Nanoplastics (NPs) are emerging as significant environmental hazards, especially in aquatic ecosystems, where they predominantly exist in aged forms due to weathering processes. Fish, known for their remarkable ability to regenerate injured caudal fins through intricate biological mechanisms, serve as an ideal model for studying sublethal effects of environmental pollutants. This study investigates the toxic impacts of aged polystyrene nanoplastics (PS-NPs) on caudal fin regeneration in goldfish, focusing on molecular, cellular, and physiological responses. Goldfish were exposed to UV-aged PS-NPs (50 nm) at concentrations of 0, 10, 100, and 1000 μg/L, and regeneration was monitored at 7-, 14-, and 35 days post-amputation (dpa). Results demonstrated that caudal fin regeneration was significantly impaired in a concentration- and time-dependent manner. Under exposure to a low concentration (10 μg/L) of aged PS-NPs, goldfish showed an adaptive antioxidant response. Exposure to medium-high concentrations (100–1000 μg/L) led to abnormal ROS activity, disordered apoptosis, and abnormal transcription of core genes in oxidative stress (gpx, sod), immune-inflammation (mpeg1, il-1β, tnf-α), and regeneration pathways (fgf20a, runx2a). This ultimately led to a significant inhibition of caudal fin regeneration at 35 dpa. This study indicates that UV-aged PS-NPs can inhibit the regeneration of goldfish tail fins by disrupting the coordinated function of the oxidative stress-immune-apoptosis-regeneration pathway. The study highlights the risks posed by aged NPs in aquatic environments, emphasizing their potential to impair critical tissue regeneration processes in fish, with broader implications for ecosystem health and resilience.
扫码关注我们
求助内容:
应助结果提醒方式:
