首页 > 最新文献

Current Nanoscience最新文献

英文 中文
Strategy for Targeting Medical Diagnosis of Cerebral Ischemia Regions by Linking Gsk-3β Antibody and RVG29 to Magnetosomes Gsk-3β抗体和RVG29与磁小体连接靶向脑缺血区的医学诊断策略
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-22 DOI: 10.2174/0115734137259242231109174821
Qing Wang, Xianyu Li
Background: In our previous studies, we have identified Gsk-3β as a crucial target molecule in response to Danhong injection for cerebral ischemia intervention. Furthermore, it can serve as a molecular imaging probe for medical diagnosis. Bacterial magnetic particles (BMPs), synthesized by magnetotactic bacteria, are regarded as excellent natural nanocarriers. Methods: In this study, we utilized biological modification and chemical crosslinking techniques to produce a multifunctional BMP known as "RVG29-BMP-FA-Gsk-3β-Ab", which exhibits both magnetic properties and brain-targeting capabilities. Then, a combination of analytical techniques was used to characterize the properties of the multifunctional BMPs. Finally, we evaluated the cell targeting ability of the RVG29-BMP-FA-Gsk-3β-Ab. Results: The multifunctional BMPs were observed to possess uniform size and shape using TEM analysis, with a particle size of 70.1±7.33 nm. Zeta potential analysis revealed that the nanoparticles exhibited a regular and non-aggregative distribution of particle sizes. Relative fluorescence intensity results demonstrated that the complex of 1mg of RVG29-BMP-FA-Gsk- 3β-Ab could bind to FITC-RVG29 polypeptide at a concentration of 2189.5 nM. Cell viability analysis indicated its high biocompatibility and minimal cytotoxicity. The RVG29-BMP-FAGsk- 3β-Ab was observed to possess active targeting towards neuronal cells and fluorescence imaging capabilities in vitro, as evidenced by fluorescence imaging assays. The complex of RVG29-BMP-FA-Gsk-3β-Ab exhibited favourable properties for early diagnosis and efficacy evaluation of traditional Chinese medicine in treating cerebral ischemia. Conclusion: This study establishes a fundamental basis for the prospective implementation of multimodal imaging in traditional Chinese medicine for cerebral ischemia.
背景:在我们之前的研究中,我们已经确定Gsk-3β是丹红注射液干预脑缺血的关键靶分子。此外,它还可以作为一种分子成像探针用于医学诊断。细菌磁性颗粒(BMPs)是由趋磁细菌合成的一种优良的天然纳米载体。方法:利用生物修饰和化学交联技术制备多功能BMP“RVG29-BMP-FA-Gsk-3β-Ab”,该蛋白具有磁性和脑靶向性。然后,结合分析技术来表征多功能bmp的性质。最后,我们评估了RVG29-BMP-FA-Gsk-3β-Ab的细胞靶向能力。结果:透射电镜观察到多功能bmp具有均匀的大小和形状,粒径为70.1±7.33 nm。Zeta电位分析表明,纳米颗粒的粒径呈规则的非聚集分布。相对荧光强度结果显示,1mg RVG29-BMP-FA-Gsk- 3β-Ab复合物能以2189.5 nM的浓度与FITC-RVG29多肽结合。细胞活力分析表明其生物相容性高,细胞毒性小。通过荧光成像实验,RVG29-BMP-FAGsk- 3β-Ab具有对神经细胞的活性靶向和体外荧光成像能力。RVG29-BMP-FA-Gsk-3β-Ab复合物在中药治疗脑缺血的早期诊断和疗效评价中具有良好的性能。结论:本研究为脑缺血中医多模态显像的前瞻性应用奠定了基础。
{"title":"Strategy for Targeting Medical Diagnosis of Cerebral Ischemia Regions by Linking Gsk-3β Antibody and RVG29 to Magnetosomes","authors":"Qing Wang, Xianyu Li","doi":"10.2174/0115734137259242231109174821","DOIUrl":"https://doi.org/10.2174/0115734137259242231109174821","url":null,"abstract":"Background: In our previous studies, we have identified Gsk-3β as a crucial target molecule in response to Danhong injection for cerebral ischemia intervention. Furthermore, it can serve as a molecular imaging probe for medical diagnosis. Bacterial magnetic particles (BMPs), synthesized by magnetotactic bacteria, are regarded as excellent natural nanocarriers. Methods: In this study, we utilized biological modification and chemical crosslinking techniques to produce a multifunctional BMP known as \"RVG29-BMP-FA-Gsk-3β-Ab\", which exhibits both magnetic properties and brain-targeting capabilities. Then, a combination of analytical techniques was used to characterize the properties of the multifunctional BMPs. Finally, we evaluated the cell targeting ability of the RVG29-BMP-FA-Gsk-3β-Ab. Results: The multifunctional BMPs were observed to possess uniform size and shape using TEM analysis, with a particle size of 70.1±7.33 nm. Zeta potential analysis revealed that the nanoparticles exhibited a regular and non-aggregative distribution of particle sizes. Relative fluorescence intensity results demonstrated that the complex of 1mg of RVG29-BMP-FA-Gsk- 3β-Ab could bind to FITC-RVG29 polypeptide at a concentration of 2189.5 nM. Cell viability analysis indicated its high biocompatibility and minimal cytotoxicity. The RVG29-BMP-FAGsk- 3β-Ab was observed to possess active targeting towards neuronal cells and fluorescence imaging capabilities in vitro, as evidenced by fluorescence imaging assays. The complex of RVG29-BMP-FA-Gsk-3β-Ab exhibited favourable properties for early diagnosis and efficacy evaluation of traditional Chinese medicine in treating cerebral ischemia. Conclusion: This study establishes a fundamental basis for the prospective implementation of multimodal imaging in traditional Chinese medicine for cerebral ischemia.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"27 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Nanomaterials for Clean and Sustainable Environment 绿色纳米材料:清洁和可持续的环境
IF 1.5 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-11 DOI: 10.2174/157341371906230511103527
R. Chaudhary, Sami Mahmood, R. Jotania
{"title":"Green Nanomaterials for Clean and Sustainable Environment","authors":"R. Chaudhary, Sami Mahmood, R. Jotania","doi":"10.2174/157341371906230511103527","DOIUrl":"https://doi.org/10.2174/157341371906230511103527","url":null,"abstract":"<jats:sec>\u0000<jats:title />\u0000<jats:p />\u0000</jats:sec>","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47633754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymersomes as Next Generation Nanocarriers for Drug Delivery: Recent Advances, Patents, Synthesis and Characterization 聚合体作为新一代药物递送纳米载体:最新进展、专利、合成和表征
4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-07 DOI: 10.2174/0115734137271094231101062844
Surya Goel, Ruchi Singh, Megha Tonk
Background: Polymersomes (PS), self-assembled nanostructures formed by amphiphilic block copolymers, have garnered significant attention in recent years due to their unique properties and versatile applications in the fields of drug delivery and biomedicine. They are being prepared for a wide range of complex medicinal compounds, including nucleic acids, proteins, and enzymes. Polymersomes have lately been used as vehicles for delivering varied therapeutic substances and regulating ROS (reactive oxygen species). Due to their immunogenic features, polymersomes could play a critical role in enhancing subunit vaccine and drug delivery against COVID-19 infection. Objective: The prime purpose of this manuscript is to furnish an extensive overview of polymersomes, highlighting their recent advances, fabrication methods, characterization techniques, and pharmaceutical applications. Methods: The article has been amassed using several online and offline manuscripts from reputed journals, books, and other resources. Besides this, various user-friendly interfaces, like Pubmed, Google Scholar, etc, have been utilized to gather the latest data about polymersomes. This domain encompasses recent advancements in the realm of innovations about the delivery of drugs through polymeric vesicles. This field involves innovations or developments in nanocarrier systems as they are efficaciously employed to deliver the desired moiety to the targeted site. Results: PS have been discovered to exhibit remarkable promise in addressing various challenges associated with inadequate bioavailability, targeted drug delivery, dosing frequency, and diminished toxic effects. Over the past decade, such nanovesicles have been effectively employed as a complementary approach to address the issues arising from poorly soluble medications. However, this domain still requires further focus on novel breakthroughs. Conclusion: Polymersomes demonstrate unparalleled potential as innovative carriers, exhibiting remarkable versatility and exceptional biocompatibility. This concise review underscores their extraordinary prospects in diverse fields, accentuating their distinctive attributes and opening new avenues for groundbreaking applications.
聚合物体是由两亲性嵌段共聚物形成的自组装纳米结构,近年来由于其独特的性质和在药物传递和生物医学领域的广泛应用而引起了人们的广泛关注。它们被广泛用于制备复杂的药用化合物,包括核酸、蛋白质和酶。近年来,聚合体被用作递送各种治疗物质和调节活性氧(ROS)的载体。由于其免疫原性特征,聚合体可能在增强亚单位疫苗和抗COVID-19感染药物递送方面发挥关键作用。目的:这篇手稿的主要目的是提供一个广泛的概述聚合体,突出他们的最新进展,制造方法,表征技术,和制药应用。方法:本文已经收集了来自知名期刊、书籍和其他资源的在线和离线手稿。除此之外,各种用户友好的界面,如Pubmed, Google Scholar等,已经被用来收集关于聚合体的最新数据。这一领域包括通过聚合物囊泡给药的创新领域的最新进展。该领域涉及纳米载体系统的创新或发展,因为它们可以有效地将所需的部分递送到目标部位。结果:PS已被发现在解决与生物利用度不足、靶向给药、给药频率和毒性作用减少相关的各种挑战方面表现出显着的希望。在过去的十年中,这种纳米囊泡已被有效地用作解决难溶性药物引起的问题的补充方法。然而,这一领域仍需要进一步关注新的突破。结论:聚合体作为创新载体具有无可比拟的潜力,具有显著的多功能性和卓越的生物相容性。这篇简明的综述强调了它们在不同领域的非凡前景,强调了它们的独特属性,并为突破性的应用开辟了新的途径。
{"title":"Polymersomes as Next Generation Nanocarriers for Drug Delivery: Recent Advances, Patents, Synthesis and Characterization","authors":"Surya Goel, Ruchi Singh, Megha Tonk","doi":"10.2174/0115734137271094231101062844","DOIUrl":"https://doi.org/10.2174/0115734137271094231101062844","url":null,"abstract":"Background: Polymersomes (PS), self-assembled nanostructures formed by amphiphilic block copolymers, have garnered significant attention in recent years due to their unique properties and versatile applications in the fields of drug delivery and biomedicine. They are being prepared for a wide range of complex medicinal compounds, including nucleic acids, proteins, and enzymes. Polymersomes have lately been used as vehicles for delivering varied therapeutic substances and regulating ROS (reactive oxygen species). Due to their immunogenic features, polymersomes could play a critical role in enhancing subunit vaccine and drug delivery against COVID-19 infection. Objective: The prime purpose of this manuscript is to furnish an extensive overview of polymersomes, highlighting their recent advances, fabrication methods, characterization techniques, and pharmaceutical applications. Methods: The article has been amassed using several online and offline manuscripts from reputed journals, books, and other resources. Besides this, various user-friendly interfaces, like Pubmed, Google Scholar, etc, have been utilized to gather the latest data about polymersomes. This domain encompasses recent advancements in the realm of innovations about the delivery of drugs through polymeric vesicles. This field involves innovations or developments in nanocarrier systems as they are efficaciously employed to deliver the desired moiety to the targeted site. Results: PS have been discovered to exhibit remarkable promise in addressing various challenges associated with inadequate bioavailability, targeted drug delivery, dosing frequency, and diminished toxic effects. Over the past decade, such nanovesicles have been effectively employed as a complementary approach to address the issues arising from poorly soluble medications. However, this domain still requires further focus on novel breakthroughs. Conclusion: Polymersomes demonstrate unparalleled potential as innovative carriers, exhibiting remarkable versatility and exceptional biocompatibility. This concise review underscores their extraordinary prospects in diverse fields, accentuating their distinctive attributes and opening new avenues for groundbreaking applications.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"72 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135545020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgements to Reviewers 审稿人致谢
4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-01 DOI: 10.2174/157341371906230511122153
Yuri Agrawal, Teodoro S. Kaufman, Smrithi Padmakumar, Deepthy Menon, Carlos M.R. Sant'Anna, Gurudeeban Selvaraj Satyavani Kaliamurthi, Dong-Qing Wei, Darakhshan Jabeen Haleem, Hang Cao, Xuejun Li , Feiyifan Wang, Yueqi Zhang, Yi Xiong, Qi Yang
{"title":"Acknowledgements to Reviewers","authors":"Yuri Agrawal, Teodoro S. Kaufman, Smrithi Padmakumar, Deepthy Menon, Carlos M.R. Sant'Anna, Gurudeeban Selvaraj Satyavani Kaliamurthi, Dong-Qing Wei, Darakhshan Jabeen Haleem, Hang Cao, Xuejun Li , Feiyifan Wang, Yueqi Zhang, Yi Xiong, Qi Yang","doi":"10.2174/157341371906230511122153","DOIUrl":"https://doi.org/10.2174/157341371906230511122153","url":null,"abstract":"","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"46 18","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meet the Editorial Board Member 与编辑委员会成员见面
4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-01 DOI: 10.2174/157341371906230511103259
Xiaosheng Fang
{"title":"Meet the Editorial Board Member","authors":"Xiaosheng Fang","doi":"10.2174/157341371906230511103259","DOIUrl":"https://doi.org/10.2174/157341371906230511103259","url":null,"abstract":"","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"367 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136102770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coalescence of Au Nanoparticles in Silica Aerogel under Electron Beam Irradiation 电子束辐照下金纳米颗粒在二氧化硅气凝胶中的聚结
4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-01 DOI: 10.2174/1573413719666221122123805
Heena Sammi, Neha Sardana, Manish Mohanta, Bhagwati Sharma
Background: The coalescence of Au nanoparticles embedded in the silica gel matrix was observed by E-beam irradiation in a transmission electron microscope. Methods: It was examined that interparticle spacing between nanoparticles was reduced after incorporation into the matrix and particles came close to each other. TEM studies have shown that during E-beam irradiation ~13 nm Au nanoparticles contacted with each other along with the shrinkage of the silica aerogel or as well as the removal of surfactant layer, and transformed into different shapes of particles such as dumbbell and chain-like particles as per the interparticle gap. Results: This nanoparticle-aerogel matrix has the potential for applications in sensing, nonlinear optics, and catalysis. Conclusion: This work enhances the understanding of the role of silica aerogel and E-beam irradiation in directing the coalescence of nanoparticles.
背景:利用透射电镜电子束辐照观察了嵌入硅胶基体中的金纳米颗粒的聚结过程。方法:观察纳米颗粒掺入基质后,颗粒间距减小,颗粒相互靠近。TEM研究表明,在电子束辐照过程中,~13 nm的Au纳米颗粒随着二氧化硅气凝胶的收缩或表面活性剂层的去除而相互接触,并根据颗粒间的间隙转变为不同形状的颗粒,如哑铃状颗粒和链状颗粒。结果:该纳米颗粒-气凝胶基质在传感、非线性光学和催化等领域具有潜在的应用前景。结论:本研究加深了对二氧化硅气凝胶和电子束辐照在纳米颗粒聚并中的作用的认识。
{"title":"Coalescence of Au Nanoparticles in Silica Aerogel under Electron Beam Irradiation","authors":"Heena Sammi, Neha Sardana, Manish Mohanta, Bhagwati Sharma","doi":"10.2174/1573413719666221122123805","DOIUrl":"https://doi.org/10.2174/1573413719666221122123805","url":null,"abstract":"Background: The coalescence of Au nanoparticles embedded in the silica gel matrix was observed by E-beam irradiation in a transmission electron microscope. Methods: It was examined that interparticle spacing between nanoparticles was reduced after incorporation into the matrix and particles came close to each other. TEM studies have shown that during E-beam irradiation ~13 nm Au nanoparticles contacted with each other along with the shrinkage of the silica aerogel or as well as the removal of surfactant layer, and transformed into different shapes of particles such as dumbbell and chain-like particles as per the interparticle gap. Results: This nanoparticle-aerogel matrix has the potential for applications in sensing, nonlinear optics, and catalysis. Conclusion: This work enhances the understanding of the role of silica aerogel and E-beam irradiation in directing the coalescence of nanoparticles.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"256 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Biomimetic Cilia Microrobots: Driving Methods, Application and Research Prospects 仿生纤毛微型机器人的研究进展:驱动方法、应用及研究前景
4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-31 DOI: 10.2174/0115734137268436231023071009
Ziang Jing, Gaoshen Cai, Yufeng Pan, Yongfeng Yuan
Abstract: With the development of science and technology, microrobots have been used in medicine, biology, rescue, and many other fields. However, the microrobots have problems such as energy and motion due to miniaturization. In order to solve the problem of the energy supply of microrobots, researchers have provided more drive schemes for microrobots. Inspired by the biological cilia, the biomimetic cilia have been developed and applied to microrobots to achieve propulsion, liquid pumping, liquid mixing, and particle manipulation. This review summarizes the different driving modes of microrobots, focusing on the application of magnetic drive and optical drive in the field of micro-robots. The structure and function of biological cilia and biomimetic cilia are introduced. The application of biomimetic cilia microrobots in various fields is discussed, and the current challenges and future development trends of biomimetic cilia microrobots are summarized. This review hopes to provide useful help for researchers of biomimetic cilia microrobots
摘要:随着科学技术的发展,微型机器人已被应用于医学、生物、救援等诸多领域。然而,由于小型化,微型机器人存在能量和运动等问题。为了解决微型机器人的能量供应问题,研究人员为微型机器人提供了更多的驱动方案。受生物纤毛的启发,仿生纤毛已被开发并应用于微型机器人,以实现推进、液体泵送、液体混合和颗粒操纵。本文综述了微型机器人的不同驱动方式,重点介绍了磁驱动和光驱动在微型机器人领域的应用。介绍了生物纤毛和仿生纤毛的结构和功能。讨论了仿生纤毛微型机器人在各个领域的应用,总结了仿生纤毛微型机器人目前面临的挑战和未来的发展趋势。希望对仿生纤毛微型机器人的研究提供有益的帮助
{"title":"A Review on Biomimetic Cilia Microrobots: Driving Methods, Application and Research Prospects","authors":"Ziang Jing, Gaoshen Cai, Yufeng Pan, Yongfeng Yuan","doi":"10.2174/0115734137268436231023071009","DOIUrl":"https://doi.org/10.2174/0115734137268436231023071009","url":null,"abstract":"Abstract: With the development of science and technology, microrobots have been used in medicine, biology, rescue, and many other fields. However, the microrobots have problems such as energy and motion due to miniaturization. In order to solve the problem of the energy supply of microrobots, researchers have provided more drive schemes for microrobots. Inspired by the biological cilia, the biomimetic cilia have been developed and applied to microrobots to achieve propulsion, liquid pumping, liquid mixing, and particle manipulation. This review summarizes the different driving modes of microrobots, focusing on the application of magnetic drive and optical drive in the field of micro-robots. The structure and function of biological cilia and biomimetic cilia are introduced. The application of biomimetic cilia microrobots in various fields is discussed, and the current challenges and future development trends of biomimetic cilia microrobots are summarized. This review hopes to provide useful help for researchers of biomimetic cilia microrobots","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135928536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Nano/Microfluidic Devices for Cell Isolation Techniques: Recent Progress and Advances 纳米/微流体细胞分离装置的研究进展
4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-20 DOI: 10.2174/0115734137264742231001142853
Hamid Reza Garshasbi, Seyed Morteza Naghib
Abstract: Micro/nanofluidic devices and systems have gained increasing interest in healthcare applications over the last few decades because of their low cost and ease of customization, with only a small volume of sample fluid required. Many biological queries are now being addressed using various types of single-molecule research. With this rapid rise, the disadvantages of these methods are also becoming obvious. Micro/nanofluidics-based biochemical analysis outperforms traditional approaches in terms of sample volume, turnaround time, ease of operation, and processing efficiency. A complex and multifunctional micro/nanofluidic platform may be used for single-cell manipulation, treatment, detection, and sequencing. We present an overview of the current advances in micro/nanofluidic technology for single-cell research, focusing on cell capture, treatment, and biochemical analyses. The promise of single-cell analysis using micro/nanofluidics is also highlighted.
摘要:在过去的几十年里,微/纳米流体器件和系统由于其低成本和易于定制,只需要少量的样品流体,在医疗保健应用中获得了越来越多的兴趣。许多生物学问题现在正在使用各种类型的单分子研究来解决。随着这种快速增长,这些方法的缺点也变得明显。基于微/纳米流体的生化分析在样本量、周转时间、操作便捷性和处理效率方面优于传统方法。复杂的多功能微/纳米流体平台可用于单细胞操作、处理、检测和测序。我们概述了目前用于单细胞研究的微/纳米流体技术的进展,重点是细胞捕获、处理和生化分析。利用微/纳米流体进行单细胞分析的前景也得到了强调。
{"title":"A Review on Nano/Microfluidic Devices for Cell Isolation Techniques: Recent Progress and Advances","authors":"Hamid Reza Garshasbi, Seyed Morteza Naghib","doi":"10.2174/0115734137264742231001142853","DOIUrl":"https://doi.org/10.2174/0115734137264742231001142853","url":null,"abstract":"Abstract: Micro/nanofluidic devices and systems have gained increasing interest in healthcare applications over the last few decades because of their low cost and ease of customization, with only a small volume of sample fluid required. Many biological queries are now being addressed using various types of single-molecule research. With this rapid rise, the disadvantages of these methods are also becoming obvious. Micro/nanofluidics-based biochemical analysis outperforms traditional approaches in terms of sample volume, turnaround time, ease of operation, and processing efficiency. A complex and multifunctional micro/nanofluidic platform may be used for single-cell manipulation, treatment, detection, and sequencing. We present an overview of the current advances in micro/nanofluidic technology for single-cell research, focusing on cell capture, treatment, and biochemical analyses. The promise of single-cell analysis using micro/nanofluidics is also highlighted.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135619495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NBTI Effect Survey for Low Power Systems in Ultra-nanoregime 超低功率系统的NBTI效应研究
4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-12 DOI: 10.2174/0115734137252023230919054547
None Kajal, Vijay Kumar Sharma
Background: Electronic device scaling with the advancement of technology nodes maintains the performance of the logic circuits with area benefit. Metal oxide semiconductor (MOS) devices are the fundamental blocks for building logic circuits. Area minimization with higher efficiency of the circuits motivates the researchers of very large-scale integration (VLSI) design. Moreover, the reliability of digital circuits is one of the biggest challenges in VLSI technology. A major issue in reliability is negative bias temperature instability (NBTI) degradation. NBTI affects the efficiency and reliability of electronic devices. Method: This paper presents a review of NBTI physical-based mechanisms. NBTI's impact on VLSI circuits and techniques has been studied to mitigate and compensate for the effect of NBTI. Result: This review paper presents an idea to relate the NBTI and leakage mitigation techniques. This study gives an overview of the efficiency, complexity, and overhead of NBTI mitigation techniques and methodologies. Conclusion: This survey provides a brief idea about NBTI degradation by using reliability simulation. Moreover, the extensive aging effect is discussed in the paper.
背景:随着技术节点的进步,电子器件的缩放保持了逻辑电路的性能,具有面积效益。金属氧化物半导体(MOS)器件是构建逻辑电路的基本模块。电路的高效率和面积最小化是超大规模集成电路(VLSI)设计研究的动力。此外,数字电路的可靠性是VLSI技术面临的最大挑战之一。可靠性的一个主要问题是负偏置温度不稳定性(NBTI)退化。NBTI影响着电子设备的效率和可靠性。方法:本文综述了NBTI的物理机制。研究了NBTI对VLSI电路和技术的影响,以减轻和补偿NBTI的影响。结果:本文提出了一种将NBTI与泄漏缓解技术联系起来的思路。本研究概述了NBTI缓解技术和方法的效率、复杂性和开销。结论:本研究通过可靠性仿真对NBTI的退化提供了一个简要的认识。此外,本文还讨论了广泛老化效应。
{"title":"NBTI Effect Survey for Low Power Systems in Ultra-nanoregime","authors":"None Kajal, Vijay Kumar Sharma","doi":"10.2174/0115734137252023230919054547","DOIUrl":"https://doi.org/10.2174/0115734137252023230919054547","url":null,"abstract":"Background: Electronic device scaling with the advancement of technology nodes maintains the performance of the logic circuits with area benefit. Metal oxide semiconductor (MOS) devices are the fundamental blocks for building logic circuits. Area minimization with higher efficiency of the circuits motivates the researchers of very large-scale integration (VLSI) design. Moreover, the reliability of digital circuits is one of the biggest challenges in VLSI technology. A major issue in reliability is negative bias temperature instability (NBTI) degradation. NBTI affects the efficiency and reliability of electronic devices. Method: This paper presents a review of NBTI physical-based mechanisms. NBTI's impact on VLSI circuits and techniques has been studied to mitigate and compensate for the effect of NBTI. Result: This review paper presents an idea to relate the NBTI and leakage mitigation techniques. This study gives an overview of the efficiency, complexity, and overhead of NBTI mitigation techniques and methodologies. Conclusion: This survey provides a brief idea about NBTI degradation by using reliability simulation. Moreover, the extensive aging effect is discussed in the paper.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136015610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Progress in the Composites of Perovskite Nanocrystals and II-VI Quantum Dots: Their Synthesis, Applications, and Prospects 钙钛矿纳米晶体与II-VI量子点复合材料的研究进展:合成、应用与展望
4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-10 DOI: 10.2174/0115734137269553230919171016
Qiaoyun Wu, Rongrong Hu, Bobo Yang, Wenfang Peng, Mingming Shi, Yuefeng Li, Lin Cheng, Pan Liang, Jun Zou
The remarkable photoelectric characteristics of perovskite nanocrystals (NCs), including high fault tolerance, tunable photoluminescence (PL) emission, and high carrier mobility, contribute to making them especially attractive for photonic and optoelectronic applications. Unfortunately, the poor environmental thermal and light stability set obstacles to their industrial applications. Over the past 40 years, II-VI semiconductor quantum dots (QDs) have achieved many important photophysics findings and optoelectronic applications. Compared with perovskite NCs, II-VI semiconductor QDs still have a relatively weaker molar absorbance coefficient. Whereas, significant enhancement of both the stability and the optical performance of the composites of perovskite NCs and II-VI QDs are of interest for photovoltaic and optoelectronic devices. The composites of perovskite NCs and II-VI QDs come in two primary types: core/shell structures and heterojunction structures. To better understand the composites of perovskite NCs and II-VI QDs, the approaches of synthesis methods, their optoelectronic properties, carrier dynamics and potential applications in solar cells, light emitting diodes (LEDs) and photodetectors are summarized. Furthermore, the unmet problems and the potential applications are also presented.
摘要:钙钛矿纳米晶体(NCs)优异的光电特性,包括高容错性、可调谐的光致发光(PL)发射和高载流子迁移率,使其在光子和光电子应用中具有特别的吸引力。不幸的是,恶劣的环境热稳定性和光稳定性阻碍了它们的工业应用。在过去的40年里,半导体量子点(QDs)取得了许多重要的光物理发现和光电子应用。与钙钛矿纳米粒子相比,II-VI半导体量子点仍然具有相对较弱的摩尔吸光度系数。然而,钙钛矿NCs和II-VI量子点复合材料的稳定性和光学性能的显著增强是光伏和光电子器件的兴趣。钙钛矿NCs和II-VI量子点的复合材料主要有核/壳结构和异质结结构两种类型。为了更好地理解钙钛矿NCs和II-VI量子点的复合材料,本文综述了钙钛矿NCs和II-VI量子点的合成方法、光电性能、载流子动力学及其在太阳能电池、发光二极管(led)和光电探测器中的潜在应用。此外,还指出了该技术尚未解决的问题和潜在的应用前景。
{"title":"Recent Progress in the Composites of Perovskite Nanocrystals and II-VI Quantum Dots: Their Synthesis, Applications, and Prospects","authors":"Qiaoyun Wu, Rongrong Hu, Bobo Yang, Wenfang Peng, Mingming Shi, Yuefeng Li, Lin Cheng, Pan Liang, Jun Zou","doi":"10.2174/0115734137269553230919171016","DOIUrl":"https://doi.org/10.2174/0115734137269553230919171016","url":null,"abstract":"The remarkable photoelectric characteristics of perovskite nanocrystals (NCs), including high fault tolerance, tunable photoluminescence (PL) emission, and high carrier mobility, contribute to making them especially attractive for photonic and optoelectronic applications. Unfortunately, the poor environmental thermal and light stability set obstacles to their industrial applications. Over the past 40 years, II-VI semiconductor quantum dots (QDs) have achieved many important photophysics findings and optoelectronic applications. Compared with perovskite NCs, II-VI semiconductor QDs still have a relatively weaker molar absorbance coefficient. Whereas, significant enhancement of both the stability and the optical performance of the composites of perovskite NCs and II-VI QDs are of interest for photovoltaic and optoelectronic devices. The composites of perovskite NCs and II-VI QDs come in two primary types: core/shell structures and heterojunction structures. To better understand the composites of perovskite NCs and II-VI QDs, the approaches of synthesis methods, their optoelectronic properties, carrier dynamics and potential applications in solar cells, light emitting diodes (LEDs) and photodetectors are summarized. Furthermore, the unmet problems and the potential applications are also presented.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136361063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Nanoscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1