cation synergy of decylammonium sulfate (DA2SO4) is utilized for suppressing VOC loss of p-MPSCs via a facile post-treatment method. DA+ cations transform the perovskite adjacent to carbon electrode into wide-bandgap 2D perovskite for blocking electrons, while the SO42− anions interact with undercoordinated lead centers for reducing defect density. As a result, the modified device delivers an enhanced PCE from 17.78% to 19.59%, with an improved VOC from 0.98 V to 1.06 V. Meanwhile, the modified device without any encapsulation exhibits excellent moisture stability with the PCE remained almost 99% of the initial value after 528 h aging in 75% RH air at room temperature. Open-circuit voltage loss is an issue faced by hole-conductor-free printable mesoscopic perovskite solar cells. Here, a facile decylammonium sulfate post-treatment reduces the voltage loss via an anion-cation synergy, and increases the power conversion efficiency from 17.8% to 19.6%.
无孔导体可印刷介观包晶太阳能电池(p-MPSCs)因其低成本、可升级性和优异的稳定性而受到广泛关注。然而,由于透辉石的缺陷密度高,而且透辉石与碳电极之间没有界面阻挡层,因此会造成严重的开路电压(VOC)损失,导致功率转换效率(PCE)不具竞争力。本文利用癸基硫酸铵(DA2SO4)的阴阳离子协同作用,通过简便的后处理方法抑制 p-MPSC 的 VOC 损失。DA+ 阳离子将碳电极附近的过氧化物转变为宽带隙二维过氧化物以阻挡电子,而 SO42- 阴离子则与配位不足的铅中心相互作用以降低缺陷密度。因此,改进型器件的 PCE 从 17.78% 提高到 19.59%,VOC 从 0.98 V 提高到 1.06 V。同时,没有任何封装的改良器件具有出色的湿度稳定性,在室温下 75% 相对湿度的空气中老化 528 小时后,PCE 几乎保持了初始值的 99%。开路电压损失是无空穴导体可印刷介观过氧化物太阳能电池面临的一个问题。在这里,通过阴阳离子协同作用,一种简便的癸基硫酸铵后处理方法降低了电压损耗,并将功率转换效率从 17.8% 提高到 19.6%。
{"title":"Decylammonium sulfate post-treatment for efficient hole-conductor-free printable perovskite solar cells with reduced voltage loss","authors":"Zexiong Qiu, Jiale Liu, Chuanzhou Han, Chaoyang Wang, Junwei Xiang, Ziwei Zheng, Minhao Xia, Yang Zhou, Anyi Mei, Hongwei Han","doi":"10.1038/s43246-024-00643-9","DOIUrl":"10.1038/s43246-024-00643-9","url":null,"abstract":"Hole-conductor-free printable mesoscopic perovskite solar cells (p-MPSCs) have attracted widespread attention for their low cost, up-scalability, and exceptional stability. However, the high defect density of perovskite and the absence of interfacial barrier layer between perovskite and carbon electrode cause profound open-circuit voltage (VOC) loss, which results in uncompetitive power conversion efficiency (PCE). Herein, an anion-cation synergy of decylammonium sulfate (DA2SO4) is utilized for suppressing VOC loss of p-MPSCs via a facile post-treatment method. DA+ cations transform the perovskite adjacent to carbon electrode into wide-bandgap 2D perovskite for blocking electrons, while the SO42− anions interact with undercoordinated lead centers for reducing defect density. As a result, the modified device delivers an enhanced PCE from 17.78% to 19.59%, with an improved VOC from 0.98 V to 1.06 V. Meanwhile, the modified device without any encapsulation exhibits excellent moisture stability with the PCE remained almost 99% of the initial value after 528 h aging in 75% RH air at room temperature. Open-circuit voltage loss is an issue faced by hole-conductor-free printable mesoscopic perovskite solar cells. Here, a facile decylammonium sulfate post-treatment reduces the voltage loss via an anion-cation synergy, and increases the power conversion efficiency from 17.8% to 19.6%.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-8"},"PeriodicalIF":7.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00643-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discussing MXenes with Yury Gogotsi 与尤里-戈戈齐讨论 MXenes
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-09 DOI: 10.1038/s43246-024-00650-w
Yury Gogotsi is a pioneer of the burgeoning field of 2D MXenes. Here he offers his insight on the history of MXene development, promising applications and what he is excited about.
Yury Gogotsi 是二维 MXenes 这一新兴领域的先驱。在此,他就二维二甲苯的发展历史、前景广阔的应用以及他的兴奋点发表了自己的见解。
{"title":"Discussing MXenes with Yury Gogotsi","authors":"","doi":"10.1038/s43246-024-00650-w","DOIUrl":"10.1038/s43246-024-00650-w","url":null,"abstract":"Yury Gogotsi is a pioneer of the burgeoning field of 2D MXenes. Here he offers his insight on the history of MXene development, promising applications and what he is excited about.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-3"},"PeriodicalIF":7.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00650-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Josephson coupling across magnetic topological insulator MnBi2Te4 跨磁性拓扑绝缘体 MnBi2Te4 的约瑟夫森耦合
IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-08 DOI: 10.1038/s43246-024-00649-3
Thies Jansen, Ekaterina Kochetkova, Anna Isaeva, Alexander Brinkman, Chuan Li
Topological superconductors hosting Majorana zero modes are of great interest for both fundamental physics and potential quantum computing applications. In this work, we investigate the transport properties of the intrinsic magnetic topological insulator MnBi2Te4 (MBT). In normal transport measurements, we observe the presence of chiral edge channels, though with deviations from perfect quantization due to factors such as non-uniform thickness, domain structures, and the presence of quasi-helical edge states. Subsequently, we fabricate superconducting junctions using niobium leads on MBT exfoliated flakes, which show an onset of supercurrent with clear Josephson coupling. The interference patterns in the superconducting junctions reveal interesting asymmetries, suggesting changes in the magnetic ordering of the MBT flakes under small applied magnetic fields. Moreover, the modulation of the critical current by magnetic field reveals a SQUID-like pattern, suggesting the presence of supercurrent through the quasi-helical edge states. Topological superconductors hosting Majorana zero modes are of great interest for both fundamental physics and potential quantum computing applications. Here, the intrinsic and Josephson junction transport properties of magnetic topological insulator MnBi2Te4 are investigated, revealing superconducting interference patterns that suggest the presence of supercurrent through quasi-helical edge states.
具有马约拉纳零模的拓扑超导体对基础物理学和潜在的量子计算应用都具有重大意义。在这项工作中,我们研究了本征磁性拓扑绝缘体 MnBi2Te4(MBT)的传输特性。在正常的输运测量中,我们观察到手性边缘通道的存在,但由于厚度不均匀、畴结构和准螺旋边缘态的存在等因素,这些通道与完美的量子化存在偏差。随后,我们在 MBT 剥离薄片上使用铌引线制造了超导结,这些超导结显示了具有明显约瑟夫森耦合的超电流。超导结中的干涉图案显示出有趣的不对称性,表明 MBT 片在小外加磁场下的磁有序性发生了变化。此外,磁场对临界电流的调制显示出类似 SQUID 的模式,表明存在通过准螺旋边缘态的超电流。具有马约拉纳零模的拓扑超导体对基础物理学和潜在的量子计算应用都具有重大意义。本文研究了磁性拓扑绝缘体 MnBi2Te4 的本征和约瑟夫森结输运特性,揭示了超导干涉模式,表明通过准螺旋边缘态存在超电流。
{"title":"Josephson coupling across magnetic topological insulator MnBi2Te4","authors":"Thies Jansen, Ekaterina Kochetkova, Anna Isaeva, Alexander Brinkman, Chuan Li","doi":"10.1038/s43246-024-00649-3","DOIUrl":"10.1038/s43246-024-00649-3","url":null,"abstract":"Topological superconductors hosting Majorana zero modes are of great interest for both fundamental physics and potential quantum computing applications. In this work, we investigate the transport properties of the intrinsic magnetic topological insulator MnBi2Te4 (MBT). In normal transport measurements, we observe the presence of chiral edge channels, though with deviations from perfect quantization due to factors such as non-uniform thickness, domain structures, and the presence of quasi-helical edge states. Subsequently, we fabricate superconducting junctions using niobium leads on MBT exfoliated flakes, which show an onset of supercurrent with clear Josephson coupling. The interference patterns in the superconducting junctions reveal interesting asymmetries, suggesting changes in the magnetic ordering of the MBT flakes under small applied magnetic fields. Moreover, the modulation of the critical current by magnetic field reveals a SQUID-like pattern, suggesting the presence of supercurrent through the quasi-helical edge states. Topological superconductors hosting Majorana zero modes are of great interest for both fundamental physics and potential quantum computing applications. Here, the intrinsic and Josephson junction transport properties of magnetic topological insulator MnBi2Te4 are investigated, revealing superconducting interference patterns that suggest the presence of supercurrent through quasi-helical edge states.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00649-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Communications Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1