Pub Date : 2025-02-19DOI: 10.1016/j.cbpc.2025.110145
Lin Han , Wenzhi Liu , Fangying Yuan , Qianwen Liu , Hongyu Cheng , Xiaofeng Jin , Yanchun Sun
The ecological conditions of freshwater aquaculture are deteriorating by degrees in recent years. Consequently, the comprehensive utilization of saline-alkaline water has garnered increasing societal attention. Here, crucian carp (Carassius auratus) were exposed to 20, 40 mmol/L NaHCO3 for 30 days (T, F group). Metabolomic analyses were conducted using UPLC-QTOF/MS, complemented by biochemical and microbiology profiling to elucidate the damage of the saline environment to the intestinal microbial structure, which in turn interfered with the energy metabolism. It was observed that carbonate alkalinity (CA) exposure not only caused intestine oxidative stress but also changed the levels of several digestive enzymes, including α-amylase (AMS), chymotrypsin (CHY), lipase (LPS). Metabolomic analysis identified 22 different metabolites (DEMs) in T group and 77 DEMs in F group. MetaboAnalyst analysis indicated that these metabolites are primarily involved in energy-related pathways, including the citric acid cycle, galactose metabolism, and glycine, serine, and threonine metabolism. Intestinal microbial diversity and community composition were altered under carbonate alkalinity exposure, with increase in Proteobacteria abundance and decline in Firmicutes, abundance alongside enrichment of Sphingomonas. Herein, saline-alkaline stress disrupted the physiological homeostasis of the crucian carp intestine, leading to microbial dysbiosis and energy metabolic imbalance. This study provides a theoretical foundation for understanding the stress response of the crucian carp intestine and the role of the intestinal microbiome in host resilience under adverse environmental conditions.
{"title":"Integration of microbiomics and metabolomics reveals energy metabolism imbalance in crucian carp (Carassius auratus) under saline-alkaline exposure","authors":"Lin Han , Wenzhi Liu , Fangying Yuan , Qianwen Liu , Hongyu Cheng , Xiaofeng Jin , Yanchun Sun","doi":"10.1016/j.cbpc.2025.110145","DOIUrl":"10.1016/j.cbpc.2025.110145","url":null,"abstract":"<div><div>The ecological conditions of freshwater aquaculture are deteriorating by degrees in recent years. Consequently, the comprehensive utilization of saline-alkaline water has garnered increasing societal attention. Here, crucian carp (<em>Carassius auratus</em>) were exposed to 20, 40 mmol/L NaHCO<sub>3</sub> for 30 days (T, F group). Metabolomic analyses were conducted using UPLC-QTOF/MS, complemented by biochemical and microbiology profiling to elucidate the damage of the saline environment to the intestinal microbial structure, which in turn interfered with the energy metabolism. It was observed that carbonate alkalinity (CA) exposure not only caused intestine oxidative stress but also changed the levels of several digestive enzymes, including α-amylase (AMS), chymotrypsin (CHY), lipase (LPS). Metabolomic analysis identified 22 different metabolites (DEMs) in T group and 77 DEMs in F group. MetaboAnalyst analysis indicated that these metabolites are primarily involved in energy-related pathways, including the citric acid cycle, galactose metabolism, and glycine, serine, and threonine metabolism. Intestinal microbial diversity and community composition were altered under carbonate alkalinity exposure, with increase in Proteobacteria abundance and decline in Firmicutes, abundance alongside enrichment of <em>Sphingomonas</em>. Herein, saline-alkaline stress disrupted the physiological homeostasis of the crucian carp intestine, leading to microbial dysbiosis and energy metabolic imbalance. This study provides a theoretical foundation for understanding the stress response of the crucian carp intestine and the role of the intestinal microbiome in host resilience under adverse environmental conditions.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"291 ","pages":"Article 110145"},"PeriodicalIF":3.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-19DOI: 10.1016/j.cbpc.2025.110149
Cristiana Roberta Multisanti , Serafina Ferrara , Giuseppe Piccione , Caterina Faggio
Nowadays, plastic pollution is one of the most significant issues affecting the environment, posing a serious threat to marine biodiversity, ecosystem stability, and human health. Millions of tons of plastic waste enter the oceans every year, and the impact of microplastics (MPs) is much more worrying than visible contamination. The presence of these particles puts a strain on ecological dynamics, causing a significant impact on the health of marine organisms and affects humans due to the interconnection existing with the environment and the food chain. This review article examines the different ways in which MPs interact with marine life, the mechanisms that drive this pollution, and the cascading consequences for the health of organisms and ecosystems. It also highlights the critical links between plastic pollution and human health and underlines the urgency of a global and coordinated approach to address this growing crisis. Only through deeper understanding, increased awareness and collective action can we hope to mitigate the significant impacts of plastic pollution and ensure a sustainable future for oceans and our planet.
{"title":"Plastics and their derivatives are impacting animal ecophysiology: A review","authors":"Cristiana Roberta Multisanti , Serafina Ferrara , Giuseppe Piccione , Caterina Faggio","doi":"10.1016/j.cbpc.2025.110149","DOIUrl":"10.1016/j.cbpc.2025.110149","url":null,"abstract":"<div><div>Nowadays, plastic pollution is one of the most significant issues affecting the environment, posing a serious threat to marine biodiversity, ecosystem stability, and human health. Millions of tons of plastic waste enter the oceans every year, and the impact of microplastics (MPs) is much more worrying than visible contamination. The presence of these particles puts a strain on ecological dynamics, causing a significant impact on the health of marine organisms and affects humans due to the interconnection existing with the environment and the food chain. This review article examines the different ways in which MPs interact with marine life, the mechanisms that drive this pollution, and the cascading consequences for the health of organisms and ecosystems. It also highlights the critical links between plastic pollution and human health and underlines the urgency of a global and coordinated approach to address this growing crisis. Only through deeper understanding, increased awareness and collective action can we hope to mitigate the significant impacts of plastic pollution and ensure a sustainable future for oceans and our planet.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"291 ","pages":"Article 110149"},"PeriodicalIF":3.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-18DOI: 10.1016/j.cbpc.2025.110150
Arian Farajizadeh, Lazarus Sui, Jonas Wong, Greg G. Goss
The hydrophobic surface of plastics adsorbs hydrophobic persistent organic pollutants (POP) such as Perfluorooctanoic acid (PFOA). The potential for hydrophobic nanoparticles such as titanium dioxide (TiO2) to associate with PFOA and alter accumulation rates has not been investigated. Nanoparticles form ecocorona by adsorption of multiple constituents in water, but few studies have examined if this results in differences in the rate of PFOA accumulation in freshwater animals. We demonstrate the PFOA associates with the hydrophobic surfaces of nano-sized TiO2 particles and this increases the rate of uptake of PFOA into Daphnia magna. Accumulation of PFOA in daphnia was measurement over multiple concentrations, flux times and particle sizes using a radiotracer-based method (14C-labelled PFOA). Our results show that TiO2 NPs have a high sorption capacity for PFOA and PFOA sorption decreased aggregation of TiO2 as evidenced by a decrease in average hydrodynamic diameter, decreased zeta potential and increased polydispersity index. Uptake of PFOA at 10 μg/L was found to be 45 % higher in the presence of 500 μg/L of 5 nm TiO2 compared to control PFOA alone uptake. Potentiation of PFOA uptake using 25 nm TiO2 NPs was 25 % higher than control PFOA alone. PFOA alone (0.5 mg/L) reduced metabolic oxygen consumption (MO2) in daphnia by 52 %, but exposure to (100 mg/L) 5 nm TiO2 NPs sorbed with (0.5 mg/L) PFOA decreased metabolic oxygen consumption (MO2) by ~88 %. These findings show that TiO2 nanoparticles act as vectors for hydrophobic organic pollutant accumulation and significantly potentiate PFOA accumulation and toxicity in aquatic organisms.
{"title":"Modulation of PFOA (perfluorooctanoic acid) uptake in Daphnia (Daphnia magna) by TiO2 nanoparticles","authors":"Arian Farajizadeh, Lazarus Sui, Jonas Wong, Greg G. Goss","doi":"10.1016/j.cbpc.2025.110150","DOIUrl":"10.1016/j.cbpc.2025.110150","url":null,"abstract":"<div><div>The hydrophobic surface of plastics adsorbs hydrophobic persistent organic pollutants (POP) such as Perfluorooctanoic acid (PFOA). The potential for hydrophobic nanoparticles such as titanium dioxide (TiO<sub>2</sub>) to associate with PFOA and alter accumulation rates has not been investigated. Nanoparticles form ecocorona by adsorption of multiple constituents in water, but few studies have examined if this results in differences in the rate of PFOA accumulation in freshwater animals. We demonstrate the PFOA associates with the hydrophobic surfaces of nano-sized TiO<sub>2</sub> particles and this increases the rate of uptake of PFOA into <em>Daphnia magna</em>. Accumulation of PFOA in daphnia was measurement over multiple concentrations, flux times and particle sizes using a radiotracer-based method (<sup>14</sup>C-labelled PFOA). Our results show that TiO<sub>2</sub> NPs have a high sorption capacity for PFOA and PFOA sorption decreased aggregation of TiO<sub>2</sub> as evidenced by a decrease in average hydrodynamic diameter, decreased zeta potential and increased polydispersity index. Uptake of PFOA at 10 μg/L was found to be 45 % higher in the presence of 500 μg/L of 5 nm TiO<sub>2</sub> compared to control PFOA alone uptake. Potentiation of PFOA uptake using 25 nm TiO<sub>2</sub> NPs was 25 % higher than control PFOA alone. PFOA alone (0.5 mg/L) reduced metabolic oxygen consumption (MO<sub>2</sub>) in daphnia by 52 %, but exposure to (100 mg/L) 5 nm TiO<sub>2</sub> NPs sorbed with (0.5 mg/L) PFOA decreased metabolic oxygen consumption (MO<sub>2</sub>) by ~88 %. These findings show that TiO<sub>2</sub> nanoparticles act as vectors for hydrophobic organic pollutant accumulation and significantly potentiate PFOA accumulation and toxicity in aquatic organisms.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"291 ","pages":"Article 110150"},"PeriodicalIF":3.9,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-17DOI: 10.1016/j.cbpc.2025.110146
Wenzhi Liu , Lin Han , Fangying Yuan , Qianwen Liu , Hongyu Cheng , Xiaofeng Jin , Yanchun Sun
Climate change and intensified human activities have accelerated the salinization and alkalinization of aquatic environments, further shrinking the space for freshwater aquaculture. One of the key survival mechanisms for fish in saline-alkaline habitats is the conversion of accumulated endogenous ammonia into less toxic glutamine. This study focuses on the freshwater teleost, crucian carp (Carassius auratus), using the liver as the target organ. Three groups were established: 0, 20, and 40 mmol/L NaHCO3 stress groups. After 30 days, methionine sulfoximine was injected to block the glutamate pathway, respectively. Through a combination of biochemical analysis and metabolomics, this study investigated the mechanisms by which blocking the glutamate pathway under different NaHCO3 stress concentrations affects metabolism in the liver of crucian carp. Biochemical results indicated that saline-alkaline stress led to oxidative stress and impaired ammonia excretion in crucian carp, and these effects were exacerbated after blocking the glutamate pathway. Metabolomic results revealed significant alterations in pathways such as glycerophospholipid metabolism, arachidonic acid metabolism, and purine metabolism. The study demonstrates that blocking the glutamate pathway exacerbates lipid and energy metabolism disorders under saline-alkaline stress, with crucian carp compensating by regulating glucose metabolism to mitigate energy deficiencies. In summary, this study elucidates the metabolic changes in crucian carp following the blockade of glutamate pathway under carbonate-alkaline stress, providing insight into the mechanisms leading to liver inflammation and metabolic dysregulation, and offers preliminary insights into the effects on ammonia excretion, which lay a scientific foundation for future research on freshwater teleosts in saline-alkaline environments.
{"title":"Mechanism of blocking the glutamate pathway to exacerbate oxidative stress, ammonia toxicity and metabolic disorders in crucian carp (Carassius auratus) under saline-alkaline exposure","authors":"Wenzhi Liu , Lin Han , Fangying Yuan , Qianwen Liu , Hongyu Cheng , Xiaofeng Jin , Yanchun Sun","doi":"10.1016/j.cbpc.2025.110146","DOIUrl":"10.1016/j.cbpc.2025.110146","url":null,"abstract":"<div><div>Climate change and intensified human activities have accelerated the salinization and alkalinization of aquatic environments, further shrinking the space for freshwater aquaculture. One of the key survival mechanisms for fish in saline-alkaline habitats is the conversion of accumulated endogenous ammonia into less toxic glutamine. This study focuses on the freshwater teleost, crucian carp (<em>Carassius auratus</em>), using the liver as the target organ. Three groups were established: 0, 20, and 40 mmol/L NaHCO<sub>3</sub> stress groups. After 30 days, methionine sulfoximine was injected to block the glutamate pathway, respectively. Through a combination of biochemical analysis and metabolomics, this study investigated the mechanisms by which blocking the glutamate pathway under different NaHCO<sub>3</sub> stress concentrations affects metabolism in the liver of crucian carp. Biochemical results indicated that saline-alkaline stress led to oxidative stress and impaired ammonia excretion in crucian carp, and these effects were exacerbated after blocking the glutamate pathway. Metabolomic results revealed significant alterations in pathways such as glycerophospholipid metabolism, arachidonic acid metabolism, and purine metabolism. The study demonstrates that blocking the glutamate pathway exacerbates lipid and energy metabolism disorders under saline-alkaline stress, with crucian carp compensating by regulating glucose metabolism to mitigate energy deficiencies. In summary, this study elucidates the metabolic changes in crucian carp following the blockade of glutamate pathway under carbonate-alkaline stress, providing insight into the mechanisms leading to liver inflammation and metabolic dysregulation, and offers preliminary insights into the effects on ammonia excretion, which lay a scientific foundation for future research on freshwater teleosts in saline-alkaline environments.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"291 ","pages":"Article 110146"},"PeriodicalIF":3.9,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-16DOI: 10.1016/j.cbpc.2025.110147
Dain Lee , Ju-Hyeong Lee , Kyung-Hee Kim , Cheol Young Choi , Ju-Chan Kang , Jun-Hwan Kim
The rising sea surface temperatures driven by climate change cause thermal stress, leading to oxidative stress, metabolic disorders, and increased disease susceptibility, thereby impairing the physiological functions of fish. Therefore, understanding the adaptation mechanisms of fish to high temperatures is essential for mitigating the negative impacts of thermal stress on aquaculture productivity and fish health. In this study, Paralichthys olivaceus were subjected to high temperatures following pre-heating to evaluate the advantages of pre-stimulation prior to exposure to the critical temperature. The P. olivaceus were exposed to four groups; Acute (subjected to acute heat shock at 32 °C), AH-S (exposed to acquired heat shock at 28 °C followed by short recovery of 2 h and subsequent heat shock at 32 °C), AH-L (exposed to acquired heat shock at 28 °C followed by long recovery of 2 days and subsequent heat shock at 32 °C) and AH-SL (combined of AH-S and AH-L protocols). In terms of antioxidant response, mRNA expression (caspase 10, thioredoxin (Trx), superoxide dismutase (SOD), peroxiredoxin (Prx), glutathione-S-transferase (GST), and transferrin (TF)) and enzyme activities (SOD, CAT, and GST) were significantly upregulated in P. olivaceus pre-heated prior to high-temperature exposure (AH-S, AH-L, and AH-SL groups). In addition, the stress gene expressions such as heat shock protein 70 (HSP70), HSP60, HSP90, warm-temperature-acclimation-associated 65-kDa protein (Wap65–1), and glucose-regulated protein 78 (GRP78) was significantly upregulated in AH-S, AH-L and AH-SL groups. Pre-heating has been found to be effective in mitigating thermal stress, with the efficacy varying according to the differences in pre-heating methods.
{"title":"Expression of antioxidant and stress-related genes in olive flounder, Paralichthys olivaceus exposed to high temperatures after pre-heating","authors":"Dain Lee , Ju-Hyeong Lee , Kyung-Hee Kim , Cheol Young Choi , Ju-Chan Kang , Jun-Hwan Kim","doi":"10.1016/j.cbpc.2025.110147","DOIUrl":"10.1016/j.cbpc.2025.110147","url":null,"abstract":"<div><div>The rising sea surface temperatures driven by climate change cause thermal stress, leading to oxidative stress, metabolic disorders, and increased disease susceptibility, thereby impairing the physiological functions of fish. Therefore, understanding the adaptation mechanisms of fish to high temperatures is essential for mitigating the negative impacts of thermal stress on aquaculture productivity and fish health. In this study, <em>Paralichthys olivaceus</em> were subjected to high temperatures following pre-heating to evaluate the advantages of pre-stimulation prior to exposure to the critical temperature. The <em>P. olivaceus</em> were exposed to four groups; Acute (subjected to acute heat shock at 32 °C), AH-S (exposed to acquired heat shock at 28 °C followed by short recovery of 2 h and subsequent heat shock at 32 °C), AH-L (exposed to acquired heat shock at 28 °C followed by long recovery of 2 days and subsequent heat shock at 32 °C) and AH-SL (combined of AH-S and AH-L protocols). In terms of antioxidant response, mRNA expression (caspase 10, thioredoxin (Trx), superoxide dismutase (SOD), peroxiredoxin (Prx), glutathione-S-transferase (GST), and transferrin (TF)) and enzyme activities (SOD, CAT, and GST) were significantly upregulated in <em>P. olivaceus</em> pre-heated prior to high-temperature exposure (AH-S, AH-L, and AH-SL groups). In addition, the stress gene expressions such as heat shock protein 70 (HSP70), HSP60, HSP90, warm-temperature-acclimation-associated 65-kDa protein (Wap65–1), and glucose-regulated protein 78 (GRP78) was significantly upregulated in AH-S, AH-L and AH-SL groups. Pre-heating has been found to be effective in mitigating thermal stress, with the efficacy varying according to the differences in pre-heating methods.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"291 ","pages":"Article 110147"},"PeriodicalIF":3.9,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-09DOI: 10.1016/j.cbpc.2025.110143
Gleyson B. Castro , Juliano J. Corbi , Mateus Cottorello-Fonsêca , Daniela Correia , Demetrio Raldúa , David S. Alexandre , Thandy Junio da Silva Pinto , Eva Prats , Melissa Faria
The occurrence of antibiotics in freshwater is a global concern, with evidence pointing to potential neurotoxic effects after prolonged exposure. However, data on their impact on behavior, particularly at environmentally relevant concentrations, remain limited. This study examined the motor function of zebrafish larvae exposed to single and mixture of antibiotics from the sulfonamide and fluoroquinolone classes. Ten antibiotics were assessed, namely, fluoroquinolones: ciprofloxacin (CIP), norfloxacin (NOR), pefloxacin (PEF), ofloxacin (OFL), and enrofloxacin (ENR) and sulfonamides: sulfamethoxazole (SMX), sulfadiazine (SDZ), sulfamethazine (SMZ), sulfamerazine (SMR), and sulfadimethoxine (SDM). After 24 h of exposure, single exposures revealed that all antibiotics disrupted at least one typical larval behavior at environmentally relevant concentrations. Larvae showed similarities in the escape response provoked by a vibrating acoustic stimulus (startle) according to the antibiotic class, despite the significantly more severe effects of SDM on startle and SMX on habituation to repetitive acoustic stimulation. Exposures to sulfonamide mixtures caused a non-monotonic effect on the startle response and significantly increased the distance traveled over the visual motor response. On the other hand, fluoroquinolone mixtures at 0.1 and 10 μg L−1 reduced the habituation of zebrafish larvae. Biochemical markers suggest sulfonamide mixtures can potentially decrease catalase activity, whereas reduced glutathione levels are increased in fluoroquinolone mixtures at 10 μg L−1. Such findings support recent discussions on the potential of antibiotics to impair motor function in aquatic species, whether in isolated or combined forms. Regulatory mechanisms focused on discharging those substances into freshwater are pivotal to preventing adverse effects and ensuring biota safety.
{"title":"Fluoroquinolone and sulfonamide antibiotics (single and mixtures) impair the motor function of zebrafish larvae at environmentally relevant concentrations","authors":"Gleyson B. Castro , Juliano J. Corbi , Mateus Cottorello-Fonsêca , Daniela Correia , Demetrio Raldúa , David S. Alexandre , Thandy Junio da Silva Pinto , Eva Prats , Melissa Faria","doi":"10.1016/j.cbpc.2025.110143","DOIUrl":"10.1016/j.cbpc.2025.110143","url":null,"abstract":"<div><div>The occurrence of antibiotics in freshwater is a global concern, with evidence pointing to potential neurotoxic effects after prolonged exposure. However, data on their impact on behavior, particularly at environmentally relevant concentrations, remain limited. This study examined the motor function of zebrafish larvae exposed to single and mixture of antibiotics from the sulfonamide and fluoroquinolone classes. Ten antibiotics were assessed, namely, fluoroquinolones: ciprofloxacin (CIP), norfloxacin (NOR), pefloxacin (PEF), ofloxacin (OFL), and enrofloxacin (ENR) and sulfonamides: sulfamethoxazole (SMX), sulfadiazine (SDZ), sulfamethazine (SMZ), sulfamerazine (SMR), and sulfadimethoxine (SDM). After 24 h of exposure, single exposures revealed that all antibiotics disrupted at least one typical larval behavior at environmentally relevant concentrations. Larvae showed similarities in the escape response provoked by a vibrating acoustic stimulus (startle) according to the antibiotic class, despite the significantly more severe effects of SDM on startle and SMX on habituation to repetitive acoustic stimulation. Exposures to sulfonamide mixtures caused a non-monotonic effect on the startle response and significantly increased the distance traveled over the visual motor response. On the other hand, fluoroquinolone mixtures at 0.1 and 10 μg L<sup>−1</sup> reduced the habituation of zebrafish larvae. Biochemical markers suggest sulfonamide mixtures can potentially decrease catalase activity, whereas reduced glutathione levels are increased in fluoroquinolone mixtures at 10 μg L<sup>−1</sup>. Such findings support recent discussions on the potential of antibiotics to impair motor function in aquatic species, whether in isolated or combined forms. Regulatory mechanisms focused on discharging those substances into freshwater are pivotal to preventing adverse effects and ensuring biota safety.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"290 ","pages":"Article 110143"},"PeriodicalIF":3.9,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development of the plastics industry worldwide has led to an increase in the rate of plastic waste and chemical additives such as microplastics (MPs) and diphenyl phthalate (DPP) in the environment. The penetration of these pollutants into aquatic ecosystems has also raised concerns about their toxic effects, individually and in combination. The present study investigated the individual and combined toxicity of MPs and DPP on the health of male goldfish. A 28-day exposure experiment was conducted using different concentrations of DPP (2.5, 5.0, 7.5 μL L−1) and MPs (20, 40 mg L−1), both individually and in combination. Biochemical markers, enzyme activities, and hormone levels were evaluated to ascertain the effects on metabolic, renal, and reproductive health. The findings revealed that concurrent exposure to DPP and MPs markedly elevated plasma glucose, creatinine, triglycerides, and cholesterol levels, accompanied by notable reductions in high-density lipoprotein and low-density lipoprotein. Moreover, combined exposures resulted in liver damage, as evidenced by elevated serum glutamic-oxaloacetic transaminase, serum glutamic-pyruvic transaminase, alkaline phosphatase, lactate dehydrogenase, and gamma-glutamyl transferase activities and disruptions in protein synthesis and immune response, with notable decreases in total protein, albumin, and globulin. Testosterone levels decreased, while estradiol levels increased, indicating endocrine disruption and potential reproductive impairment. These findings indicated the adverse synergistic effects of MPs and DPP on the physiology of goldfish. Therefore, further research must be conducted to increase our knowledge of their ecotoxicological risks.
{"title":"Individual and combined effects of microplastics and diphenyl phthalate as plastic additives on male goldfish: A biochemical and physiological investigation","authors":"Masoumeh Faramazinia , Gholam Reza Sabzghabaei , Cristiana Roberta Multisanti , Mahdi Banaee , Giuseppe Piccione , Abha Trivedi , Caterina Faggio","doi":"10.1016/j.cbpc.2025.110144","DOIUrl":"10.1016/j.cbpc.2025.110144","url":null,"abstract":"<div><div>The development of the plastics industry worldwide has led to an increase in the rate of plastic waste and chemical additives such as microplastics (MPs) and diphenyl phthalate (DPP) in the environment. The penetration of these pollutants into aquatic ecosystems has also raised concerns about their toxic effects, individually and in combination. The present study investigated the individual and combined toxicity of MPs and DPP on the health of male goldfish. A 28-day exposure experiment was conducted using different concentrations of DPP (2.5, 5.0, 7.5 μL L<sup>−1</sup>) and MPs (20, 40 mg L<sup>−1</sup>), both individually and in combination. Biochemical markers, enzyme activities, and hormone levels were evaluated to ascertain the effects on metabolic, renal, and reproductive health. The findings revealed that concurrent exposure to DPP and MPs markedly elevated plasma glucose, creatinine, triglycerides, and cholesterol levels, accompanied by notable reductions in high-density lipoprotein and low-density lipoprotein. Moreover, combined exposures resulted in liver damage, as evidenced by elevated serum glutamic-oxaloacetic transaminase, serum glutamic-pyruvic transaminase, alkaline phosphatase, lactate dehydrogenase, and gamma-glutamyl transferase activities and disruptions in protein synthesis and immune response, with notable decreases in total protein, albumin, and globulin. Testosterone levels decreased, while estradiol levels increased, indicating endocrine disruption and potential reproductive impairment. These findings indicated the adverse synergistic effects of MPs and DPP on the physiology of goldfish. Therefore, further research must be conducted to increase our knowledge of their ecotoxicological risks.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"290 ","pages":"Article 110144"},"PeriodicalIF":3.9,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143377399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1016/j.cbpc.2025.110142
Karen Beltran-de la Torre , Jorge Arturo Vargas-Abúndez , Ricardo Dzul-Caamal , Anieli C. Maraschi , Mariana V. Capparelli
Under natural conditions, organisms are exposed to multiple stressors simultaneously, such as microplastic (MP) contamination and rising global temperatures. To assess the combined effects of acute MP exposure and increasing temperatures on the fiddler crab Minuca rapax, we exposed the crabs to polyethylene microspheres (0 and 2 mg L−1, size 53–63 μm) at three different temperatures (24, 27, and 30 °C). Physiological responses were assessed by measuring oxygen consumption and evaluating the biochemical activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) alongside lipid peroxidation (LPO) in the gills and hepatopancreas. MP bioaccumulation was quantified in the gills, digestive tract, and muscles. Our findings revealed that MP bioaccumulation was highest in the gills, followed by the digestive tract and muscles. Notably, elevated temperatures (30 °C) suppressed MP accumulation. At 30 °C, MP-exposed crabs showed increased oxygen consumption, while at 27 °C, SOD and GPx activities were elevated. In contrast, in MP-exposed crabs, catalase activity and LPO levels decreased at 30 °C. Overall, the combined effects of MP exposure and temperature-induced stress exacerbated physiological toxicity in Minuca rapax, underscoring the importance of considering multiple environmental stressors when evaluating the impacts of MP contamination.
{"title":"Warming-induced microplastic accumulation and physiological toxicity in fiddler crabs","authors":"Karen Beltran-de la Torre , Jorge Arturo Vargas-Abúndez , Ricardo Dzul-Caamal , Anieli C. Maraschi , Mariana V. Capparelli","doi":"10.1016/j.cbpc.2025.110142","DOIUrl":"10.1016/j.cbpc.2025.110142","url":null,"abstract":"<div><div>Under natural conditions, organisms are exposed to multiple stressors simultaneously, such as microplastic (MP) contamination and rising global temperatures. To assess the combined effects of acute MP exposure and increasing temperatures on the fiddler crab <em>Minuca rapax</em>, we exposed the crabs to polyethylene microspheres (0 and 2 mg L<sup>−1</sup>, size 53–63 μm) at three different temperatures (24, 27, and 30 °C). Physiological responses were assessed by measuring oxygen consumption and evaluating the biochemical activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) alongside lipid peroxidation (LPO) in the gills and hepatopancreas. MP bioaccumulation was quantified in the gills, digestive tract, and muscles. Our findings revealed that MP bioaccumulation was highest in the gills, followed by the digestive tract and muscles. Notably, elevated temperatures (30 °C) suppressed MP accumulation. At 30 °C, MP-exposed crabs showed increased oxygen consumption, while at 27 °C, SOD and GPx activities were elevated. In contrast, in MP-exposed crabs, catalase activity and LPO levels decreased at 30 °C. Overall, the combined effects of MP exposure and temperature-induced stress exacerbated physiological toxicity in <em>Minuca rapax</em>, underscoring the importance of considering multiple environmental stressors when evaluating the impacts of MP contamination.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"290 ","pages":"Article 110142"},"PeriodicalIF":3.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.cbpc.2024.110077
Mun Yee Yong , Kae Yi Tan , Choo Hock Tan
High molecular weight proteins are present abundantly in viperid venoms. The amino acid sequence can be highly variable, contributing to the structure and function diversity of snake venom protein. However, this variability remains poorly understood in many species. The study investigated the venom protein variability in a distinct clade of Asian pit vipers (Trimeresurus species complex) through comparative proteomics, applying gel electrophoresis (SDS-PAGE), liquid chromatography-tandem mass spectrometry (LCMS/MS), and bioinformatic approaches. The proteomes revealed a number of conserved protein families, within each are variably expressed protein paralogs that are unrelated to the snake phylogeny and geographic origin. The expression levels of two major enzymes, i.e., snake venom serine proteinase and metalloproteinase, correlate weakly with procoagulant and hemorrhagic activities, implying co-expression of other functionally versatile toxins in the venom. The phospholipase A2 (PLA2) abundance correlates strongly with its enzymatic activity, and a unique phenotype was discovered in two species expressing extremely little PLA2. The commercial mono-specific antivenom effectively neutralized the venoms' procoagulant and hemorrhagic effects but failed to inhibit the PLA2 activities. Instead, the PLA2 activities of all venoms were effectively inhibited by the small molecule inhibitor varespladib, suggesting its potential to be repurposed as a highly potent adjuvant therapeutic in snakebite envenoming.
{"title":"A genus-wide study on venom proteome variation and phospholipase A2 inhibition in Asian lance-headed pit vipers (genus: Trimeresurus)","authors":"Mun Yee Yong , Kae Yi Tan , Choo Hock Tan","doi":"10.1016/j.cbpc.2024.110077","DOIUrl":"10.1016/j.cbpc.2024.110077","url":null,"abstract":"<div><div>High molecular weight proteins are present abundantly in viperid venoms. The amino acid sequence can be highly variable, contributing to the structure and function diversity of snake venom protein. However, this variability remains poorly understood in many species. The study investigated the venom protein variability in a distinct clade of Asian pit vipers (<em>Trimeresurus</em> species complex) through comparative proteomics, applying gel electrophoresis (SDS-PAGE), liquid chromatography-tandem mass spectrometry (LCMS/MS), and bioinformatic approaches. The proteomes revealed a number of conserved protein families, within each are variably expressed protein paralogs that are unrelated to the snake phylogeny and geographic origin. The expression levels of two major enzymes, i.e., snake venom serine proteinase and metalloproteinase, correlate weakly with procoagulant and hemorrhagic activities, implying co-expression of other functionally versatile toxins in the venom. The phospholipase A<sub>2</sub> (PLA<sub>2</sub>) abundance correlates strongly with its enzymatic activity, and a unique phenotype was discovered in two species expressing extremely little PLA<sub>2</sub>. The commercial mono-specific antivenom effectively neutralized the venoms' procoagulant and hemorrhagic effects but failed to inhibit the PLA<sub>2</sub> activities. Instead, the PLA<sub>2</sub> activities of all venoms were effectively inhibited by the small molecule inhibitor varespladib, suggesting its potential to be repurposed as a highly potent adjuvant therapeutic in snakebite envenoming.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"288 ","pages":"Article 110077"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-30DOI: 10.1016/j.cbpc.2025.110129
Miguel Borja , Gamaliel Castañeda-Gaytán , Alejandro Alagón , Jason L. Strickland , Christopher L. Parkinson , Areli Gutiérrez-Martínez , Bruno Rodriguez-López , Vanessa Zarzosa , Bruno Lomonte , Anthony J. Saviola , Julián Fernández , Cara F. Smith , Kirk C. Hansen , Armando Pérez-Robles , Sebastián Castañeda-Pérez , Samuel R. Hirst , Felipe Olvera-Rodríguez , Leonardo Fernández-Badillo , Jesús Sigala , Jason Jones , Edgar Neri-Castro
The Crotalus molossus complex consists of five to seven phylogenetically related lineages of black-tailed rattlesnakes widely distributed in Mexico. While previous studies have noted venom variation within specific lineages of the Crotalus molossus complex, a comprehensive characterization of interspecific and ontogenetic venom variations, their functional implications, and the neutralizing ability of the Mexican antivenom against these variants remains largely unexamined. Herein, using two proteomic approaches for five lineages (C. basiliscus, C. m. molossus, C. m. nigrescens, C. m. oaxacus, and C. ornatus) of the C. molossus complex we characterized the number of toxins and their relative abundance in the venom of individuals of varying sizes. All five lineages undergo ontogenetic venom composition shifts associated with snake length. However, the pattern of ontogenetic shifts varied among lineages. In some lineages, these shifts led to significant differences in proteolytic, phospholipase A2, and fibrinogenolytic activities. Venom in smaller C. basiliscus, C. m. nigrescens, and C. m. oaxacus individuals had lower LD50 values (more lethal) in mice. Whereas the venom lethality of C. m. nigrescens (both juvenile and adult) and C. m. oaxacus (adult) was several times higher in a mammalian (mouse) model than in a reptilian (iguana) model. Antivipmyn® showed different neutralizing potencies toward venom pools. Overall, our results indicated that even among closely related rattlesnake lineages, venom phenotypes may vary greatly, impacting their function and the efficacy of antivenom neutralization.
{"title":"Venom variation and ontogenetic changes in the Crotalus molossus complex: Insights into composition, activities, and antivenom neutralization","authors":"Miguel Borja , Gamaliel Castañeda-Gaytán , Alejandro Alagón , Jason L. Strickland , Christopher L. Parkinson , Areli Gutiérrez-Martínez , Bruno Rodriguez-López , Vanessa Zarzosa , Bruno Lomonte , Anthony J. Saviola , Julián Fernández , Cara F. Smith , Kirk C. Hansen , Armando Pérez-Robles , Sebastián Castañeda-Pérez , Samuel R. Hirst , Felipe Olvera-Rodríguez , Leonardo Fernández-Badillo , Jesús Sigala , Jason Jones , Edgar Neri-Castro","doi":"10.1016/j.cbpc.2025.110129","DOIUrl":"10.1016/j.cbpc.2025.110129","url":null,"abstract":"<div><div>The <em>Crotalus molossus</em> complex consists of five to seven phylogenetically related lineages of black-tailed rattlesnakes widely distributed in Mexico. While previous studies have noted venom variation within specific lineages of the <em>Crotalus molossus</em> complex, a comprehensive characterization of interspecific and ontogenetic venom variations, their functional implications, and the neutralizing ability of the Mexican antivenom against these variants remains largely unexamined. Herein, using two proteomic approaches for five lineages (<em>C. basiliscus</em>, <em>C. m. molossus</em>, <em>C. m. nigrescens</em>, <em>C. m. oaxacus</em>, and <em>C. ornatus</em>) of the <em>C. molossus</em> complex we characterized the number of toxins and their relative abundance in the venom of individuals of varying sizes. All five lineages undergo ontogenetic venom composition shifts associated with snake length. However, the pattern of ontogenetic shifts varied among lineages. In some lineages, these shifts led to significant differences in proteolytic, phospholipase A<sub>2,</sub> and fibrinogenolytic activities. Venom in smaller <em>C. basiliscus</em>, <em>C. m. nigrescens</em>, and <em>C. m. oaxacus</em> individuals had lower LD<sub>50</sub> values (more lethal) in mice. Whereas the venom lethality of <em>C. m. nigrescens</em> (both juvenile and adult) and <em>C. m. oaxacus</em> (adult) was several times higher in a mammalian (mouse) model than in a reptilian (iguana) model. Antivipmyn® showed different neutralizing potencies toward venom pools. Overall, our results indicated that even among closely related rattlesnake lineages, venom phenotypes may vary greatly, impacting their function and the efficacy of antivenom neutralization.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"290 ","pages":"Article 110129"},"PeriodicalIF":3.9,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}