首页 > 最新文献

Current opinion in plant biology最新文献

英文 中文
“To remember or forget: Insights into the mechanisms of epigenetic reprogramming and priming in early plant embryos” "记忆或遗忘:早期植物胚胎表观遗传重编程和引物机制的启示"。
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-08-03 DOI: 10.1016/j.pbi.2024.102612
Leonardo Jo , Michael D. Nodine

Chromatin is dynamically modified throughout the plant life cycle to regulate gene expression in response to environmental and developmental cues. Although such epigenetic information can be inherited across generations in plants, chromatin features that regulate gene expression are typically reprogrammed during plant gametogenesis and directly after fertilization. Nevertheless, environmentally induced epigenetic marks on genes can be transmitted across generations. Moreover, epigenetic information installed on early embryonic chromatin can be stably inherited during subsequent growth and influence how plants respond to environmental conditions much later in development. Here, we review recent breakthroughs towards deciphering mechanisms underlying epigenetic reprogramming and transcriptional priming during early plant embryogenesis.

染色质在植物的整个生命周期中都会发生动态变化,以调节基因表达,对环境和发育线索做出响应。虽然这种表观遗传信息可以在植物中跨代遗传,但调控基因表达的染色质特征通常是在植物配子发生过程中和受精后直接重编程的。不过,环境诱导的基因表观遗传标记可以跨代传递。此外,安装在早期胚胎染色质上的表观遗传信息可在随后的生长过程中稳定遗传,并影响植物在发育后期对环境条件的反应。在此,我们回顾了最近在破译植物早期胚胎发生过程中表观遗传重编程和转录起始机制方面取得的突破。
{"title":"“To remember or forget: Insights into the mechanisms of epigenetic reprogramming and priming in early plant embryos”","authors":"Leonardo Jo ,&nbsp;Michael D. Nodine","doi":"10.1016/j.pbi.2024.102612","DOIUrl":"10.1016/j.pbi.2024.102612","url":null,"abstract":"<div><p>Chromatin is dynamically modified throughout the plant life cycle to regulate gene expression in response to environmental and developmental cues. Although such epigenetic information can be inherited across generations in plants, chromatin features that regulate gene expression are typically reprogrammed during plant gametogenesis and directly after fertilization. Nevertheless, environmentally induced epigenetic marks on genes can be transmitted across generations. Moreover, epigenetic information installed on early embryonic chromatin can be stably inherited during subsequent growth and influence how plants respond to environmental conditions much later in development. Here, we review recent breakthroughs towards deciphering mechanisms underlying epigenetic reprogramming and transcriptional priming during early plant embryogenesis.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102612"},"PeriodicalIF":8.3,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624001031/pdfft?md5=2b9b21c8fc8aabba081d2dcb7f524b10&pid=1-s2.0-S1369526624001031-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The case for sporadic cyanogenic glycoside evolution in plants 植物中零星氰苷进化的案例。
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-31 DOI: 10.1016/j.pbi.2024.102608
Raquel Sánchez-Pérez , Elizabeth HJ. Neilson

Cyanogenic glycosides are α-hydroxynitrile glucosides present in approximately 3000 different plant species. Upon tissue disruption, cyanogenic glycosides are hydrolyzed to release toxic hydrogen cyanide as a means of chemical defense. Over 100 different cyanogenic glycosides have been reported, with structural diversity dependent on the precursor amino acid, and subsequent modifications. Cyanogenic glycosides represent a prime example of sporadic metabolite evolution, with the metabolic trait arising multiple times throughout the plant lineage as evidenced by recruitment of different enzyme families for biosynthesis. Here, we review the latest developments within cyanogenic glycoside biosynthesis, and argue possible factors driving sporadic evolution including shared intermediates and crossovers with other metabolic pathways crossovers, and metabolite multifunctionality beyond chemical defense.

生氰苷是存在于大约 3000 种不同植物中的α-羟腈葡糖苷。组织受到破坏时,氰苷会水解释放出有毒的氰化氢,作为一种化学防御手段。已报道的氰苷有 100 多种,其结构多样性取决于前体氨基酸和随后的修饰。生氰苷是零星代谢物进化的一个典型例子,其代谢特征在整个植物品系中多次出现,这可以通过招募不同的酶家族进行生物合成得到证明。在此,我们回顾了氰苷类生物合成的最新进展,并论证了驱动零星进化的可能因素,包括与其他代谢途径交叉的共享中间体和交叉,以及代谢物在化学防御之外的多功能性。
{"title":"The case for sporadic cyanogenic glycoside evolution in plants","authors":"Raquel Sánchez-Pérez ,&nbsp;Elizabeth HJ. Neilson","doi":"10.1016/j.pbi.2024.102608","DOIUrl":"10.1016/j.pbi.2024.102608","url":null,"abstract":"<div><p>Cyanogenic glycosides are α-hydroxynitrile glucosides present in approximately 3000 different plant species. Upon tissue disruption, cyanogenic glycosides are hydrolyzed to release toxic hydrogen cyanide as a means of chemical defense. Over 100 different cyanogenic glycosides have been reported, with structural diversity dependent on the precursor amino acid, and subsequent modifications. Cyanogenic glycosides represent a prime example of sporadic metabolite evolution, with the metabolic trait arising multiple times throughout the plant lineage as evidenced by recruitment of different enzyme families for biosynthesis. Here, we review the latest developments within cyanogenic glycoside biosynthesis, and argue possible factors driving sporadic evolution including shared intermediates and crossovers with other metabolic pathways crossovers, and metabolite multifunctionality beyond chemical defense.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102608"},"PeriodicalIF":8.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000992/pdfft?md5=0153d55aa0f4137434ab5832b902ab9b&pid=1-s2.0-S1369526624000992-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The gynostemium: More than the sum of its parts with emerging floral complexities 绞股蓝:新出现的复杂花朵,超越了各部分的总和。
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-30 DOI: 10.1016/j.pbi.2024.102609
Natalia Pabón-Mora , Favio González

Partial or complete floral organ fusion, which occurs in most angiosperm lineages, promotes integration of whorls leading to specialization and complexity. One of the most remarkable floral organ fusions occurs in the gynostemium, a highly specialized structure formed by the congenital fusion of the androecium and the upper portion of the gynoecium. Here we review the gynostemia evolution across flowering plants, the morphological requirements for the synorganization of the two fertile floral whorls, and the molecular basis most likely responsible for such intimate fusion process.

部分或完全的花器官融合发生在大多数被子植物品系中,它促进了轮生花器的整合,从而导致花器的特化和复杂化。合蕊柱是最显著的花器官融合之一,它是由雄蕊群和雌蕊群上部先天融合形成的高度特化结构。在此,我们回顾了有花植物中雌蕊群的进化、两个可育花轮合成的形态要求,以及最有可能导致这种亲密融合过程的分子基础。
{"title":"The gynostemium: More than the sum of its parts with emerging floral complexities","authors":"Natalia Pabón-Mora ,&nbsp;Favio González","doi":"10.1016/j.pbi.2024.102609","DOIUrl":"10.1016/j.pbi.2024.102609","url":null,"abstract":"<div><p>Partial or complete floral organ fusion, which occurs in most angiosperm lineages, promotes integration of whorls leading to specialization and complexity. One of the most remarkable floral organ fusions occurs in the gynostemium, a highly specialized structure formed by the congenital fusion of the androecium and the upper portion of the gynoecium. Here we review the gynostemia evolution across flowering plants, the morphological requirements for the synorganization of the two fertile floral whorls, and the molecular basis most likely responsible for such intimate fusion process.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102609"},"PeriodicalIF":8.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624001006/pdfft?md5=8c5d4bd6bb5a04cc41b51b915ba29cce&pid=1-s2.0-S1369526624001006-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolution of tropane alkaloids: Coca does it differently 托烷生物碱的演变:古柯的演化与众不同
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-26 DOI: 10.1016/j.pbi.2024.102606
Benjamin Gabriel Chavez, Sara Leite Dias, John Charles D'Auria

It is undeniable that tropane alkaloids (TAs) have been both beneficial and detrimental to human health in the modern era. Understanding their biosynthesis is vital for using synthetic biology to engineer organisms for pharmaceutical production. The most parsimonious approaches to pathway elucidation are traditionally homology-based methods. However, this approach has largely failed for TA biosynthesis in angiosperms. In the recent decade, significant progress has been made in elucidating the TA synthesis pathway in Erythroxylum coca, highlighting the parallel development of TAs in both the Solanaceae and Erythroxylaceae families. This separate evolutionary path has uncovered substantial divergence in the TAs formed by E. coca and distinct enzymatic reactions that differ from the traditional TA biosynthetic pathway found in TA-producing nightshade plants.

不可否认,在现代社会,对人类健康有益和有害的生物碱(TAs)都存在。了解它们的生物合成过程对于利用合成生物学改造生物体以生产药物至关重要。传统上,最简便的途径阐明方法是基于同源性的方法。然而,这种方法在被子植物的 TA 生物合成中基本失效。近十年来,在阐明古柯红豆杉(Erythroxylum coca)的 TA 合成途径方面取得了重大进展,突显了茄科和红豆杉科中 TA 的平行发展。这一独立的进化路径发现了古柯 E. 形成的 TAs 的实质性差异,以及与产生 TA 的茄科植物的传统 TA 生物合成途径不同的独特酶促反应。
{"title":"The evolution of tropane alkaloids: Coca does it differently","authors":"Benjamin Gabriel Chavez,&nbsp;Sara Leite Dias,&nbsp;John Charles D'Auria","doi":"10.1016/j.pbi.2024.102606","DOIUrl":"10.1016/j.pbi.2024.102606","url":null,"abstract":"<div><p>It is undeniable that tropane alkaloids (TAs) have been both beneficial and detrimental to human health in the modern era. Understanding their biosynthesis is vital for using synthetic biology to engineer organisms for pharmaceutical production. The most parsimonious approaches to pathway elucidation are traditionally homology-based methods. However, this approach has largely failed for TA biosynthesis in angiosperms. In the recent decade, significant progress has been made in elucidating the TA synthesis pathway in <em>Erythroxylum coca</em>, highlighting the parallel development of TAs in both the Solanaceae and Erythroxylaceae families. This separate evolutionary path has uncovered substantial divergence in the TAs formed by <em>E. coca</em> and distinct enzymatic reactions that differ from the traditional TA biosynthetic pathway found in TA-producing nightshade plants.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102606"},"PeriodicalIF":8.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000979/pdfft?md5=1f0b72d7384c3e58efd4e0b7054b8033&pid=1-s2.0-S1369526624000979-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular insights into legume root infection by rhizobia 根瘤菌感染豆科植物根部的细胞洞察力。
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-26 DOI: 10.1016/j.pbi.2024.102597
Fernanda de Carvalho-Niebel , Joëlle Fournier , Anke Becker , Macarena Marín Arancibia

Legume plants establish an endosymbiosis with nitrogen-fixing rhizobia bacteria, which are taken up from the environment anew by each host generation. This requires a dedicated genetic program on the host side to control microbe invasion, involving coordinated reprogramming of host cells to create infection structures that facilitate inward movement of the symbiont. Infection initiates in the epidermis, with different legumes utilizing distinct strategies for crossing this cell layer, either between cells (intercellular infection) or transcellularly (infection thread infection). Recent discoveries on the plant side using fluorescent-based imaging approaches have illuminated the spatiotemporal dynamics of infection, underscoring the importance of investigating this process at the dynamic single-cell level. Extending fluorescence-based live-dynamic approaches to the bacterial partner opens the exciting prospect of learning how individual rhizobia reprogram from rhizospheric to a host-confined state during early root infection.

豆科植物与固氮根瘤菌建立了内共生关系,每一代宿主都会从环境中吸收新的固氮根瘤菌。这就需要宿主一方有专门的基因程序来控制微生物的入侵,其中包括对宿主细胞进行协调重编程,以创建有利于共生体向内移动的感染结构。感染从表皮开始,不同的豆科植物利用不同的策略穿过这一细胞层,或在细胞间感染(细胞间感染),或跨细胞感染(感染线感染)。最近利用荧光成像方法在植物方面的发现揭示了感染的时空动态,强调了在动态单细胞水平研究这一过程的重要性。将基于荧光的实时动态方法扩展到细菌伙伴,为了解单个根瘤菌如何在早期根部感染过程中从根瘤层重新编程为宿主封闭状态开辟了令人兴奋的前景。
{"title":"Cellular insights into legume root infection by rhizobia","authors":"Fernanda de Carvalho-Niebel ,&nbsp;Joëlle Fournier ,&nbsp;Anke Becker ,&nbsp;Macarena Marín Arancibia","doi":"10.1016/j.pbi.2024.102597","DOIUrl":"10.1016/j.pbi.2024.102597","url":null,"abstract":"<div><p>Legume plants establish an endosymbiosis with nitrogen-fixing rhizobia bacteria, which are taken up from the environment anew by each host generation. This requires a dedicated genetic program on the host side to control microbe invasion, involving coordinated reprogramming of host cells to create infection structures that facilitate inward movement of the symbiont. Infection initiates in the epidermis, with different legumes utilizing distinct strategies for crossing this cell layer, either between cells (intercellular infection) or transcellularly (infection thread infection). Recent discoveries on the plant side using fluorescent-based imaging approaches have illuminated the spatiotemporal dynamics of infection, underscoring the importance of investigating this process at the dynamic single-cell level. Extending fluorescence-based live-dynamic approaches to the bacterial partner opens the exciting prospect of learning how individual rhizobia reprogram from rhizospheric to a host-confined state during early root infection.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102597"},"PeriodicalIF":8.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000888/pdfft?md5=9b8d2494bebe37509d52074228b855a5&pid=1-s2.0-S1369526624000888-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant specialized metabolism: Diversity of terpene synthases and their products 植物的特殊代谢:萜烯合成酶及其产物的多样性。
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-24 DOI: 10.1016/j.pbi.2024.102607
Matthew E. Bergman , Natalia Dudareva

Terpenoids are ubiquitous to all kingdoms of life and are one of the most diverse groups of compounds, both structurally and functionally. Despite being derived from common precursors, isopentenyl diphosphate and dimethylallyl diphosphate, their exceptional diversity is partly driven by the substrate and product promiscuity of terpene synthases that produce a wide array of terpene skeletons. Plant terpene synthases can be subdivided into different subfamilies based on sequence homology and function. However, in many cases, structural architecture of the enzyme is more essential to product specificity than primary sequence alone, and distantly related terpene synthases can often mediate similar reactions. As such, the focus of this brief review is on some of the recent progress in understanding terpene synthase function and diversity.

萜类化合物在生物界无处不在,是结构和功能最多样化的化合物之一。尽管萜类化合物来自共同的前体--二磷酸异戊烯酯和二磷酸二甲基烯丙基酯,但其特殊的多样性在一定程度上是由萜烯合成酶的底物和产物杂交性所驱动的,这种合成酶可产生多种萜烯骨架。根据序列同源性和功能,植物萜烯合成酶可细分为不同的亚家族。不过,在许多情况下,酶的结构构造对产品特异性的影响比单纯的主序列更为重要,而且远缘的萜烯合成酶往往可以介导类似的反应。因此,本简要综述的重点是了解萜烯合成酶功能和多样性方面的最新进展。
{"title":"Plant specialized metabolism: Diversity of terpene synthases and their products","authors":"Matthew E. Bergman ,&nbsp;Natalia Dudareva","doi":"10.1016/j.pbi.2024.102607","DOIUrl":"10.1016/j.pbi.2024.102607","url":null,"abstract":"<div><p>Terpenoids are ubiquitous to all kingdoms of life and are one of the most diverse groups of compounds, both structurally and functionally. Despite being derived from common precursors, isopentenyl diphosphate and dimethylallyl diphosphate, their exceptional diversity is partly driven by the substrate and product promiscuity of terpene synthases that produce a wide array of terpene skeletons. Plant terpene synthases can be subdivided into different subfamilies based on sequence homology and function. However, in many cases, structural architecture of the enzyme is more essential to product specificity than primary sequence alone, and distantly related terpene synthases can often mediate similar reactions. As such, the focus of this brief review is on some of the recent progress in understanding terpene synthase function and diversity.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102607"},"PeriodicalIF":8.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in local and systemic nitrate signaling in Arabidopsis thaliana 拟南芥局部和系统硝酸盐信号的最新进展
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-20 DOI: 10.1016/j.pbi.2024.102605
Laura D. Delgado , Valentina Nunez-Pascual , Eleodoro Riveras , Sandrine Ruffel , Rodrigo A. Gutiérrez

Nitrate is the most abundant form of inorganic nitrogen in aerobic soils, serving both as a nutrient and a signaling molecule. Central to nitrate signaling in higher plants is the intricate balance between local and systemic signaling and response pathways. The interplay between local and systemic responses allows plants to regulate their global gene expression, metabolism, physiology, growth, and development under fluctuating nitrate availability. This review offers an overview of recent discoveries regarding new players on nitrate sensing and signaling, in local and systemic contexts in Arabidopsis thaliana. Additionally, it addresses unanswered questions that warrant further investigation for a better understanding of nitrate signaling and responses in plants.

硝酸盐是有氧土壤中最丰富的无机氮形式,既是一种营养物质,也是一种信号分子。高等植物硝酸盐信号传递的核心是局部和系统信号传递与反应途径之间错综复杂的平衡。局部和系统反应之间的相互作用使植物能够在硝酸盐供应量波动的情况下调节其全局基因表达、新陈代谢、生理、生长和发育。本综述概述了最近在拟南芥的局部和系统背景下,有关硝酸盐感应和信号传导新参与者的发现。此外,本综述还探讨了一些尚未解答的问题,这些问题值得进一步研究,以便更好地了解植物的硝酸盐信号转导和响应。
{"title":"Recent advances in local and systemic nitrate signaling in Arabidopsis thaliana","authors":"Laura D. Delgado ,&nbsp;Valentina Nunez-Pascual ,&nbsp;Eleodoro Riveras ,&nbsp;Sandrine Ruffel ,&nbsp;Rodrigo A. Gutiérrez","doi":"10.1016/j.pbi.2024.102605","DOIUrl":"10.1016/j.pbi.2024.102605","url":null,"abstract":"<div><p>Nitrate is the most abundant form of inorganic nitrogen in aerobic soils, serving both as a nutrient and a signaling molecule. Central to nitrate signaling in higher plants is the intricate balance between local and systemic signaling and response pathways. The interplay between local and systemic responses allows plants to regulate their global gene expression, metabolism, physiology, growth, and development under fluctuating nitrate availability. This review offers an overview of recent discoveries regarding new players on nitrate sensing and signaling, in local and systemic contexts in <em>Arabidopsis thaliana</em>. Additionally, it addresses unanswered questions that warrant further investigation for a better understanding of nitrate signaling and responses in plants.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102605"},"PeriodicalIF":8.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stem-borne roots as a framework to study trans-organogenesis and uncover fundamental insights in developmental biology 将茎生根作为研究跨器官发生的框架,揭示发育生物学的基本观点
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-20 DOI: 10.1016/j.pbi.2024.102604
Amanda Rasmussen , Maria Laura Vidoz , Erin E. Sparks

Plants have a remarkable ability to generate organs with a different identity to the parent organ, called ‘trans-organogenesis’. An example of trans-organogenesis is the formation of roots from stems (a type of adventitious root), which is the first type of root that arose during plant evolution. Despite being ancestral, stem-borne roots are often contextualised through lateral root research, implying that lateral roots precede adventitious roots. In this review we challenge that idea, highlight what is known about stem-borne root development across the plant kingdom, the remarkable diversity in form and function, and the many remaining evolutionary questions. Exploring stem-borne root evolutionary development can enhance our understanding of developmental decision making and the processes by which cells acquire their fates.

植物有一种非凡的能力,可以生成与母体器官不同的器官,这种能力被称为 "转器官发生"。茎生根(一种不定根)就是跨器官发生的一个例子,它是植物进化过程中产生的第一种根。尽管茎生根是植物的祖先,但人们往往通过侧根研究来了解茎生根的来龙去脉,这意味着侧根先于不定根。在这篇综述中,我们将对这一观点提出质疑,重点介绍植物界茎生根发展的已知情况、形式和功能的显著多样性,以及许多遗留的进化问题。探索茎生根的进化发展可以加深我们对发育决策和细胞获得其命运的过程的理解。
{"title":"Stem-borne roots as a framework to study trans-organogenesis and uncover fundamental insights in developmental biology","authors":"Amanda Rasmussen ,&nbsp;Maria Laura Vidoz ,&nbsp;Erin E. Sparks","doi":"10.1016/j.pbi.2024.102604","DOIUrl":"10.1016/j.pbi.2024.102604","url":null,"abstract":"<div><p>Plants have a remarkable ability to generate organs with a different identity to the parent organ, called ‘trans-organogenesis’. An example of trans-organogenesis is the formation of roots from stems (a type of adventitious root), which is the first type of root that arose during plant evolution. Despite being ancestral, stem-borne roots are often contextualised through lateral root research, implying that lateral roots precede adventitious roots. In this review we challenge that idea, highlight what is known about stem-borne root development across the plant kingdom, the remarkable diversity in form and function, and the many remaining evolutionary questions. Exploring stem-borne root evolutionary development can enhance our understanding of developmental decision making and the processes by which cells acquire their fates.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102604"},"PeriodicalIF":8.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding plant responsiveness to microbiome feedbacks 了解植物对微生物群反馈的反应能力
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-17 DOI: 10.1016/j.pbi.2024.102603
Henry Janse van Rensburg , Katja Stengele , Klaus Schlaeppi

Plant microbiome interactions are bidirectional with processes leading to microbiome assembly and processes leading to effects on plants, so called microbiome feedbacks. With belowground focus we systematically decomposed both of these directions into plant and (root and rhizosphere) microbiome components to identify methodological challenges and research priorities. We found that the bidirectionality of plant microbiome interactions presents a challenge for genetic studies. Establishing causality is particularly difficult when a plant mutant has both, an altered phenotype and an altered microbiome. Is the mutation directly affecting the microbiome (e.g., through root exudates), which then causes an altered phenotype of the plant and/or is the altered microbiome the consequence of the mutation altering the plant's phenotype (e.g., root architecture)? Here, we put forward that feedback experiments allow to separate cause and effect and furthermore, they are useful for investigating plant interactions with complex microbiomes in natural soils. They especially allow to investigate the plant genetic basis how plants respond to soil microbiomes and we stress that such microbiome feedbacks are understudied compared to the mechanisms contributing to microbiome assembly. Thinking towards application, this may allow to develop crops with both abilities to assemble a beneficial microbiome and to actively exploit its feedbacks.

植物微生物组之间的相互作用是双向的,微生物组的组装过程和微生物组的作用过程都会对植物产生影响,即所谓的微生物组反馈。我们以地下为重点,将这两个方向系统地分解为植物和(根系和根圈)微生物组两个部分,以确定方法学上的挑战和研究重点。我们发现,植物微生物组相互作用的双向性给遗传研究带来了挑战。当植物突变体同时具有改变的表型和改变的微生物组时,确定因果关系尤其困难。突变是否直接影响微生物组(如通过根系渗出物),进而导致植物表型改变,以及/或微生物组的改变是否是突变改变植物表型(如根系结构)的结果?在此,我们提出,反馈实验可以将因果关系区分开来,而且有助于研究植物与天然土壤中复杂微生物群的相互作用。它们尤其有助于研究植物如何对土壤微生物群做出反应的植物遗传基础,我们强调,与微生物群的组成机制相比,这种微生物群反馈的研究还很不足。从应用角度考虑,这可能有助于开发出既能组建有益微生物群,又能积极利用微生物群反馈的作物。
{"title":"Understanding plant responsiveness to microbiome feedbacks","authors":"Henry Janse van Rensburg ,&nbsp;Katja Stengele ,&nbsp;Klaus Schlaeppi","doi":"10.1016/j.pbi.2024.102603","DOIUrl":"10.1016/j.pbi.2024.102603","url":null,"abstract":"<div><p>Plant microbiome interactions are bidirectional with processes leading to microbiome assembly and processes leading to effects on plants, so called microbiome feedbacks. With belowground focus we systematically decomposed both of these directions into plant and (root and rhizosphere) microbiome components to identify methodological challenges and research priorities. We found that the bidirectionality of plant microbiome interactions presents a challenge for genetic studies. Establishing causality is particularly difficult when a plant mutant has both, an altered phenotype and an altered microbiome. Is the mutation directly affecting the microbiome (e.g., through root exudates), which then causes an altered phenotype of the plant and/or is the altered microbiome the consequence of the mutation altering the plant's phenotype (e.g., root architecture)? Here, we put forward that feedback experiments allow to separate cause and effect and furthermore, they are useful for investigating plant interactions with complex microbiomes in natural soils. They especially allow to investigate the plant genetic basis how plants respond to soil microbiomes and we stress that such microbiome feedbacks are understudied compared to the mechanisms contributing to microbiome assembly. Thinking towards application, this may allow to develop crops with both abilities to assemble a beneficial microbiome and to actively exploit its feedbacks.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102603"},"PeriodicalIF":8.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000943/pdfft?md5=107a1d3f8c323184b75991d3f09b6ce5&pid=1-s2.0-S1369526624000943-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time's up: Epigenetic clocks in plants 时间到了植物的表观遗传时钟
IF 8.3 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-17 DOI: 10.1016/j.pbi.2024.102602
Binh Thanh Vo , Paloma Mas , Frank Johannes

For over a decade, the animal field has led the way in using DNA methylation measurements to construct epigenetic clocks of aging. These clocks can predict organismal age with a level of accuracy that surpasses any other molecular proxy known to date. Evidence is finally emerging that epigenetic clocks also exist in plants. However, these clocks appear to differ from those in animals in some key aspects, including in their ability to measure time beyond the life span of an individual. Clock-like epigenetic changes can be found in plant circadian rhythms (scale: 24 h), during plant aging (scale: weeks/centuries), and across plant lineage evolution (scale: decades/millennia). Here, we provide a first classification of these different types of epigenetic clocks, highlight their main features, and discuss their biological basis.

十多年来,动物领域在利用 DNA 甲基化测量构建表观遗传衰老时钟方面一直处于领先地位。这些时钟可以预测生物体的年龄,其准确性超过了迄今已知的任何其他分子代理。终于有证据表明,植物中也存在表观遗传时钟。然而,这些时钟似乎在某些关键方面与动物的时钟不同,包括它们测量个体寿命以外时间的能力。在植物昼夜节律(标度:24 小时)、植物衰老过程(标度:周/世纪)以及植物品系进化过程(标度:几十年/几千年)中都能发现类似时钟的表观遗传变化。在此,我们对这些不同类型的表观遗传时钟进行了初步分类,强调了它们的主要特征,并讨论了它们的生物学基础。
{"title":"Time's up: Epigenetic clocks in plants","authors":"Binh Thanh Vo ,&nbsp;Paloma Mas ,&nbsp;Frank Johannes","doi":"10.1016/j.pbi.2024.102602","DOIUrl":"10.1016/j.pbi.2024.102602","url":null,"abstract":"<div><p>For over a decade, the animal field has led the way in using DNA methylation measurements to construct epigenetic clocks of aging. These clocks can predict organismal age with a level of accuracy that surpasses any other molecular proxy known to date. Evidence is finally emerging that epigenetic clocks also exist in plants. However, these clocks appear to differ from those in animals in some key aspects, including in their ability to measure time beyond the life span of an individual. Clock-like epigenetic changes can be found in plant circadian rhythms (scale: 24 h), during plant aging (scale: weeks/centuries), and across plant lineage evolution (scale: decades/millennia). Here, we provide a first classification of these different types of epigenetic clocks, highlight their main features, and discuss their biological basis.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102602"},"PeriodicalIF":8.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000931/pdfft?md5=60110a86ecbedd1f1d26aab21fa93e48&pid=1-s2.0-S1369526624000931-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current opinion in plant biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1