Pub Date : 2022-02-21DOI: 10.2174/2405461507666220221094925
Binita Palaria, V. Tiwari, A. Tiwari, Ramsa Aslam, Ashok Kumar, B. Sahoo, Manish Kumar, Sunil Singh, Suresh Kumar
Nanostructured lipid carriers (NLCs) are considered second-generation lipid-based pharmaceutical formulations in drug delivery systems. It is a more efficient drug delivery system that includes the development of nano-particulate system and its superiority over the conventional drug delivery system. Among all available nanoparticles, NLC has gained more attention due to its superior characteristics such as lipophilic, biodegradable and biocompatible. This lipid nanoparticulate system is more advantageous over liposomes, microparticles, emulsions and solid lipid nanoparticles. NLCs have emerged as a promising carrier for the delivery of targeted drug substances via oral, parenteral, topical, pulmonary, transdermal and ocular routes. These nanocarriers are utilized for the delivery of both lipophilic as well as hydrophilic drugs. NLCs are composed of a matrix of physiological lipids i.e. solid lipid and liquid lipid, emulsifiers and water. NLCs provide an opportunity for large scale production, ease of preparation with enhanced encapsulation, targeted efficiency and reduced toxic effects. This review is focused on the advantages, limitations, methods of preparation, characterization and applications of NLCs.
{"title":"Nanostructured Lipid Carriers: A Promising Carrier in Targeted Drug Delivery System","authors":"Binita Palaria, V. Tiwari, A. Tiwari, Ramsa Aslam, Ashok Kumar, B. Sahoo, Manish Kumar, Sunil Singh, Suresh Kumar","doi":"10.2174/2405461507666220221094925","DOIUrl":"https://doi.org/10.2174/2405461507666220221094925","url":null,"abstract":"\u0000\u0000Nanostructured lipid carriers (NLCs) are considered second-generation lipid-based pharmaceutical formulations in drug delivery systems. It is a more efficient drug delivery system that includes the development of nano-particulate system and its superiority over the conventional drug delivery system. Among all available nanoparticles, NLC has gained more attention due to its superior characteristics such as lipophilic, biodegradable and biocompatible. This lipid nanoparticulate system is more advantageous over liposomes, microparticles, emulsions and solid lipid nanoparticles. NLCs have emerged as a promising carrier for the delivery of targeted drug substances via oral, parenteral, topical, pulmonary, transdermal and ocular routes. These nanocarriers are utilized for the delivery of both lipophilic as well as hydrophilic drugs. NLCs are composed of a matrix of physiological lipids i.e. solid lipid and liquid lipid, emulsifiers and water. NLCs provide an opportunity for large scale production, ease of preparation with enhanced encapsulation, targeted efficiency and reduced toxic effects. This review is focused on the advantages, limitations, methods of preparation, characterization and applications of NLCs.\u0000","PeriodicalId":10924,"journal":{"name":"Current Nanomaterials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45225582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-04DOI: 10.2174/2405461507666220204100719
M. Mansourian, Sayed Mehdi Peimanimotlagh, M. Ghaedi, M. Talebianpoor, Z. Salehpour, Ghasem Ghalamfarsa, M. T. Ardakani, H. Bardania
Background: Treatment used for cancer are generally associated with serious side effects. New solutions for cancer therapy can overcome the shortcomings and problems of conventional therapies by designing drug delivery nanosystems. Methods: In this study, magnetic Fe3O4@AU@Albumin core-shell-shell (CSS) nanoparticles were synthesized and characterized by various analyses such as transmission electron microscopy (TEM), X-ray diffraction (XRD) and vibrating sample magnetization (VSM). Podophyllotoxin (PPT) was then loaded on magnetic nanoparticles as an anti-cancer drug and its effect on HT-29 and MCF-7 cell lines was evaluated using MTT assay. Result: The crystallinity of synthesized Fe3O4 magnetic nanoparticles was confirmed by XRD analysis. Next, a layer of gold was coated the Fe3O4 MNPs. The UV-Vis analysis of core-shell nanoparticles (iron oxide/gold)confirm the successful synthesis of these nanoparticles. The surface of the core-shell nanoparticles was then coated with albumin to load the drug. TEM image confirmed the existence of albumin nanoparticles loaded with core-shell magnetic nanoparticles. VSM analysis revealed that iron oxide, Fe3O4@AU, and Fe3O4@AU@Albumin nanoparticles have the highest magnetic properties, respectively. After synthesis of PPT loaded into MNP, the loading efficiency was 50%. The IC50 values of PPT alone and loaded into nanoparticles on MCF-7 cells after 24 hours were 3085.75 and 1868.09 nM, respectively, which were significantly toxic (P-value≤0.05) but not significant after 48 hours. The cytotoxicity of PPT loaded on nanoparticles was significantly more toxic to HT-29 cells after 24 and 48 h than PPT alone (P-value≤0.05). Conclusion: The anticancer drug of PPT-loaded MNPs has significant advantages over PPT alone due to its improved properties with appropriate cytotoxic activity. Thus, the PPT-loaded MNPs may be considered as effective anti-cancer agents for further research on drug development.
{"title":"Cytotoxic Effect of Podophyllotoxin-Loaded Magnetic Nanoparticles on Proliferation of Colorectal (HT-29) and Breast (MCF-7) Cancer Cell Lines","authors":"M. Mansourian, Sayed Mehdi Peimanimotlagh, M. Ghaedi, M. Talebianpoor, Z. Salehpour, Ghasem Ghalamfarsa, M. T. Ardakani, H. Bardania","doi":"10.2174/2405461507666220204100719","DOIUrl":"https://doi.org/10.2174/2405461507666220204100719","url":null,"abstract":"\u0000\u0000Background: Treatment used for cancer are generally associated with serious side effects. New solutions for cancer therapy can overcome the shortcomings and problems of conventional therapies by designing drug delivery nanosystems.\u0000\u0000\u0000\u0000Methods: In this study, magnetic Fe3O4@AU@Albumin core-shell-shell (CSS) nanoparticles were synthesized and characterized by various analyses such as transmission electron microscopy (TEM), X-ray diffraction (XRD) and vibrating sample magnetization (VSM). Podophyllotoxin (PPT) was then loaded on magnetic nanoparticles as an anti-cancer drug and its effect on HT-29 and MCF-7 cell lines was evaluated using MTT assay.\u0000\u0000\u0000\u0000Result: The crystallinity of synthesized Fe3O4 magnetic nanoparticles was confirmed by XRD analysis. Next, a layer of gold was coated the Fe3O4 MNPs. The UV-Vis analysis of core-shell nanoparticles (iron oxide/gold)confirm the successful synthesis of these nanoparticles. The surface of the core-shell nanoparticles was then coated with albumin to load the drug. TEM image confirmed the existence of albumin nanoparticles loaded with core-shell magnetic nanoparticles. \u0000VSM analysis revealed that iron oxide, Fe3O4@AU, and Fe3O4@AU@Albumin nanoparticles have the highest magnetic properties, respectively. After synthesis of PPT loaded into MNP, the loading efficiency was 50%. The IC50 values of PPT alone and loaded into nanoparticles on MCF-7 cells after 24 hours were 3085.75 and 1868.09 nM, respectively, which were significantly toxic (P-value≤0.05) but not significant after 48 hours. The cytotoxicity of PPT loaded on nanoparticles was significantly more toxic to HT-29 cells after 24 and 48 h than PPT alone (P-value≤0.05).\u0000\u0000\u0000\u0000Conclusion: The anticancer drug of PPT-loaded MNPs has significant advantages over PPT alone due to its improved properties with appropriate cytotoxic activity. Thus, the PPT-loaded MNPs may be considered as effective anti-cancer agents for further research on drug development.\u0000","PeriodicalId":10924,"journal":{"name":"Current Nanomaterials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42318760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-31DOI: 10.2174/2405461507666220131104843
Deepika Sharma, Ghanshyam Teli, Komal Gupta, G. Bansal, G. Gupta, P. Chawla
Nanotechnology is thriving these days and plays a great role in the expansion of biosensors. A range of nanomaterials are used in the growth of biosensors in order to boost the performance and sensitivity of biosensors. Nanomaterials like nanowire, nanoparticles, carbon nanotubes, quantum dots etc. are helpful for increasing different properties like enzyme loading capacity, bioanalyte loading, good absorption as well as immobilization of enzymes. The skill of nanobiosensors becomes extra accurate and reliable as it allows quick selection of diverse analytes at little cost. The main target for nanobiosensor research includes the development of novel technologies in order to make improvements in the field of marker detection of human and animal disease, identification and study of therapeutic compounds, characterization of nano and bio materials and the development of biocatalysts. This paper has reviewed basic principles and various nano-structure based biosensors along with their applications in different areas such as biomedical and forensic, environmental, agricultural and the food sector and recent advancements.
{"title":"Nano-Biosensors from Agriculture to Nextgen Diagnostic Tools","authors":"Deepika Sharma, Ghanshyam Teli, Komal Gupta, G. Bansal, G. Gupta, P. Chawla","doi":"10.2174/2405461507666220131104843","DOIUrl":"https://doi.org/10.2174/2405461507666220131104843","url":null,"abstract":"\u0000\u0000Nanotechnology is thriving these days and plays a great role in the expansion of biosensors. A range of nanomaterials are used in the growth of biosensors in order to boost the performance and sensitivity of biosensors. Nanomaterials like nanowire, nanoparticles, carbon nanotubes, quantum dots etc. are helpful for increasing different properties like enzyme loading capacity, bioanalyte loading, good absorption as well as immobilization of enzymes. The skill of nanobiosensors becomes extra accurate and reliable as it allows quick selection of diverse analytes at little cost. The main target for nanobiosensor research includes the development of novel technologies in order to make improvements in the field of marker detection of human and animal disease, identification and study of therapeutic compounds, characterization of nano and bio materials and the development of biocatalysts. This paper has reviewed basic principles and various nano-structure based biosensors along with their applications in different areas such as biomedical and forensic, environmental, agricultural and the food sector and recent advancements.\u0000","PeriodicalId":10924,"journal":{"name":"Current Nanomaterials","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41580448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}