Pub Date : 2025-08-01Epub Date: 2025-01-25DOI: 10.1177/17407745241309056
Xinlin Lu, Guogen Shan
Introduction: The sequential parallel comparison design has emerged as a valuable tool in clinical trials with high placebo response rates. To further enhance its efficiency and effectiveness, adaptive strategies, such as sample size adjustment and allocation ratio modification can be employed.
Methods: We compared the performance of Jennison and Turnbull's method and the Promising Zone approach for sample size adjustment in a two-phase sequential parallel comparison design study. We also evaluated the impact of allocation ratio adjustments using Neyman and Optimal allocation strategies. Various scenarios were simulated to assess the effects of different design parameters, including weight in the test statistic, initial randomization ratio, and interim analysis timing.
Results: The Promising Zone approach demonstrated superior or comparable power to Jennison and Turnbull's method at equivalent expected sample sizes while maintaining the intuitive property that more promising interim results lead to smaller required follow-up sample sizes. However, the Promising Zone approach may require a larger maximum possible sample size in some cases. The addition of allocation ratio adjustments offered minimal improvements overall, but showed potential benefits when the variance in the treatment group was larger than that in the placebo group. We also applied our findings to a real-world example from the AVP-923 trial in patients with Alzheimer's disease-related agitation, demonstrating the practical implications of adaptive sequential parallel comparison designs in clinical research.
Discussion: Adaptive strategies can significantly enhance the efficiency of sequential parallel comparison designs. The choice between sample size adjustment methods should consider trade-offs between power, expected sample size, and maximum adjusted sample size. Although allocation ratio adjustments showed limited overall impact, they may be beneficial in specific scenarios. Future research should explore the application of these adaptive strategies to binary and survival outcomes in sequential parallel comparison designs.
{"title":"Adaptive promising zone design for sequential parallel comparison design with continuous outcomes.","authors":"Xinlin Lu, Guogen Shan","doi":"10.1177/17407745241309056","DOIUrl":"10.1177/17407745241309056","url":null,"abstract":"<p><strong>Introduction: </strong>The sequential parallel comparison design has emerged as a valuable tool in clinical trials with high placebo response rates. To further enhance its efficiency and effectiveness, adaptive strategies, such as sample size adjustment and allocation ratio modification can be employed.</p><p><strong>Methods: </strong>We compared the performance of Jennison and Turnbull's method and the Promising Zone approach for sample size adjustment in a two-phase sequential parallel comparison design study. We also evaluated the impact of allocation ratio adjustments using Neyman and Optimal allocation strategies. Various scenarios were simulated to assess the effects of different design parameters, including weight in the test statistic, initial randomization ratio, and interim analysis timing.</p><p><strong>Results: </strong>The Promising Zone approach demonstrated superior or comparable power to Jennison and Turnbull's method at equivalent expected sample sizes while maintaining the intuitive property that more promising interim results lead to smaller required follow-up sample sizes. However, the Promising Zone approach may require a larger maximum possible sample size in some cases. The addition of allocation ratio adjustments offered minimal improvements overall, but showed potential benefits when the variance in the treatment group was larger than that in the placebo group. We also applied our findings to a real-world example from the AVP-923 trial in patients with Alzheimer's disease-related agitation, demonstrating the practical implications of adaptive sequential parallel comparison designs in clinical research.</p><p><strong>Discussion: </strong>Adaptive strategies can significantly enhance the efficiency of sequential parallel comparison designs. The choice between sample size adjustment methods should consider trade-offs between power, expected sample size, and maximum adjusted sample size. Although allocation ratio adjustments showed limited overall impact, they may be beneficial in specific scenarios. Future research should explore the application of these adaptive strategies to binary and survival outcomes in sequential parallel comparison designs.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"482-493"},"PeriodicalIF":2.2,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01Epub Date: 2025-07-12DOI: 10.1177/17407745251346396
Weng Kee Wong, Yevgen Ryeznik, Oleksandr Sverdlov, Ping-Yang Chen, Xinying Fang, Ray-Bing Chen, Shouhao Zhou, J Jack Lee
Metaheuristics are commonly used in computer science and engineering to solve optimization problems, but their potential applications in clinical trial design have remained largely unexplored. This article provides a brief overview of metaheuristics and reviews their limited use in clinical trial settings. We focus on nature-inspired metaheuristics and apply one of its exemplary algorithms, the particle swarm optimization (PSO) algorithm, to find phase I/II designs that jointly consider toxicity and efficacy. As a specific application, we demonstrate the utility of PSO in designing optimal dose-finding studies to estimate the optimal biological dose (OBD) for a continuation-ratio model with four parameters under multiple constraints. Our design improves existing designs by protecting patients from receiving doses higher than the unknown maximum tolerated dose and ensuring that the OBD is estimated with high accuracy. In addition, we show the effectiveness of metaheuristics in addressing more computationally challenging design problems by extending Simon's phase II designs to more than two stages and finding more flexible Bayesian optimal phase II designs with enhanced power.
{"title":"Nature-inspired metaheuristics for optimizing dose-finding and computationally challenging clinical trial designs.","authors":"Weng Kee Wong, Yevgen Ryeznik, Oleksandr Sverdlov, Ping-Yang Chen, Xinying Fang, Ray-Bing Chen, Shouhao Zhou, J Jack Lee","doi":"10.1177/17407745251346396","DOIUrl":"10.1177/17407745251346396","url":null,"abstract":"<p><p>Metaheuristics are commonly used in computer science and engineering to solve optimization problems, but their potential applications in clinical trial design have remained largely unexplored. This article provides a brief overview of metaheuristics and reviews their limited use in clinical trial settings. We focus on nature-inspired metaheuristics and apply one of its exemplary algorithms, the particle swarm optimization (PSO) algorithm, to find phase I/II designs that jointly consider toxicity and efficacy. As a specific application, we demonstrate the utility of PSO in designing optimal dose-finding studies to estimate the optimal biological dose (OBD) for a continuation-ratio model with four parameters under multiple constraints. Our design improves existing designs by protecting patients from receiving doses higher than the unknown maximum tolerated dose and ensuring that the OBD is estimated with high accuracy. In addition, we show the effectiveness of metaheuristics in addressing more computationally challenging design problems by extending Simon's phase II designs to more than two stages and finding more flexible Bayesian optimal phase II designs with enhanced power.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"422-429"},"PeriodicalIF":2.2,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144616590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01Epub Date: 2025-06-27DOI: 10.1177/17407745251350598
Anna Heath, Kelley M Kidwell
The adoption of innovative, model-based, and computationally intensive clinical trial designs is challenged by barriers including clinician engagement, regulatory acceptance, dissemination beyond major research institutions, and patient accrual. This session explored strategies to overcome these barriers. Key approaches discussed included the development of user-friendly software and interactive platforms to enhance transparency, open sharing of algorithms, and recognition of software contributions in academic publishing. Building collaborations with stakeholders predisposed to innovation, fostering interdisciplinary communication, and producing complementary methodological and clinical publications were emphasized as essential steps. Practical considerations for trials with small sample sizes included the use of adaptive designs, individualized trials, and alternative optimization strategies when traditional theoretical assumptions are infeasible. A major theme of the discussion was the importance of model assumptions in innovative designs. Questions were raised about the sensitivity of results to these assumptions and the robustness of methods, particularly under limited sample sizes. Addressing this requires extensive simulation studies across varied scenarios to assess operating characteristics. The focus should be on achieving clinically meaningful goals-such as identifying effective dose regions-rather than perfect model specification. Speakers emphasized the need to acknowledge and, when feasible, test assumptions post hoc, integrating such verification as secondary objectives in trial design. An iterative scientific process was encouraged, recognizing that trials not only serve immediate clinical goals but also advance broader scientific understanding. Assumptions provide a principled foundation for methodology, but thoughtful scrutiny of their realism was urged, given the risk of relying on overly strong or untestable premises. The potential of metaheuristic algorithms was highlighted for efficiently identifying optimal designs across different model assumptions, supporting robustness evaluations. Practical implementation should adapt optimal designs to stakeholder needs while preserving acceptable statistical efficiency. In sum, advancing the adoption of innovative designs requires improved communication, infrastructure, and methodological transparency, alongside careful evaluation of model assumptions and robustness.
{"title":"Afternoon discussion: Statistical issues in clinical trials conference on dose finding.","authors":"Anna Heath, Kelley M Kidwell","doi":"10.1177/17407745251350598","DOIUrl":"10.1177/17407745251350598","url":null,"abstract":"<p><p>The adoption of innovative, model-based, and computationally intensive clinical trial designs is challenged by barriers including clinician engagement, regulatory acceptance, dissemination beyond major research institutions, and patient accrual. This session explored strategies to overcome these barriers. Key approaches discussed included the development of user-friendly software and interactive platforms to enhance transparency, open sharing of algorithms, and recognition of software contributions in academic publishing. Building collaborations with stakeholders predisposed to innovation, fostering interdisciplinary communication, and producing complementary methodological and clinical publications were emphasized as essential steps. Practical considerations for trials with small sample sizes included the use of adaptive designs, individualized trials, and alternative optimization strategies when traditional theoretical assumptions are infeasible. A major theme of the discussion was the importance of model assumptions in innovative designs. Questions were raised about the sensitivity of results to these assumptions and the robustness of methods, particularly under limited sample sizes. Addressing this requires extensive simulation studies across varied scenarios to assess operating characteristics. The focus should be on achieving clinically meaningful goals-such as identifying effective dose regions-rather than perfect model specification. Speakers emphasized the need to acknowledge and, when feasible, test assumptions post hoc, integrating such verification as secondary objectives in trial design. An iterative scientific process was encouraged, recognizing that trials not only serve immediate clinical goals but also advance broader scientific understanding. Assumptions provide a principled foundation for methodology, but thoughtful scrutiny of their realism was urged, given the risk of relying on overly strong or untestable premises. The potential of metaheuristic algorithms was highlighted for efficiently identifying optimal designs across different model assumptions, supporting robustness evaluations. Practical implementation should adapt optimal designs to stakeholder needs while preserving acceptable statistical efficiency. In sum, advancing the adoption of innovative designs requires improved communication, infrastructure, and methodological transparency, alongside careful evaluation of model assumptions and robustness.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"452-457"},"PeriodicalIF":2.2,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144505000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01Epub Date: 2025-01-22DOI: 10.1177/17407745241309293
Amos J de Jong, Helga Gardarsdottir, Yared Santa-Ana-Tellez, Anthonius de Boer, Mira Gp Zuidgeest
Background/AimsLow-intervention clinical trials have been established under the European Union Clinical Trials Regulation (EU 536/2014) which aims to simplify the conduct of clinical trials with authorized medicinal products. There is limited experience with conducting low-intervention trials. Therefore, this study aims to report on experiences and perceived (dis)advantages of low-intervention trials.MethodsWe surveyed representatives of all individual clinical trials registered on the public website of the European Union Clinical Trials Information System between 31 January 2022 and 1 December 2023 that evaluated authorized investigational medicinal products and had at least one investigative site in the European Union. These representatives were approached between June 2023 and January 2024.ResultsWe received 70 responses (response rate 21%). Of the respondents, 31 represented a trial registered as low-intervention trial, and 39 represented a trial not registered as a low-intervention trial (hereafter "regular trials"). Simplified clinical trial monitoring and an easier regulatory approval process were perceived as the main advantages of low-intervention trials, with respectively 44% and 34% of the respondents indicating this to be an advantage in low-intervention trials. However, the respondents experienced that stringent and unclear regulatory requirements impeded the conduct of low-intervention trials. Respondents involved with regular trials indicated that 39% of the regular trials met the criteria of a low-intervention trial but were not registered as such, among others due to unfamiliarity with this trial category.ConclusionsWe argue that the simplified procedures for low-intervention trials should be more detailed-for example in regulatory guidance-in the future to further simplify the conduct of clinical trials with authorized investigational medicinal products.
背景/目的:低干预临床试验是根据欧盟临床试验条例(EU 536/2014)建立的,旨在简化授权药品的临床试验进行。进行低干预试验的经验有限。因此,本研究旨在报告低干预试验的经验和感知(缺陷)优势。方法:我们调查了2022年1月31日至2023年12月1日期间在欧盟临床试验信息系统(European Union clinical trials Information System)公共网站上注册的所有个体临床试验的代表,这些临床试验评估了授权的临床试验产品,并且在欧盟至少有一个研究地点。这些代表是在2023年6月至2024年1月之间接触的。结果:共收到应答70例,应答率21%。在应答者中,31个代表注册为低干预试验的试验,39个代表未注册为低干预试验的试验(以下简称“常规试验”)。简化临床试验监测和更容易的监管审批程序被认为是低干预试验的主要优势,分别有44%和34%的受访者表示这是低干预试验的优势。然而,答复者认为,严格和不明确的监管要求阻碍了低干预试验的进行。参与常规试验的应答者指出,39%的常规试验符合低干预试验的标准,但由于不熟悉这一试验类别,因此没有进行登记。结论:我们认为,在未来,低干预试验的简化程序应该更加详细,例如在监管指南中,以进一步简化经批准的临床试验药物的临床试验。
{"title":"Experiences with low-intervention clinical trials-the new category under the European Union Clinical Trials Regulation.","authors":"Amos J de Jong, Helga Gardarsdottir, Yared Santa-Ana-Tellez, Anthonius de Boer, Mira Gp Zuidgeest","doi":"10.1177/17407745241309293","DOIUrl":"10.1177/17407745241309293","url":null,"abstract":"<p><p>Background/AimsLow-intervention clinical trials have been established under the European Union Clinical Trials Regulation (EU 536/2014) which aims to simplify the conduct of clinical trials with authorized medicinal products. There is limited experience with conducting low-intervention trials. Therefore, this study aims to report on experiences and perceived (dis)advantages of low-intervention trials.MethodsWe surveyed representatives of all individual clinical trials registered on the public website of the European Union Clinical Trials Information System between 31 January 2022 and 1 December 2023 that evaluated authorized investigational medicinal products and had at least one investigative site in the European Union. These representatives were approached between June 2023 and January 2024.ResultsWe received 70 responses (response rate 21%). Of the respondents, 31 represented a trial registered as low-intervention trial, and 39 represented a trial not registered as a low-intervention trial (hereafter \"regular trials\"). Simplified clinical trial monitoring and an easier regulatory approval process were perceived as the main advantages of low-intervention trials, with respectively 44% and 34% of the respondents indicating this to be an advantage in low-intervention trials. However, the respondents experienced that stringent and unclear regulatory requirements impeded the conduct of low-intervention trials. Respondents involved with regular trials indicated that 39% of the regular trials met the criteria of a low-intervention trial but were not registered as such, among others due to unfamiliarity with this trial category.ConclusionsWe argue that the simplified procedures for low-intervention trials should be more detailed-for example in regulatory guidance-in the future to further simplify the conduct of clinical trials with authorized investigational medicinal products.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"494-500"},"PeriodicalIF":2.2,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01Epub Date: 2025-07-12DOI: 10.1177/17407745251350604
Libby Daniells, Thomas Jaki, Alimu Dayimu, Nikos Demiris, Basu Bristi, Stefan Symeonides, Pavel Mozgunov
Phase I dose-escalation studies for a single-agent and combination of anti-cancer agents have explored various model-based designs to guide identification of a maximum tolerated dose and recommended phase II dose. This work describes a parallel approach to dose escalation to expedite identification of maximum tolerated doses both for an anti-cancer agent as monotherapy and in combination with another agent. We develop a three-parameter Bayesian logistic regression model that allows for more efficient use of information between monotherapy and combination parts of the study. The model allows the monotherapy and combination data to drive dose escalation of the combination of treatments, reflecting the known dose-toxicity relationship between the monotherapy and combination setting. Through a thorough simulation study in which the proposed model is compared to two comparative approaches, the three-parameter Bayesian logistic regression model is shown to accurately select doses in the target toxicity interval, performing similar to comparative approaches in terms of proportion of target dose/combination selection, while more than halving the proportion of doses selected that were greater than the target toxicity, thereby improving safety concerns.
{"title":"Seamless monotherapy-combination phase I dose-escalation model-based design.","authors":"Libby Daniells, Thomas Jaki, Alimu Dayimu, Nikos Demiris, Basu Bristi, Stefan Symeonides, Pavel Mozgunov","doi":"10.1177/17407745251350604","DOIUrl":"10.1177/17407745251350604","url":null,"abstract":"<p><p>Phase I dose-escalation studies for a single-agent and combination of anti-cancer agents have explored various model-based designs to guide identification of a maximum tolerated dose and recommended phase II dose. This work describes a parallel approach to dose escalation to expedite identification of maximum tolerated doses both for an anti-cancer agent as monotherapy and in combination with another agent. We develop a three-parameter Bayesian logistic regression model that allows for more efficient use of information between monotherapy and combination parts of the study. The model allows the monotherapy and combination data to drive dose escalation of the combination of treatments, reflecting the known dose-toxicity relationship between the monotherapy and combination setting. Through a thorough simulation study in which the proposed model is compared to two comparative approaches, the three-parameter Bayesian logistic regression model is shown to accurately select doses in the target toxicity interval, performing similar to comparative approaches in terms of proportion of target dose/combination selection, while more than halving the proportion of doses selected that were greater than the target toxicity, thereby improving safety concerns.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"430-441"},"PeriodicalIF":2.2,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144616592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2024-12-25DOI: 10.1177/17407745241304331
Umar Niazi, Charlotte Stuart, Patricia Soares, Vincent Foure, Gareth Griffiths
Unlocking the power of personalised medicine in oncology hinges on the integration of clinical trial data with translational data (i.e. biospecimen-derived molecular information). This combined analysis allows researchers to tailor treatments to a patient's unique biological makeup. However, current practices within UK Clinical Trials Units present challenges. While clinical data are held in standardised formats, translational data are complex, diverse, and requires specialised storage. This disparity in format creates significant hurdles for researchers aiming to curate, integrate and analyse these datasets effectively. This article proposes a novel solution: an open-source SQL database schema designed specifically for the needs of academic trial units. Inspired by Cancer Research UK's commitment to open data sharing and exemplified by the Southampton Clinical Trials Unit's CONFIRM trial (with over 150,000 clinical data points), this schema offers a cost-effective and practical 'middle ground' between raw data and expensive Secure Data Environments/Trusted Research Environments. By acting as a central hub for both clinical and translational data, the schema facilitates seamless data sharing and analysis. Researchers gain a holistic view of trials, enabling exploration of connections between clinical observations and the molecular underpinnings of treatment response. Detailed instructions for setting up the database are provided. The open-source nature and straightforward design ensure ease of implementation and affordability, while robust security measures safeguard sensitive data. We further showcase how researchers can leverage popular statistical software like R to directly query the database. This approach fosters collaboration within the academic discovery community, ultimately accelerating progress towards personalised cancer therapies.
{"title":"An open-source SQL database schema for integrated clinical and translational data management in clinical trials.","authors":"Umar Niazi, Charlotte Stuart, Patricia Soares, Vincent Foure, Gareth Griffiths","doi":"10.1177/17407745241304331","DOIUrl":"10.1177/17407745241304331","url":null,"abstract":"<p><p>Unlocking the power of personalised medicine in oncology hinges on the integration of clinical trial data with translational data (i.e. biospecimen-derived molecular information). This combined analysis allows researchers to tailor treatments to a patient's unique biological makeup. However, current practices within UK Clinical Trials Units present challenges. While clinical data are held in standardised formats, translational data are complex, diverse, and requires specialised storage. This disparity in format creates significant hurdles for researchers aiming to curate, integrate and analyse these datasets effectively. This article proposes a novel solution: an open-source SQL database schema designed specifically for the needs of academic trial units. Inspired by Cancer Research UK's commitment to open data sharing and exemplified by the Southampton Clinical Trials Unit's CONFIRM trial (with over 150,000 clinical data points), this schema offers a cost-effective and practical 'middle ground' between raw data and expensive Secure Data Environments/Trusted Research Environments. By acting as a central hub for both clinical and translational data, the schema facilitates seamless data sharing and analysis. Researchers gain a holistic view of trials, enabling exploration of connections between clinical observations and the molecular underpinnings of treatment response. Detailed instructions for setting up the database are provided. The open-source nature and straightforward design ensure ease of implementation and affordability, while robust security measures safeguard sensitive data. We further showcase how researchers can leverage popular statistical software like R to directly query the database. This approach fosters collaboration within the academic discovery community, ultimately accelerating progress towards personalised cancer therapies.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"374-377"},"PeriodicalIF":2.2,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142884787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-01-02DOI: 10.1177/17407745241304284
Subodh Selukar, David K Prince, Susanne May
Background: N-of-1 trials compare two or more treatment options for a single participant. These trials have been used to study options for chronic conditions such as arthritis and attention deficit hyperactivity disorder. In addition, they have been suggested as a means to study interventions in rare populations that may not be tractable to include in standard clinical trials, such as treatment options for HIV-positive patients in need of organ transplant. Sequential monitoring of accruing data has been well-studied in traditional clinical trials, but these methods have not yet been implemented in N-of-1 trials. However, the option to validly stop an N-of-1 trial early could deliver faster decisions that could directly improve the patient's health.
Methods: In this work, we propose and evaluate a framework to (1) facilitate sequential monitoring in individual N-of-1 trials with a continuous outcome and (2) combine results across a series of already-completed sequentially monitored N-of-1 trials. By employing the block structure common to N-of-1 trials, we suggest that existing approaches to sequential monitoring may be employed when data from one N-of-1 trial are analyzed with a linear mixed-effects model. To combine results across a series of already-completed sequentially monitored N-of-1 trials, we propose combining the naive estimates from constituent trials in a random-effects model with inverse-variance weighting. We evaluate these proposals via simulation.
Results: We find that type 1 error can be substantially inflated for N-of-1 trials with a small number of planned blocks but can reach the nominal rate for trials with more planned blocks or those with larger numbers of periods per block or by using a -value correction. For those settings with acceptable type 1 error, sequential monitoring results in similar power and on average earlier stopping compared with trials with no sequential monitoring. And, as expected, we find that including a larger number of constituent trials in a series reduces the mean-squared error of the combined point estimator.
Conclusion: Under suitable design considerations, our proposed framework for sequential monitoring can support clinicians in providing important decisions earlier, on average, for patients engaged in N-of-1 trials.
{"title":"A framework for sequential monitoring of individual N-of-1 trials and combining results across a series of sequentially monitored N-of-1 trials.","authors":"Subodh Selukar, David K Prince, Susanne May","doi":"10.1177/17407745241304284","DOIUrl":"10.1177/17407745241304284","url":null,"abstract":"<p><strong>Background: </strong>N-of-1 trials compare two or more treatment options for a single participant. These trials have been used to study options for chronic conditions such as arthritis and attention deficit hyperactivity disorder. In addition, they have been suggested as a means to study interventions in rare populations that may not be tractable to include in standard clinical trials, such as treatment options for HIV-positive patients in need of organ transplant. Sequential monitoring of accruing data has been well-studied in traditional clinical trials, but these methods have not yet been implemented in N-of-1 trials. However, the option to validly stop an N-of-1 trial early could deliver faster decisions that could directly improve the patient's health.</p><p><strong>Methods: </strong>In this work, we propose and evaluate a framework to (1) facilitate sequential monitoring in individual N-of-1 trials with a continuous outcome and (2) combine results across a series of already-completed sequentially monitored N-of-1 trials. By employing the block structure common to N-of-1 trials, we suggest that existing approaches to sequential monitoring may be employed when data from one N-of-1 trial are analyzed with a linear mixed-effects model. To combine results across a series of already-completed sequentially monitored N-of-1 trials, we propose combining the naive estimates from constituent trials in a random-effects model with inverse-variance weighting. We evaluate these proposals via simulation.</p><p><strong>Results: </strong>We find that type 1 error can be substantially inflated for N-of-1 trials with a small number of planned blocks but can reach the nominal rate for trials with more planned blocks or those with larger numbers of periods per block or by using a <math><mrow><mi>t</mi></mrow></math>-value correction. For those settings with acceptable type 1 error, sequential monitoring results in similar power and on average earlier stopping compared with trials with no sequential monitoring. And, as expected, we find that including a larger number of constituent trials in a series reduces the mean-squared error of the combined point estimator.</p><p><strong>Conclusion: </strong>Under suitable design considerations, our proposed framework for sequential monitoring can support clinicians in providing important decisions earlier, on average, for patients engaged in N-of-1 trials.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"257-266"},"PeriodicalIF":2.2,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12094905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2024-12-29DOI: 10.1177/17407745241304355
Enrique Vazquez, Joseph S Ross, Cary P Gross, Karla Childers, Stephen Bamford, Jessica D Ritchie, Joanne Waldstreicher, Harlan M Krumholz, Joshua D Wallach
<p><p>Background/AimsThe reuse of clinical trial data available through data-sharing platforms has grown over the past decade. Several prominent clinical data-sharing platforms require researchers to submit formal research proposals before granting data access, providing an opportunity to evaluate how published analyses compare with initially proposed aims. We evaluated the concordance between the included trials, study objectives, endpoints, and statistical methods specified in researchers' clinical trial data use request proposals to four clinical data-sharing platforms and their corresponding publications.MethodsWe identified all unique data request proposals with at least one corresponding peer-reviewed publication as of 31 March 2023 on four prominent clinical trial data sharing request platforms (Vivli, ClinicalStudyDataRequest.com, the Yale Open Data Access Project, and Supporting Open Access to Researchers-Bristol Myers Squibb). When data requests had multiple publications, we treated each publication-request pair as a unit. For each pair, the trials requested and analyzed were classified as fully concordant, discordant, or unclear, whereas the study objectives, primary and secondary endpoints, and statistical methods were classified as fully concordant, partially concordant, discordant, or unclear. For Vivli, ClinicalStudyDataRequest.com, and Supporting Open Access to Researchers-Bristol Myers Squibb, endpoints of publication-request pairs were not compared because the data request proposals on these platforms do not consistently report this information.ResultsOf 117 Vivli publication-request pairs, 76 (65.0%) were fully concordant for the trials requested and analyzed, 61 (52.1%) for study objectives, and 57 (48.7%) for statistical methods; 35 (29.9%) pairs were fully concordant across the 3 characteristics reported by all platforms. Of 106 ClinicalStudyDataRequest.com publication-request pairs, 66 (62.3%) were fully concordant for the trials requested and analyzed, 41 (38.7%) for study objectives, and 35 (33.0%) for statistical methods; 20 (18.9%) pairs were fully concordant across the 3 characteristics. Of 65 Yale Open Data Access Project publication-request pairs, 35 (53.8%) were fully concordant for the trials requested and analyzed, 44 (67.7%) for primary study objectives, and 25 (38.5%) for statistical methods; 15 (23.1%) pairs were fully concordant across the 3 characteristics. In addition, 26 (40.0%) and 2 (3.1%) Yale Open Data Access Project publication-request pairs were concordant for primary and secondary endpoints, respectively, such that only one (1.5%) Yale Open Data Access Project publication-request pair was fully concordant across all five characteristics reported. Of three Supporting Open Access to Researchers-Bristol Myers Squibb publication-request pairs, one (33.3%) was fully concordant for the trials requested and analyzed, two (66.6%) for primary study objectives, and two (66.6%) for statistical methods; one (33.
背景/目的通过数据共享平台获得的临床试验数据的重用在过去十年中有所增长。一些著名的临床数据共享平台要求研究人员在授予数据访问权限之前提交正式的研究提案,这为评估已发表的分析与最初提出的目标的比较提供了机会。我们评估了纳入的试验、研究目标、终点和研究人员向四个临床数据共享平台及其相应出版物提交的临床试验数据使用请求中指定的统计方法之间的一致性。方法:我们在四个著名的临床试验数据共享请求平台(Vivli、ClinicalStudyDataRequest.com、耶鲁大学开放数据获取项目和支持研究人员开放获取- bristol Myers Squibb)上识别了截至2023年3月31日至少有一篇同行评审出版物的所有独特数据请求提案。当数据请求有多个发布时,我们将每个发布-请求对视为一个单元。对于每一对,要求和分析的试验被分类为完全一致、不一致或不清楚,而研究目标、主要和次要终点和统计方法被分类为完全一致、部分一致、不一致或不清楚。对于Vivli, ClinicalStudyDataRequest.com和support Open Access to Researchers-Bristol Myers Squibb,没有比较发表请求对的端点,因为这些平台上的数据请求建议没有一致地报告这些信息。结果117对Vivli发表请求对中,76对(65.0%)与请求和分析的试验完全一致,61对(52.1%)与研究目标完全一致,57对(48.7%)与统计方法完全一致;35对(29.9%)对在所有平台报告的3个特征上完全一致。在106对ClinicalStudyDataRequest.com发表请求对中,66对(62.3%)对所请求和分析的试验完全一致,41对(38.7%)对研究目标完全一致,35对(33.0%)对统计方法完全一致;3个性状完全一致的有20对(18.9%)。在65对耶鲁开放数据获取项目发表请求对中,35对(53.8%)与请求和分析的试验完全一致,44对(67.7%)与主要研究目标完全一致,25对(38.5%)与统计方法完全一致;3个性状完全一致的有15对(23.1%)。此外,26对(40.0%)和2对(3.1%)耶鲁开放数据访问项目出版请求对分别在主要和次要终点上是一致的,因此只有1对(1.5%)耶鲁开放数据访问项目出版请求对在报告的所有五个特征上是完全一致的。在3对支持开放获取研究人员-百时美施贵宝出版请求对中,1对(33.3%)与请求和分析的试验完全一致,2对(66.6%)与主要研究目标完全一致,2对(66.6%)与统计方法完全一致;一个(33.3%)对在所有平台报告的所有三个特征上完全一致。结论在四个临床数据共享平台中,数据请求提案往往与其相应的出版物不一致,每个平台报告的所有三个关键提案特征只有25%的一致性。研究人员有机会在其出版物中描述任何数据共享请求建议偏差,平台也有机会加强对关键研究特征规范的报告。
{"title":"Concordance between clinical trial data use request proposals and corresponding publications: A cross-sectional study.","authors":"Enrique Vazquez, Joseph S Ross, Cary P Gross, Karla Childers, Stephen Bamford, Jessica D Ritchie, Joanne Waldstreicher, Harlan M Krumholz, Joshua D Wallach","doi":"10.1177/17407745241304355","DOIUrl":"10.1177/17407745241304355","url":null,"abstract":"<p><p>Background/AimsThe reuse of clinical trial data available through data-sharing platforms has grown over the past decade. Several prominent clinical data-sharing platforms require researchers to submit formal research proposals before granting data access, providing an opportunity to evaluate how published analyses compare with initially proposed aims. We evaluated the concordance between the included trials, study objectives, endpoints, and statistical methods specified in researchers' clinical trial data use request proposals to four clinical data-sharing platforms and their corresponding publications.MethodsWe identified all unique data request proposals with at least one corresponding peer-reviewed publication as of 31 March 2023 on four prominent clinical trial data sharing request platforms (Vivli, ClinicalStudyDataRequest.com, the Yale Open Data Access Project, and Supporting Open Access to Researchers-Bristol Myers Squibb). When data requests had multiple publications, we treated each publication-request pair as a unit. For each pair, the trials requested and analyzed were classified as fully concordant, discordant, or unclear, whereas the study objectives, primary and secondary endpoints, and statistical methods were classified as fully concordant, partially concordant, discordant, or unclear. For Vivli, ClinicalStudyDataRequest.com, and Supporting Open Access to Researchers-Bristol Myers Squibb, endpoints of publication-request pairs were not compared because the data request proposals on these platforms do not consistently report this information.ResultsOf 117 Vivli publication-request pairs, 76 (65.0%) were fully concordant for the trials requested and analyzed, 61 (52.1%) for study objectives, and 57 (48.7%) for statistical methods; 35 (29.9%) pairs were fully concordant across the 3 characteristics reported by all platforms. Of 106 ClinicalStudyDataRequest.com publication-request pairs, 66 (62.3%) were fully concordant for the trials requested and analyzed, 41 (38.7%) for study objectives, and 35 (33.0%) for statistical methods; 20 (18.9%) pairs were fully concordant across the 3 characteristics. Of 65 Yale Open Data Access Project publication-request pairs, 35 (53.8%) were fully concordant for the trials requested and analyzed, 44 (67.7%) for primary study objectives, and 25 (38.5%) for statistical methods; 15 (23.1%) pairs were fully concordant across the 3 characteristics. In addition, 26 (40.0%) and 2 (3.1%) Yale Open Data Access Project publication-request pairs were concordant for primary and secondary endpoints, respectively, such that only one (1.5%) Yale Open Data Access Project publication-request pair was fully concordant across all five characteristics reported. Of three Supporting Open Access to Researchers-Bristol Myers Squibb publication-request pairs, one (33.3%) was fully concordant for the trials requested and analyzed, two (66.6%) for primary study objectives, and two (66.6%) for statistical methods; one (33.","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":"22 3","pages":"279-288"},"PeriodicalIF":2.2,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144109862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2024-12-29DOI: 10.1177/17407745241304119
Michael J Martens, Qinghua Lian, Nancy L Geller, Eric S Leifer, Brent R Logan
<p><p>Background/aimsSafety monitoring is a crucial requirement for Phase II and III clinical trials. To protect patients from toxicity risk, stopping rules may be implemented that will halt the study if an unexpectedly high number of events occur. These rules are constructed using statistical procedures that typically treat the toxicity data as binary occurrences. Because the exact dates of toxicities are often available, a strategy that handles these as time-to-event data may offer higher power and require less calendar time to identify excess risk. This work investigates several statistical methods for monitoring safety events as time-to-event endpoints and illustrates our R software package for designing and evaluating these procedures.MethodsThe performance metrics of safety stopping rules derived from Wang-Tsiatis tests, Bayesian Gamma-Poisson models, and sequential probability ratio tests are evaluated and contrasted in Phase II and III trial scenarios. We developed a publicly available R package "stoppingrule" for designing and assessing these stopping rules whose utility is illustrated through the design of a stopping rule for Blood and Marrow Transplant Clinical Trials Network 1204 (National Clinical Trial number NCT01998633), a multicenter, Phase II, single-arm trial that assessed the efficacy and safety of bone marrow transplant for the treatment of hemophagocytic lymphohistiocytosis and primary immune deficiencies.ResultsAs seen previously in group sequential testing settings, rules with strict stopping criteria early in a study tend to have more lenient stopping criteria late in the trial. Consequently, methods with aggressive early monitoring, such as Gamma-Poisson models with weak priors and certain choices of truncated sequential probability ratio tests, usually yield a smaller number of toxicities and lower power than ones that are more permissive at early stages, such as Gamma-Poisson models with strong priors and the O'Brien-Fleming test. The Pocock test and maximized sequential probability ratio test performed contrary to these trends, however, exhibiting both diminished power and higher numbers of toxicities than other methods due to their extremely aggressive early stopping criteria, failing to reserve adequate power to identify safety issues beyond the start of the study. In contrast to binary toxicity approaches, our time-to-event methods offer meaningful reductions in expected toxicities of up to 20% across scenarios considered.ConclusionSafety monitoring procedures aim to guard study participants from being exposed to and suffering toxicity from unsafe treatments. Toward this end, we recommend considering the time-to-event-oriented Gamma-Poisson model-weak prior model or truncated sequential probability ratio test for constructing safety stopping rules, as they performed the best in minimizing the number of toxicities in our investigations. Our R package "stoppingrule" offers procedures for creating and assessing stoppi
{"title":"Sequential monitoring of time-to-event safety endpoints in clinical trials.","authors":"Michael J Martens, Qinghua Lian, Nancy L Geller, Eric S Leifer, Brent R Logan","doi":"10.1177/17407745241304119","DOIUrl":"10.1177/17407745241304119","url":null,"abstract":"<p><p>Background/aimsSafety monitoring is a crucial requirement for Phase II and III clinical trials. To protect patients from toxicity risk, stopping rules may be implemented that will halt the study if an unexpectedly high number of events occur. These rules are constructed using statistical procedures that typically treat the toxicity data as binary occurrences. Because the exact dates of toxicities are often available, a strategy that handles these as time-to-event data may offer higher power and require less calendar time to identify excess risk. This work investigates several statistical methods for monitoring safety events as time-to-event endpoints and illustrates our R software package for designing and evaluating these procedures.MethodsThe performance metrics of safety stopping rules derived from Wang-Tsiatis tests, Bayesian Gamma-Poisson models, and sequential probability ratio tests are evaluated and contrasted in Phase II and III trial scenarios. We developed a publicly available R package \"stoppingrule\" for designing and assessing these stopping rules whose utility is illustrated through the design of a stopping rule for Blood and Marrow Transplant Clinical Trials Network 1204 (National Clinical Trial number NCT01998633), a multicenter, Phase II, single-arm trial that assessed the efficacy and safety of bone marrow transplant for the treatment of hemophagocytic lymphohistiocytosis and primary immune deficiencies.ResultsAs seen previously in group sequential testing settings, rules with strict stopping criteria early in a study tend to have more lenient stopping criteria late in the trial. Consequently, methods with aggressive early monitoring, such as Gamma-Poisson models with weak priors and certain choices of truncated sequential probability ratio tests, usually yield a smaller number of toxicities and lower power than ones that are more permissive at early stages, such as Gamma-Poisson models with strong priors and the O'Brien-Fleming test. The Pocock test and maximized sequential probability ratio test performed contrary to these trends, however, exhibiting both diminished power and higher numbers of toxicities than other methods due to their extremely aggressive early stopping criteria, failing to reserve adequate power to identify safety issues beyond the start of the study. In contrast to binary toxicity approaches, our time-to-event methods offer meaningful reductions in expected toxicities of up to 20% across scenarios considered.ConclusionSafety monitoring procedures aim to guard study participants from being exposed to and suffering toxicity from unsafe treatments. Toward this end, we recommend considering the time-to-event-oriented Gamma-Poisson model-weak prior model or truncated sequential probability ratio test for constructing safety stopping rules, as they performed the best in minimizing the number of toxicities in our investigations. Our R package \"stoppingrule\" offers procedures for creating and assessing stoppi","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":"22 3","pages":"267-278"},"PeriodicalIF":2.2,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144109871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-01-02DOI: 10.1177/17407745241304059
Maciej Fronc, Michał Jakubczyk, Sharon B Love, Susan Talbot, Timothy Rolfe
Background: Clinical trials handle a huge amount of data which can be used during the trial to improve the ongoing study conduct. It is suggested by regulators to implement the remote approach to evaluate clinical trials by analysing collected data. Central statistical monitoring helps to achieve that by employing quantitative methods, the results of which are a basis for decision-making on quality issues.
Methods: This article presents a scoping review which is based on a systematic and iterative approach to identify and synthesise literature on central statistical monitoring methodology. In particular, we investigated the decision-making processes (with emphasis on quality issues) of central statistical monitoring methodology and its place in the clinical trial workflow. We reviewed papers published over the last 10 years in two databases (Scopus and Web of Science) with a focus on data mining algorithms of central statistical monitoring and its benefit to the quality of trials.
Results: As a result, 24 scientific papers were selected for this review, and they consider central statistical monitoring at two levels. First, the perspective of the central statistical monitoring process and its location in the study conduct in terms of quality issues. Second, central statistical monitoring methods categorised into practices applied in the industry, and innovative methods in development. The established methods are discussed through the prism of categories of their usage. In turn, the innovations refer to either research on new methods or extensions to existing ones.
Discussion: Our review suggests directions for further research into central statistical monitoring methodology - including increased application of multivariate analysis and using advanced distance metrics - and guidance on how central statistical monitoring operates in response to regulators' requirements.
背景:临床试验处理大量的数据,这些数据可以在试验期间使用,以改善正在进行的研究行为。监管机构建议实施远程方法,通过分析收集的数据来评估临床试验。中央统计监测通过采用定量方法帮助实现这一目标,其结果是就质量问题作出决策的基础。方法:本文提出了一种基于系统和迭代方法的范围审查,以识别和综合有关中央统计监测方法的文献。特别是,我们调查了中央统计监测方法的决策过程(重点是质量问题)及其在临床试验工作流程中的地位。我们回顾了过去10年在两个数据库(Scopus和Web of Science)中发表的论文,重点关注中央统计监测的数据挖掘算法及其对试验质量的好处。结果:本次综述选取了24篇科学论文,考虑了两个层面的中央统计监测。首先,从中央统计监测过程的角度及其在研究开展方面存在的质量问题。二是将中央统计监测方法分类为行业应用的实践方法和发展中的创新方法。通过其使用类别的棱镜来讨论已建立的方法。反过来,创新指的是对新方法的研究或对现有方法的扩展。讨论:我们的综述提出了进一步研究中央统计监测方法的方向——包括增加多变量分析的应用和使用先进的距离度量——以及关于中央统计监测如何响应监管机构要求的指导。
{"title":"Central statistical monitoring in clinical trial management: A scoping review.","authors":"Maciej Fronc, Michał Jakubczyk, Sharon B Love, Susan Talbot, Timothy Rolfe","doi":"10.1177/17407745241304059","DOIUrl":"10.1177/17407745241304059","url":null,"abstract":"<p><strong>Background: </strong>Clinical trials handle a huge amount of data which can be used during the trial to improve the ongoing study conduct. It is suggested by regulators to implement the remote approach to evaluate clinical trials by analysing collected data. Central statistical monitoring helps to achieve that by employing quantitative methods, the results of which are a basis for decision-making on quality issues.</p><p><strong>Methods: </strong>This article presents a scoping review which is based on a systematic and iterative approach to identify and synthesise literature on central statistical monitoring methodology. In particular, we investigated the decision-making processes (with emphasis on quality issues) of central statistical monitoring methodology and its place in the clinical trial workflow. We reviewed papers published over the last 10 years in two databases (Scopus and Web of Science) with a focus on data mining algorithms of central statistical monitoring and its benefit to the quality of trials.</p><p><strong>Results: </strong>As a result, 24 scientific papers were selected for this review, and they consider central statistical monitoring at two levels. First, the perspective of the central statistical monitoring process and its location in the study conduct in terms of quality issues. Second, central statistical monitoring methods categorised into practices applied in the industry, and innovative methods in development. The established methods are discussed through the prism of categories of their usage. In turn, the innovations refer to either research on new methods or extensions to existing ones.</p><p><strong>Discussion: </strong>Our review suggests directions for further research into central statistical monitoring methodology - including increased application of multivariate analysis and using advanced distance metrics - and guidance on how central statistical monitoring operates in response to regulators' requirements.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"342-351"},"PeriodicalIF":2.2,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}