Pub Date : 2024-03-10DOI: 10.1080/10408347.2024.2312502
Dmytro Kosolapov, Pavel Jáč, Petra Riasová, Jitka Poušková, Miroslav Polášek, Lucie Nováková
Boswellia resin is an exudate from the cut bark of Boswellia trees. The main constituents of pharmacological interest are boswellic acids (pentacyclic triterpenoids), namely α-boswellic acid, β-boswellic acid, 3-O-acetyl-α-boswellic acid, 3-O-acetyl-β-boswellic acid, 11-keto-β-boswellic acid, and 3-O-acetyl-11-keto-β-boswellic acid. Nowadays, dietary supplements with Boswellia serrata extract are used in the treatment of inflammatory joint diseases. Additionally, the constituents of Boswellia resin have shown potential for the treatment of other chronic inflammatory diseases and various types of cancer. Separation methods including ultra/high-performance liquid chromatography, gas chromatography, thin layer chromatography, supercritical fluid chromatography, and capillary electrochromatography coupled with UV or MS detection have been used for the determination of boswellic acids in various matrices (mostly plant material and biological samples). This review aims to provide a comprehensive summary of these separation methods, offering a critical discussion of their strengths and limitations in the analysis of boswellic acids. The knowledge of various separation methods plays a pivotal role in the quality control of herbal dietary supplements and the monitoring of the metabolism and pharmacokinetics of their constituents. The approaches based on metabolomics and network pharmacology represent new ways of fingerprinting secondary metabolites in Boswellia resin increasing the comprehensiveness of the output of these methods resulting in safer dietary supplements.
{"title":"Advances and Challenges in the Analysis of Boswellic Acids by Separation Methods.","authors":"Dmytro Kosolapov, Pavel Jáč, Petra Riasová, Jitka Poušková, Miroslav Polášek, Lucie Nováková","doi":"10.1080/10408347.2024.2312502","DOIUrl":"10.1080/10408347.2024.2312502","url":null,"abstract":"<p><p><i>Boswellia</i> resin is an exudate from the cut bark of <i>Boswellia</i> trees. The main constituents of pharmacological interest are boswellic acids (pentacyclic triterpenoids), namely α-boswellic acid, β-boswellic acid, 3-<i>O</i>-acetyl-α-boswellic acid, 3-<i>O-</i>acetyl-β-boswellic acid, 11-keto-β-boswellic acid, and 3-<i>O</i>-acetyl-11-keto-β-boswellic acid. Nowadays, dietary supplements with <i>Boswellia serrata</i> extract are used in the treatment of inflammatory joint diseases. Additionally, the constituents of <i>Boswellia</i> resin have shown potential for the treatment of other chronic inflammatory diseases and various types of cancer. Separation methods including ultra/high-performance liquid chromatography, gas chromatography, thin layer chromatography, supercritical fluid chromatography, and capillary electrochromatography coupled with UV or MS detection have been used for the determination of boswellic acids in various matrices (mostly plant material and biological samples). This review aims to provide a comprehensive summary of these separation methods, offering a critical discussion of their strengths and limitations in the analysis of boswellic acids. The knowledge of various separation methods plays a pivotal role in the quality control of herbal dietary supplements and the monitoring of the metabolism and pharmacokinetics of their constituents. The approaches based on metabolomics and network pharmacology represent new ways of fingerprinting secondary metabolites in <i>Boswellia</i> resin increasing the comprehensiveness of the output of these methods resulting in safer dietary supplements.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-27"},"PeriodicalIF":5.0,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-10DOI: 10.1080/10408347.2024.2324460
Meng Zhang, Yimeng Wang, Jie Jiang, Yanxiao Jiang, Daqian Song
Catecholamines (CAs), which include adrenaline, noradrenaline, and dopamine, are neurotransmitters and hormones that critically regulate the cardiovascular system, metabolism, and stress response in the human body. The abnormal levels of these molecules can lead to the development of various diseases, including pheochromocytoma and paragangliomas, Alzheimer's disease, and Takotsubo cardiomyopathy. Due to their low cost, high sensitivity, flexible detection strategies, ease of integration, and miniaturization, electrochemical techniques have been extensively employed in the detection of CAs, surpassing traditional analytical methods. Electrochemical detection of CAs in real samples is challenging due to the tendency of poisoning electrode. Chemically modified electrodes have been widely used to solve the problems of poor sensitivity and selectivity faced by bare electrodes. There are a few articles that provide an overview of electrochemical detection and efficient enrichment of CAs, but there is a dearth of updates on the role of CAs in the pathogenesis of diseases. Additionally, there is still a lack of systematic synthesis with a focus on modified electrodes for electrochemical detection. Thus, this review provides a summary of the recent clinical pathogenesis of CAs and the modified electrodes for electrochemical detection of CAs published between 2017 and 2022. Moreover, challenges and future perspectives are also highlighted. This work is expected to provide useful guidance to researchers entering this interdisciplinary field, promoting further development of CAs pathogenesis, and developing more novel chemically modified electrodes for the detection of CAs.
儿茶酚胺(CA)包括肾上腺素、去甲肾上腺素和多巴胺,是一种神经递质和激素,对人体的心血管系统、新陈代谢和应激反应具有重要调节作用。这些分子水平的异常会导致各种疾病的发生,包括嗜铬细胞瘤和副神经节瘤、阿尔茨海默病和塔克次氏心肌病。电化学技术具有成本低、灵敏度高、检测策略灵活、易于集成和微型化等优点,已被广泛应用于 CAs 的检测,并超越了传统的分析方法。由于电极容易中毒,在实际样品中对 CAs 进行电化学检测具有挑战性。为了解决裸电极灵敏度和选择性差的问题,化学修饰电极得到了广泛应用。有几篇文章概述了电化学检测和高效富集 CAs 的方法,但有关 CAs 在疾病发病机制中的作用的最新研究成果却很少。此外,目前仍缺乏以电化学检测用改性电极为重点的系统综述。因此,本综述对 2017 年至 2022 年间发表的最新 CAs 临床发病机制和用于电化学检测的改性电极进行了总结。此外,还强调了面临的挑战和未来展望。这项工作有望为进入这一交叉学科领域的研究人员提供有益的指导,促进CAs发病机制的进一步发展,并开发出更多用于检测CAs的新型化学修饰电极。
{"title":"The Role of Catecholamines in the Pathogenesis of Diseases and the Modified Electrodes for Electrochemical Detection of Catecholamines: A Review.","authors":"Meng Zhang, Yimeng Wang, Jie Jiang, Yanxiao Jiang, Daqian Song","doi":"10.1080/10408347.2024.2324460","DOIUrl":"https://doi.org/10.1080/10408347.2024.2324460","url":null,"abstract":"<p><p>Catecholamines (CAs), which include adrenaline, noradrenaline, and dopamine, are neurotransmitters and hormones that critically regulate the cardiovascular system, metabolism, and stress response in the human body. The abnormal levels of these molecules can lead to the development of various diseases, including pheochromocytoma and paragangliomas, Alzheimer's disease, and Takotsubo cardiomyopathy. Due to their low cost, high sensitivity, flexible detection strategies, ease of integration, and miniaturization, electrochemical techniques have been extensively employed in the detection of CAs, surpassing traditional analytical methods. Electrochemical detection of CAs in real samples is challenging due to the tendency of poisoning electrode. Chemically modified electrodes have been widely used to solve the problems of poor sensitivity and selectivity faced by bare electrodes. There are a few articles that provide an overview of electrochemical detection and efficient enrichment of CAs, but there is a dearth of updates on the role of CAs in the pathogenesis of diseases. Additionally, there is still a lack of systematic synthesis with a focus on modified electrodes for electrochemical detection. Thus, this review provides a summary of the recent clinical pathogenesis of CAs and the modified electrodes for electrochemical detection of CAs published between 2017 and 2022. Moreover, challenges and future perspectives are also highlighted. This work is expected to provide useful guidance to researchers entering this interdisciplinary field, promoting further development of CAs pathogenesis, and developing more novel chemically modified electrodes for the detection of CAs.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-22"},"PeriodicalIF":5.0,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The number of pollutants and chemicals with the potential to reach the environment is still largely unknown, which poses great challenges for researchers in various fields of science, environmental scientists, and analytical chemists. Chromatographic techniques, both gas chromatography (GC) and liquid chromatography (LC) coupled with different types of detection, are now invaluable tools for the identification of a wide range of chemical compounds and contaminants in water. This review is devoted to chromatographic techniques GC-MS, GC-Orbitrap-MS, GC-MS/MS, GC-HRMS, GC × GC-TOFMS, GC-ECD, LC-MS/MS, HPLC-UV, HPLC-PDA, UPLC-QTOFMS, used to determinate emerging organic contaminants in aquatic media, mainly in urban water, published in the scientific literature over the past several years. The article also focuses on sample preparation methods used in the analysis of aqueous samples. Most research focuses on minimizing the number of sample preparation steps, reducing the amount of solvents used, the speed of analysis, and the ability to apply it to a wide range of analytes in a sample. This is extremely important in the application of sensitive and selective methods to monitor the status of urban water quality and assess its impact on human health.
{"title":"Chromatographic Methods for the Determination of Organic Pollution in Urban Water: A Current Mini Review.","authors":"Paulina Gątarek, Angelina Rosiak, Joanna Kałużna-Czaplińska","doi":"10.1080/10408347.2024.2318764","DOIUrl":"https://doi.org/10.1080/10408347.2024.2318764","url":null,"abstract":"<p><p>The number of pollutants and chemicals with the potential to reach the environment is still largely unknown, which poses great challenges for researchers in various fields of science, environmental scientists, and analytical chemists. Chromatographic techniques, both gas chromatography (GC) and liquid chromatography (LC) coupled with different types of detection, are now invaluable tools for the identification of a wide range of chemical compounds and contaminants in water. This review is devoted to chromatographic techniques GC-MS, GC-Orbitrap-MS, GC-MS/MS, GC-HRMS, GC × GC-TOFMS, GC-ECD, LC-MS/MS, HPLC-UV, HPLC-PDA, UPLC-QTOFMS, used to determinate emerging organic contaminants in aquatic media, mainly in urban water, published in the scientific literature over the past several years. The article also focuses on sample preparation methods used in the analysis of aqueous samples. Most research focuses on minimizing the number of sample preparation steps, reducing the amount of solvents used, the speed of analysis, and the ability to apply it to a wide range of analytes in a sample. This is extremely important in the application of sensitive and selective methods to monitor the status of urban water quality and assess its impact on human health.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-18"},"PeriodicalIF":5.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.1080/10408347.2024.2324299
Xinhui Kou
Frustrated Lewis pairs (FLPs) have been widely investigated as promising catalysts due to their metal-free feature and ability to activate small molecules. Over the last few years, the structure, dynamics and interactions between the Lewis centers and their effects on the reactivity with different substrates have been studied. Nuclear magnetic resonance (NMR) is a powerful tool in studying the reaction intermediates, kinetics and mechanism of frustrated Lewis pairs (FLPs). Various NMR experiments have been applied to precisely determine the association or cooperativity of FLPs and one or two-dimensional spectra were obtained. Herein, insights coming from NMR spectroscopy for FLPs are presented, the structure and reactivity of FLPs in solution are described, and their effects on the kinetics and mechanism of different substrates are also illustrated in this review.
{"title":"Mechanistic Insight Into the Reactivity of Frustrated Lewis Pairs: Liquid-State NMR Studies.","authors":"Xinhui Kou","doi":"10.1080/10408347.2024.2324299","DOIUrl":"https://doi.org/10.1080/10408347.2024.2324299","url":null,"abstract":"<p><p>Frustrated Lewis pairs (FLPs) have been widely investigated as promising catalysts due to their metal-free feature and ability to activate small molecules. Over the last few years, the structure, dynamics and interactions between the Lewis centers and their effects on the reactivity with different substrates have been studied. Nuclear magnetic resonance (NMR) is a powerful tool in studying the reaction intermediates, kinetics and mechanism of frustrated Lewis pairs (FLPs). Various NMR experiments have been applied to precisely determine the association or cooperativity of FLPs and one or two-dimensional spectra were obtained. Herein, insights coming from NMR spectroscopy for FLPs are presented, the structure and reactivity of FLPs in solution are described, and their effects on the kinetics and mechanism of different substrates are also illustrated in this review.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-12"},"PeriodicalIF":5.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.1080/10408347.2024.2316234
Kaushik Sanyal, Sangita Dhara
The suitability and applications of Total reflection X-ray Fluorescence (TXRF) for characterization of nuclear materials are numerous. TXRF has been successfully applied for trace, minor and major determinations of constituents in nuclear materials such as fuel, clad, control rod, coolant, etc. The two major advantages of TXRF i.e. requirement of very small sample for analysis and non-requirement of matrix matched standards, make this technique further more attractive and suitable for nuclear industry. The applications of TXRF for trace analysis in nuclear materials such as fuel, clad, coolant and control rods are described in detail along with its applications for determination of major and speciation studies in TXRF mode.
全反射 X 射线荧光(TXRF)在核材料表征方面的适用性和应用非常广泛。全反射 X 射线荧光已成功应用于燃料、包壳、控制棒、冷却剂等核材料中成分的痕量、次要和主要测定。TXRF 的两大优势,即只需极少量的样品进行分析和无需基质匹配标准,使这项技术更加具有吸引力,也更加适合核工业。本文详细介绍了 TXRF 在核材料(如燃料、包壳、冷却剂和控制棒)痕量分析中的应用,以及 TXRF 模式在主要成分测定和物种研究中的应用。
{"title":"Suitability and Applications of Total-Reflection X-Ray Fluorescence Spectrometry for Analytical Characterization of Nuclear Materials.","authors":"Kaushik Sanyal, Sangita Dhara","doi":"10.1080/10408347.2024.2316234","DOIUrl":"https://doi.org/10.1080/10408347.2024.2316234","url":null,"abstract":"<p><p>The suitability and applications of Total reflection X-ray Fluorescence (TXRF) for characterization of nuclear materials are numerous. TXRF has been successfully applied for trace, minor and major determinations of constituents in nuclear materials such as fuel, clad, control rod, coolant, etc. The two major advantages of TXRF i.e. requirement of very small sample for analysis and non-requirement of matrix matched standards, make this technique further more attractive and suitable for nuclear industry. The applications of TXRF for trace analysis in nuclear materials such as fuel, clad, coolant and control rods are described in detail along with its applications for determination of major and speciation studies in TXRF mode.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-16"},"PeriodicalIF":5.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-20DOI: 10.1080/10408347.2024.2316237
Zhilong Xu, Kai Yu, Meng Zhang, Yun Ju, Jing He, Yanxiao Jiang, Yunuo Li, Jie Jiang
Vitamin D deficiency is thought to be associated with a wide range of diseases, including diabetes, cancer, depression, neurodegenerative diseases, and cardiovascular and cerebrovascular diseases. This vitamin D deficiency is a global epidemic affecting both developing and developed countries and therefore qualitative and quantitative analysis of vitamin D in a clinical context is essential. Mass spectrometry has played an increasingly important role in the clinical analysis of vitamin D because of its accuracy, sensitivity, specificity, and the ability to detect multiple substances at the same time. Despite their many advantages, mass spectrometry-based methods are not without analytical challenges. Front-end and back-end challenges such as protein precipitation, analyte extraction, derivatization, mass spectrometer functionality, must be carefully considered to provide accurate and robust analysis of vitamin D through a well-designed approach with continuous control by internal and external quality control. Therefore, the aim of this review is to provide a comprehensive overview of the development of mass spectrometry methods for vitamin D accurate analysis, including emphasis on status markers, deleterious effects of biological matrices, derivatization reactions, effects of ionization sources, contribution of epimers, standardization of assays between laboratories.
维生素 D 缺乏被认为与多种疾病有关,包括糖尿病、癌症、抑郁症、神经退行性疾病以及心脑血管疾病。维生素 D 缺乏症是影响发展中国家和发达国家的全球性流行病,因此在临床上对维生素 D 进行定性和定量分析至关重要。质谱法因其准确性、灵敏度、特异性和同时检测多种物质的能力,在维生素 D 的临床分析中发挥着越来越重要的作用。尽管质谱法具有诸多优势,但它在分析上也并非没有挑战。必须仔细考虑前端和后端挑战,如蛋白质沉淀、分析物提取、衍生化、质谱仪功能等,以便通过精心设计的方法和内外部质量控制的持续控制,提供准确、稳健的维生素 D 分析。因此,本综述旨在全面概述用于维生素 D 精确分析的质谱方法的发展情况,包括重点关注状态标记、生物基质的有害影响、衍生反应、电离源的影响、表聚物的贡献、实验室间测定的标准化。
{"title":"Accurate Clinical Detection of Vitamin D by Mass Spectrometry: A Review.","authors":"Zhilong Xu, Kai Yu, Meng Zhang, Yun Ju, Jing He, Yanxiao Jiang, Yunuo Li, Jie Jiang","doi":"10.1080/10408347.2024.2316237","DOIUrl":"https://doi.org/10.1080/10408347.2024.2316237","url":null,"abstract":"<p><p>Vitamin D deficiency is thought to be associated with a wide range of diseases, including diabetes, cancer, depression, neurodegenerative diseases, and cardiovascular and cerebrovascular diseases. This vitamin D deficiency is a global epidemic affecting both developing and developed countries and therefore qualitative and quantitative analysis of vitamin D in a clinical context is essential. Mass spectrometry has played an increasingly important role in the clinical analysis of vitamin D because of its accuracy, sensitivity, specificity, and the ability to detect multiple substances at the same time. Despite their many advantages, mass spectrometry-based methods are not without analytical challenges. Front-end and back-end challenges such as protein precipitation, analyte extraction, derivatization, mass spectrometer functionality, must be carefully considered to provide accurate and robust analysis of vitamin D through a well-designed approach with continuous control by internal and external quality control. Therefore, the aim of this review is to provide a comprehensive overview of the development of mass spectrometry methods for vitamin D accurate analysis, including emphasis on status markers, deleterious effects of biological matrices, derivatization reactions, effects of ionization sources, contribution of epimers, standardization of assays between laboratories.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-25"},"PeriodicalIF":5.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139905238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.1080/10408347.2024.2315112
Chaoran Liu, Changjun Guan, Yanan Li, Ze Li, Yanchun Wang, Guanghong Han
Limiting and preventing oral diseases remains a major challenge to the health of populations around the world, so finding ways to detect early-stage diseases (e.g., caries, periodontal disease, and oral cancer) and aiding in their prevention has always been an important clinical treatment concept. The development and application of electrochemical detection technology can provide important support for the early detection and non-invasive diagnosis of oral diseases and make up for the shortcomings of traditional diagnostic methods, which are highly sensitive, non-invasive, cost-effective, and less labor-intensive. It detects specific disease markers in body fluids through electrochemical reactions, discovers early warning signals of diseases, and realizes rapid and reliable diagnosis. This paper comprehensively summarizes the development and application of electrochemical biosensors in the detection and diagnosis of common oral diseases in terms of application platforms, sensing types, and disease detection, and discusses the challenges faced by electrochemical biosensors in the detection of oral diseases as well as the great prospects for future applications, in the hope of providing important insights for the future development of electrochemical biosensors for the early detection of oral diseases.
{"title":"Advances in Electrochemical Biosensors for the Detection of Common Oral Diseases.","authors":"Chaoran Liu, Changjun Guan, Yanan Li, Ze Li, Yanchun Wang, Guanghong Han","doi":"10.1080/10408347.2024.2315112","DOIUrl":"https://doi.org/10.1080/10408347.2024.2315112","url":null,"abstract":"<p><p>Limiting and preventing oral diseases remains a major challenge to the health of populations around the world, so finding ways to detect early-stage diseases (e.g., caries, periodontal disease, and oral cancer) and aiding in their prevention has always been an important clinical treatment concept. The development and application of electrochemical detection technology can provide important support for the early detection and non-invasive diagnosis of oral diseases and make up for the shortcomings of traditional diagnostic methods, which are highly sensitive, non-invasive, cost-effective, and less labor-intensive. It detects specific disease markers in body fluids through electrochemical reactions, discovers early warning signals of diseases, and realizes rapid and reliable diagnosis. This paper comprehensively summarizes the development and application of electrochemical biosensors in the detection and diagnosis of common oral diseases in terms of application platforms, sensing types, and disease detection, and discusses the challenges faced by electrochemical biosensors in the detection of oral diseases as well as the great prospects for future applications, in the hope of providing important insights for the future development of electrochemical biosensors for the early detection of oral diseases.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-21"},"PeriodicalIF":5.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139746280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-06DOI: 10.1080/10408347.2024.2305275
Nasir Khan, Pinaki Sengupta
The inherent complexity of biological matrices and presence of several interfering substances in biological samples make them unsuitable for direct analysis. An effective sample preparation technique assists in analyte enrichment, improving selectivity and sensitivity of bioanalytical method. Because of several key benefits of employing 3D printed sorbent in sample extraction, it has recently gained popularity across a variety of industries. Applications for 3D printing in the field of bioanalytical research have grown recently, particularly in the areas of miniaturization, (bio)sensing, sample preparation, and separation sciences. Due to the high expense of the solid phase microextraction cartridge, researcher approaches in-lab production of sorbent material for the extraction of analyte from biological samples. Owing to its distinct advantages such as low costs, automation capabilities, capacity to produce products in a variety of shapes, and reduction of tedious steps of sample preparation, 3D printed sorbents are gaining increased attention in the field of bioanalysis. It is also reported to offer high selectivity and assist in achieving a much lower limit of detection. In this review, we have discussed current advancements in different types of 3D printed sorbents, production methods, and their applications in the field of bioanalytical sample preparation.
生物基质本身的复杂性以及生物样本中多种干扰物质的存在,使其不适合直接进行分析。有效的样品制备技术有助于富集分析物,提高生物分析方法的选择性和灵敏度。由于三维打印吸附剂在样品提取中的几大优势,它最近在各行各业都受到了欢迎。最近,3D 打印在生物分析研究领域的应用越来越多,尤其是在微型化、(生物)传感、样品制备和分离科学领域。由于固相微萃取盒的价格昂贵,研究人员采用了在实验室内生产吸附剂材料的方法从生物样品中萃取分析物。由于 3D 打印吸附剂具有成本低、自动化能力强、可生产各种形状的产品、减少繁琐的样品制备步骤等显著优势,因此在生物分析领域越来越受到关注。据报道,3D 打印吸附剂还具有高选择性,有助于实现更低的检测限。在本综述中,我们讨论了不同类型 3D 打印吸附剂的当前进展、生产方法及其在生物分析样品制备领域的应用。
{"title":"Technological Advancement and Trend in Selective Bioanalytical Sample Extraction through State of the Art 3-D Printing Techniques Aiming 'Sorbent Customization as per need'.","authors":"Nasir Khan, Pinaki Sengupta","doi":"10.1080/10408347.2024.2305275","DOIUrl":"https://doi.org/10.1080/10408347.2024.2305275","url":null,"abstract":"<p><p>The inherent complexity of biological matrices and presence of several interfering substances in biological samples make them unsuitable for direct analysis. An effective sample preparation technique assists in analyte enrichment, improving selectivity and sensitivity of bioanalytical method. Because of several key benefits of employing 3D printed sorbent in sample extraction, it has recently gained popularity across a variety of industries. Applications for 3D printing in the field of bioanalytical research have grown recently, particularly in the areas of miniaturization, (bio)sensing, sample preparation, and separation sciences. Due to the high expense of the solid phase microextraction cartridge, researcher approaches in-lab production of sorbent material for the extraction of analyte from biological samples. Owing to its distinct advantages such as low costs, automation capabilities, capacity to produce products in a variety of shapes, and reduction of tedious steps of sample preparation, 3D printed sorbents are gaining increased attention in the field of bioanalysis. It is also reported to offer high selectivity and assist in achieving a much lower limit of detection. In this review, we have discussed current advancements in different types of 3D printed sorbents, production methods, and their applications in the field of bioanalytical sample preparation.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-21"},"PeriodicalIF":5.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1080/10408347.2024.2307887
Sinchana B Gopalaiah, Kavitha Jayaseelan
Withanolides are the class of steroidal molecules getting greater emphasis in recent years. Quality control throughout the manufacturing and storage period is often one of the key problems that have restricted their broad use in India's indigenous and Ayurvedic medical systems for thousands of years. Because of their diverse clinical potential, withanolides have received a great deal of scientific attention. Analytical techniques are being devised for the automated isolation, identification, and estimation of every single protein within the cell as well as in herbal extracts of withanolides, due to which now researchers are interested in determining the effects of metabolism as well as various stimuli on protein expression, which made the study easier. This study discusses the potential use of hyphenated analytical methods that are reliable in understanding the molecular signaling features, proteome evaluation and characterization of withanolides, in addition to examining existing methodological limitations. The choice of analytical techniques for the withanolides analysis, however, relies on the nature of the sample matrix, the aim of the analysis, and the sensitivity of the technique.
{"title":"Analytical Strategies to Investigate Molecular Signaling, Proteomics, Extraction and Quantification of Withanolides - A Comprehensive Review.","authors":"Sinchana B Gopalaiah, Kavitha Jayaseelan","doi":"10.1080/10408347.2024.2307887","DOIUrl":"https://doi.org/10.1080/10408347.2024.2307887","url":null,"abstract":"<p><p>Withanolides are the class of steroidal molecules getting greater emphasis in recent years. Quality control throughout the manufacturing and storage period is often one of the key problems that have restricted their broad use in India's indigenous and Ayurvedic medical systems for thousands of years. Because of their diverse clinical potential, withanolides have received a great deal of scientific attention. Analytical techniques are being devised for the automated isolation, identification, and estimation of every single protein within the cell as well as in herbal extracts of withanolides, due to which now researchers are interested in determining the effects of metabolism as well as various stimuli on protein expression, which made the study easier. This study discusses the potential use of hyphenated analytical methods that are reliable in understanding the molecular signaling features, proteome evaluation and characterization of withanolides, in addition to examining existing methodological limitations. The choice of analytical techniques for the withanolides analysis, however, relies on the nature of the sample matrix, the aim of the analysis, and the sensitivity of the technique.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-25"},"PeriodicalIF":5.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-22DOI: 10.1080/10408347.2024.2305267
Chun-Lu Liu, Yan Jiang, Hui-Jun Li
Quality consistency evaluation of traditional Chinese medicines (TCMs) is a crucial factor that determines the safe and effective application in clinical settings. However, TCMs exhibit diverse, heterogeneous, complex, and flexible chemical compositions, as well as variability in preparation processes. These characteristics pose greater challenges in researching the consistency of TCMs compared to chemically synthesized and biological drugs. Therefore, it is paramount to develop effective strategies for evaluating the quality consistency of TCMs. From the starting point of quality properties, this review explores the strategy used to evaluate quality consistency in terms of chemistry-based strategy (chemical consistency) and the biology-based strategy (bioequivalence). Among them, the chemistry-based strategy is the mainstream, and biology-based strategy complements the chemistry-based strategy each other. Furthermore, the emerging chemistry-biology strategies (overall evaluation) is discussed, including individually combining strategy and integration strategy. Finally, this review provides insights into the challenges and future perspectives in this field. By highlighting current status and trends in TCMs quality consistency, this review aims to contribute to establishment of generally applicable chemistry-biology integrated evaluation strategy for TCMs. This will facilitate the advancement toward a higher stage of overall quality evaluation.
{"title":"Quality Consistency Evaluation of Traditional Chinese Medicines: Current Status and Future Perspectives.","authors":"Chun-Lu Liu, Yan Jiang, Hui-Jun Li","doi":"10.1080/10408347.2024.2305267","DOIUrl":"https://doi.org/10.1080/10408347.2024.2305267","url":null,"abstract":"<p><p>Quality consistency evaluation of traditional Chinese medicines (TCMs) is a crucial factor that determines the safe and effective application in clinical settings. However, TCMs exhibit diverse, heterogeneous, complex, and flexible chemical compositions, as well as variability in preparation processes. These characteristics pose greater challenges in researching the consistency of TCMs compared to chemically synthesized and biological drugs. Therefore, it is paramount to develop effective strategies for evaluating the quality consistency of TCMs. From the starting point of quality properties, this review explores the strategy used to evaluate quality consistency in terms of chemistry-based strategy (chemical consistency) and the biology-based strategy (bioequivalence). Among them, the chemistry-based strategy is the mainstream, and biology-based strategy complements the chemistry-based strategy each other. Furthermore, the emerging chemistry-biology strategies (overall evaluation) is discussed, including individually combining strategy and integration strategy. Finally, this review provides insights into the challenges and future perspectives in this field. By highlighting current status and trends in TCMs quality consistency, this review aims to contribute to establishment of generally applicable chemistry-biology integrated evaluation strategy for TCMs. This will facilitate the advancement toward a higher stage of overall quality evaluation.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-18"},"PeriodicalIF":5.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}