G protein-coupled receptors (GPCRs) represent the largest superfamily of cell surface membrane receptors in eukaryotes. Unlike plants, fungi do not have receptor kinases or receptor-like kinases. Instead, GPCRs play critical roles in fungi to sense signals crucial for their survival and interspecies interactions to activate downstream cAMP and mitogen-activated protein kinase pathways via heterotrimeric G proteins. Some fungal GPCRs have relatively conserved roles in nutrient sensing and pheromone recognition to facilitate growth and sexual reproduction. For fungal pathogens with expanded families of classical or fungal-specific GPCRs, including those with the CFEM (common in fungal extracellular membrane) domain, distinctive GPCRs are involved in recognizing different signals from their hosts and surroundings. Although only a few ligands recognized by fungal GPCRs have been identified, recent studies have advanced our knowledge of GPCR biology in plant pathogenic and nematode-trapping fungi.
G 蛋白偶联受体(GPCR)是真核生物中最大的细胞表面膜受体超家族。与植物不同,真菌没有受体激酶或类似受体的激酶。相反,GPCR 在真菌中发挥着关键作用,它们能感知对真菌生存和种间相互作用至关重要的信号,并通过异三聚 G 蛋白激活下游 cAMP 和有丝分裂原激活蛋白激酶通路。一些真菌 GPCR 在营养传感和信息素识别方面具有相对保守的作用,可促进生长和有性生殖。对于经典或真菌特异性 GPCR 家族扩大的真菌病原体,包括具有 CFEM(真菌胞外膜常见)结构域的真菌病原体,独特的 GPCR 参与识别来自宿主和周围环境的不同信号。虽然真菌 GPCR 识别的配体为数不多,但最近的研究增进了我们对植物致病真菌和线虫诱捕真菌 GPCR 生物学的了解。
{"title":"Sensing host and environmental cues by fungal GPCRs","authors":"Cong Jiang , Aliang Xia , Daiying Xu , Jin-Rong Xu","doi":"10.1016/j.pbi.2024.102667","DOIUrl":"10.1016/j.pbi.2024.102667","url":null,"abstract":"<div><div>G protein-coupled receptors (GPCRs) represent the largest superfamily of cell surface membrane receptors in eukaryotes. Unlike plants, fungi do not have receptor kinases or receptor-like kinases. Instead, GPCRs play critical roles in fungi to sense signals crucial for their survival and interspecies interactions to activate downstream cAMP and mitogen-activated protein kinase pathways via heterotrimeric G proteins. Some fungal GPCRs have relatively conserved roles in nutrient sensing and pheromone recognition to facilitate growth and sexual reproduction. For fungal pathogens with expanded families of classical or fungal-specific GPCRs, including those with the CFEM (common in fungal extracellular membrane) domain, distinctive GPCRs are involved in recognizing different signals from their hosts and surroundings. Although only a few ligands recognized by fungal GPCRs have been identified, recent studies have advanced our knowledge of GPCR biology in plant pathogenic and nematode-trapping fungi.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102667"},"PeriodicalIF":8.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.pbi.2024.102663
Annis Richardson , Heather Jones , Madelaine Bartlett
Grasses dominate agriculturally and ecologically. One hypothesized driver of this dominance is grasses' facility for grain dispersal and rapid seedling establishment. Dispersal and establishment are aided by the awned lemma - a modified bract associated with grass flowers. Awns have diverse forms, many proposed functions, and have been gained and lost repeatedly in grass evolution. Here we hypothesize that the evolution of awn emergence is underpinned by deep conservation of developmental genes. Awns are likely homologous to leaf blades. Because leaf blades are essential, every grass species likely has a latent developmental program available for awn development. This developmental program may be repeatedly reactivated in lemmas, resulting in the frequent appearance of awns. Because awns are inessential, they can be lost and modified without dire consequences to fitness, resulting in the frequent loss and diversity of awns. Replicated awn evolution reveals how developmental conservation can potentiate the evolution of diversity. Awns also present a powerful opportunity to dissect mechanisms of leaf development.
{"title":"Grass awns: Morphological diversity arising from developmental constraint","authors":"Annis Richardson , Heather Jones , Madelaine Bartlett","doi":"10.1016/j.pbi.2024.102663","DOIUrl":"10.1016/j.pbi.2024.102663","url":null,"abstract":"<div><div>Grasses dominate agriculturally and ecologically. One hypothesized driver of this dominance is grasses' facility for grain dispersal and rapid seedling establishment. Dispersal and establishment are aided by the awned lemma - a modified bract associated with grass flowers. Awns have diverse forms, many proposed functions, and have been gained and lost repeatedly in grass evolution. Here we hypothesize that the evolution of awn emergence is underpinned by deep conservation of developmental genes. Awns are likely homologous to leaf blades. Because leaf blades are essential, every grass species likely has a latent developmental program available for awn development. This developmental program may be repeatedly reactivated in lemmas, resulting in the frequent appearance of awns. Because awns are inessential, they can be lost and modified without dire consequences to fitness, resulting in the frequent loss and diversity of awns. Replicated awn evolution reveals how developmental conservation can potentiate the evolution of diversity. Awns also present a powerful opportunity to dissect mechanisms of leaf development.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102663"},"PeriodicalIF":8.3,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.pbi.2024.102658
Ivana Kaňovská, Jana Biová, Mária Škrabišová
Crop breeding advancement is hindered by the imperfection of methods to reveal genes underlying key traits. Genome-wide Association Study (GWAS) is one such method, identifying genomic regions linked to phenotypes. Post-GWAS analyses predict candidate genes and assist in causative mutation (CM) recognition. Here, we assess post-GWAS approaches, address limitations in omics data integration and stress the importance of evaluating associated variants within a broader context of publicly available datasets. Recent advances in bioinformatics tools and genomic strategies for CM identification and allelic variation exploration are reviewed. We discuss the role of markers and marker panel development for more precise breeding. Finally, we highlight the perspectives and challenges of GWAS-based CM prediction for complex quantitative traits.
由于揭示关键性状基因的方法不完善,农作物育种的进展受到阻碍。全基因组关联研究(GWAS)就是这样一种方法,它能确定与表型相关的基因组区域。全基因组关联研究(GWAS)后分析可预测候选基因,并帮助识别致病突变(CM)。在此,我们将评估后GWAS方法,解决omics数据整合的局限性,并强调在更广泛的公开数据集背景下评估相关变异的重要性。我们回顾了用于 CM 鉴定和等位基因变异探索的生物信息学工具和基因组策略的最新进展。我们还讨论了标记的作用以及为实现更精确育种而进行的标记组开发。最后,我们强调了基于 GWAS 的复杂数量性状 CM 预测的前景和挑战。
{"title":"New perspectives of post-GWAS analyses: From markers to causal genes for more precise crop breeding","authors":"Ivana Kaňovská, Jana Biová, Mária Škrabišová","doi":"10.1016/j.pbi.2024.102658","DOIUrl":"10.1016/j.pbi.2024.102658","url":null,"abstract":"<div><div>Crop breeding advancement is hindered by the imperfection of methods to reveal genes underlying key traits. Genome-wide Association Study (GWAS) is one such method, identifying genomic regions linked to phenotypes. Post-GWAS analyses predict candidate genes and assist in causative mutation (CM) recognition. Here, we assess post-GWAS approaches, address limitations in omics data integration and stress the importance of evaluating associated variants within a broader context of publicly available datasets. Recent advances in bioinformatics tools and genomic strategies for CM identification and allelic variation exploration are reviewed. We discuss the role of markers and marker panel development for more precise breeding. Finally, we highlight the perspectives and challenges of GWAS-based CM prediction for complex quantitative traits.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102658"},"PeriodicalIF":8.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1016/j.pbi.2024.102659
Vibha Srivastava, Christian De Guzman, Samuel B. Fernandes
High nighttime temperature (HNT) is a major obstacle in rice production worldwide. It severely impacts spikelet fertility and induces grain chalk, the two undesirable factors leading to yield and quality decline in rice. Recently, major efforts have been undertaken to understand the genetic mechanisms underlying HNT tolerance. Here, we highlight phenotypic diversity and recent studies on breeding, genomics, and gene editing targeting this trait. These studies point to the challenges in the process as HNT tolerance has so far been found only in non-adapted varieties, and no known modern cultivar bred in the United States is able to withstand exposure to HNT during the reproductive stage. At the same time, identification of the tolerant genotypes enabled genomics, opened up tortuous but promising approaches for breeding, and showed a path for gene editing towards HNT tolerance. The recent advances have set a strong foundation for addressing this current and looming threat.
{"title":"Beat the heat: Breeding, genomics, and gene editing for high nighttime temperature tolerance in rice","authors":"Vibha Srivastava, Christian De Guzman, Samuel B. Fernandes","doi":"10.1016/j.pbi.2024.102659","DOIUrl":"10.1016/j.pbi.2024.102659","url":null,"abstract":"<div><div>High nighttime temperature (HNT) is a major obstacle in rice production worldwide. It severely impacts spikelet fertility and induces grain chalk, the two undesirable factors leading to yield and quality decline in rice. Recently, major efforts have been undertaken to understand the genetic mechanisms underlying HNT tolerance. Here, we highlight phenotypic diversity and recent studies on breeding, genomics, and gene editing targeting this trait. These studies point to the challenges in the process as HNT tolerance has so far been found only in non-adapted varieties, and no known modern cultivar bred in the United States is able to withstand exposure to HNT during the reproductive stage. At the same time, identification of the tolerant genotypes enabled genomics, opened up tortuous but promising approaches for breeding, and showed a path for gene editing towards HNT tolerance. The recent advances have set a strong foundation for addressing this current and looming threat.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102659"},"PeriodicalIF":8.3,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.pbi.2024.102662
Mukesh Jain
Understanding intricate gene regulatory networks (GRNs) orchestrating responses to abiotic stresses is crucial for enhancing climate resilience in crop plants. Recent advancements in single-cell and spatial technologies have revolutionized our ability to dissect the GRNs at unprecedented resolution. Here, we explore the progress, challenges, and opportunities these state-of-the-art technologies offer in delineating the cellular intricacies of plant responses to abiotic stress. Using scRNA-seq, the transcriptome landscape of individual plant cells along with their lineages and regulatory interactions can be unraveled. Moreover, coupling scRNA-seq with spatial transcriptomics provides spatially resolved gene expression and insights into cell-to-cell interactions. In addition, the chromatin accessibility assays can discover the regulatory regions governing abiotic stress responses. An integrated multi-omics approach can facilitate discovery of cell-type-specific GRNs to reveal the key components that coordinate adaptive responses to different stresses. These potential regulatory factors can be harnessed for genetic engineering to enhance stress resilience in crop plants.
{"title":"Gene regulatory networks in abiotic stress responses via single-cell sequencing and spatial technologies: Advances and opportunities","authors":"Mukesh Jain","doi":"10.1016/j.pbi.2024.102662","DOIUrl":"10.1016/j.pbi.2024.102662","url":null,"abstract":"<div><div>Understanding intricate gene regulatory networks (GRNs) orchestrating responses to abiotic stresses is crucial for enhancing climate resilience in crop plants. Recent advancements in single-cell and spatial technologies have revolutionized our ability to dissect the GRNs at unprecedented resolution. Here, we explore the progress, challenges, and opportunities these state-of-the-art technologies offer in delineating the cellular intricacies of plant responses to abiotic stress. Using scRNA-seq, the transcriptome landscape of individual plant cells along with their lineages and regulatory interactions can be unraveled. Moreover, coupling scRNA-seq with spatial transcriptomics provides spatially resolved gene expression and insights into cell-to-cell interactions. In addition, the chromatin accessibility assays can discover the regulatory regions governing abiotic stress responses. An integrated multi-omics approach can facilitate discovery of cell-type-specific GRNs to reveal the key components that coordinate adaptive responses to different stresses. These potential regulatory factors can be harnessed for genetic engineering to enhance stress resilience in crop plants.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102662"},"PeriodicalIF":8.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.pbi.2024.102656
Azeddine Driouich , Marie-Laure Follet Gueye , Maïté Vicré , John P. Moore
Plants have evolved a number of defense mechanisms to protect themselves against biotic stresses. Each cell, tissue, and organ is able to perceive and fight off attackers using a combination of chemical and physical defense mechanisms. Root cells employ similar defense response patterning. They develop immune responses upon pathogen attack and release a variety of compounds able to defend the root proper as well as the entire plant body. Currently, one of the most effective mechanisms of root defense involves the root extracellular trap (RET) that is produced at the tip of the root. The RET consists of root cap–derived cells embedded in mucilaginous secretions containing cell wall–derived polysaccharides, defense-related (glyco)proteins, phytoalexins, histones, and extracellular DNA (eDNA). The RET network plays a central role in root immunity and fulfills biological functions similar to those performed by neutrophil extracellular traps in mammals.
{"title":"The root extracellular trap; a complex and dynamic biomatrix network essential for plant protection","authors":"Azeddine Driouich , Marie-Laure Follet Gueye , Maïté Vicré , John P. Moore","doi":"10.1016/j.pbi.2024.102656","DOIUrl":"10.1016/j.pbi.2024.102656","url":null,"abstract":"<div><div>Plants have evolved a number of defense mechanisms to protect themselves against biotic stresses. Each cell, tissue, and organ is able to perceive and fight off attackers using a combination of chemical and physical defense mechanisms. Root cells employ similar defense response patterning. They develop immune responses upon pathogen attack and release a variety of compounds able to defend the root proper as well as the entire plant body. Currently, one of the most effective mechanisms of root defense involves the root extracellular trap (RET) that is produced at the tip of the root. The RET consists of root cap–derived cells embedded in mucilaginous secretions containing cell wall–derived polysaccharides, defense-related (glyco)proteins, phytoalexins, histones, and extracellular DNA (eDNA). The RET network plays a central role in root immunity and fulfills biological functions similar to those performed by neutrophil extracellular traps in mammals.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102656"},"PeriodicalIF":8.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.pbi.2024.102661
Mounashree Student, Margareta J. Hellmann, Stefan Cord-Landwehr, Bruno M. Moerschbacher
Chitin polymers are an essential structural component of fungal cell walls, but host chitinases can weaken them, contributing to disease resistance in fungal pathogens. Chitin oligomers thus produced are immunogenic signal molecules eliciting additional disease resistance mechanisms. Fungi may counteract these, e.g. by partial deacetylation of chitin, converting it into chitosans, protecting the cell walls against chitinase attack, and inactivating elicitor active oligomers. This molecular stealth hypothesis for fungal pathogenicity has repeatedly been tested by mutating single or multiple chitin deacetylase genes, supporting the hypothesis but simultaneously suggesting additional roles for chitin deacetylation in virulence, such as surface attachment and sensing, host tissue penetration and colonization, as well as spore formation, stabilization, and germination. Interestingly, recent evidence suggests that host plants have evolved counter strategies by inhibiting fungal chitin deacetylases, lending further credibility to the suggested action of these enzymes as pathogenicity/virulence factors, and possibly offering leads toward novel functional fungicides.
{"title":"Chitins and chitosans–A tale of discovery and disguise, of attachment and attainment","authors":"Mounashree Student, Margareta J. Hellmann, Stefan Cord-Landwehr, Bruno M. Moerschbacher","doi":"10.1016/j.pbi.2024.102661","DOIUrl":"10.1016/j.pbi.2024.102661","url":null,"abstract":"<div><div>Chitin polymers are an essential structural component of fungal cell walls, but host chitinases can weaken them, contributing to disease resistance in fungal pathogens. Chitin oligomers thus produced are immunogenic signal molecules eliciting additional disease resistance mechanisms. Fungi may counteract these, e.g. by partial deacetylation of chitin, converting it into chitosans, protecting the cell walls against chitinase attack, and inactivating elicitor active oligomers. This molecular stealth hypothesis for fungal pathogenicity has repeatedly been tested by mutating single or multiple chitin deacetylase genes, supporting the hypothesis but simultaneously suggesting additional roles for chitin deacetylation in virulence, such as surface attachment and sensing, host tissue penetration and colonization, as well as spore formation, stabilization, and germination. Interestingly, recent evidence suggests that host plants have evolved counter strategies by inhibiting fungal chitin deacetylases, lending further credibility to the suggested action of these enzymes as pathogenicity/virulence factors, and possibly offering leads toward novel functional fungicides.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102661"},"PeriodicalIF":8.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-10DOI: 10.1016/j.pbi.2024.102657
Felicia C. Wolters , Elena Del Pup , Kumar Saurabh Singh , Klaas Bouwmeester , M. Eric Schranz , Justin J.J. van der Hooft , Marnix H. Medema
Plants have evolved complex bouquets of specialized natural products that are utilized in medicine, agriculture, and industry. Untargeted natural product discovery has benefitted from growing plant omics data resources. Yet, plant genome complexity limits the identification and curation of biosynthetic pathways via single omics. Pairing multi-omics types within experiments provides multiple layers of evidence for biosynthetic pathway mining. The extraction of paired biological information facilitates connecting genes to transcripts and metabolites, especially when captured across time points, conditions and chemotypes. Experimental design requires specific adaptations to enable effective paired-omics analysis. Ultimately, metadata standards are required to support the integration of paired and unpaired public datasets and to accelerate collaborative efforts for natural product discovery in the plant research community.
{"title":"Pairing omics to decode the diversity of plant specialized metabolism","authors":"Felicia C. Wolters , Elena Del Pup , Kumar Saurabh Singh , Klaas Bouwmeester , M. Eric Schranz , Justin J.J. van der Hooft , Marnix H. Medema","doi":"10.1016/j.pbi.2024.102657","DOIUrl":"10.1016/j.pbi.2024.102657","url":null,"abstract":"<div><div>Plants have evolved complex bouquets of specialized natural products that are utilized in medicine, agriculture, and industry. Untargeted natural product discovery has benefitted from growing plant omics data resources. Yet, plant genome complexity limits the identification and curation of biosynthetic pathways via single omics. Pairing multi-omics types within experiments provides multiple layers of evidence for biosynthetic pathway mining. The extraction of paired biological information facilitates connecting genes to transcripts and metabolites, especially when captured across time points, conditions and chemotypes. Experimental design requires specific adaptations to enable effective paired-omics analysis. Ultimately, metadata standards are required to support the integration of paired and unpaired public datasets and to accelerate collaborative efforts for natural product discovery in the plant research community.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102657"},"PeriodicalIF":8.3,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.pbi.2024.102653
Jaindra Nath Tripathi, Samwel Muiruri, Leena Tripathi
Gene editing technologies, particularly CRISPR-Cas9, have revolutionized agriculture by offering precise and efficient tools to enhance crop production. The vegetatively propagated crops, crucial for global food security, face challenges such as climate change, pests, and limited genetic diversity. CRISPR-Cas9 enables targeted modifications to improve traits like disease resistance, drought tolerance, and nutritional content, thereby boosting productivity and sustainability. Despite its transformative potential, the adoption of gene editing in vegetatively propagated crops is hampered by technical complexities and regulatory frameworks. This review explores recent advancements, challenges, and prospects of gene editing in vegetatively propagated crops, emphasizing strategies to overcome technical barriers and regulatory constraints. Addressing these issues is essential for realizing the full agricultural potential of gene editing and ensuring food security in a changing global climate.
{"title":"Advancements and challenges in gene editing for improvement of vegetatively propagated crops","authors":"Jaindra Nath Tripathi, Samwel Muiruri, Leena Tripathi","doi":"10.1016/j.pbi.2024.102653","DOIUrl":"10.1016/j.pbi.2024.102653","url":null,"abstract":"<div><div>Gene editing technologies, particularly CRISPR-Cas9, have revolutionized agriculture by offering precise and efficient tools to enhance crop production. The vegetatively propagated crops, crucial for global food security, face challenges such as climate change, pests, and limited genetic diversity. CRISPR-Cas9 enables targeted modifications to improve traits like disease resistance, drought tolerance, and nutritional content, thereby boosting productivity and sustainability. Despite its transformative potential, the adoption of gene editing in vegetatively propagated crops is hampered by technical complexities and regulatory frameworks. This review explores recent advancements, challenges, and prospects of gene editing in vegetatively propagated crops, emphasizing strategies to overcome technical barriers and regulatory constraints. Addressing these issues is essential for realizing the full agricultural potential of gene editing and ensuring food security in a changing global climate.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102653"},"PeriodicalIF":8.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.pbi.2024.102655
Sarah R. Mathura , Fedora Sutton , Judy Rouse-Miller , Valerie Bowrin
The integration of bulk transcriptomic, proteomic, and genomic data generated from numerous systems biology studies of tuberizing plants has resulted in a better understanding of the molecular and morphological aspects of tuberization. The identified conserved integrated hormonal, transcriptional, and metabolic pathways of tuberization in crops from various plant lineages support the hypothesis of a fundamental tuberization process. However, further studies are required to specify the additional processes defined by the genomics and phylogeny of the particular plant lineages, which control the morphological diversity of tubers. This review summarizes the latest molecular and morphological discoveries on the tuberization process in stem tubers and tuberous roots and discusses future trajectories of the field.
{"title":"The molecular coordination of tuberization: Current status and future directions","authors":"Sarah R. Mathura , Fedora Sutton , Judy Rouse-Miller , Valerie Bowrin","doi":"10.1016/j.pbi.2024.102655","DOIUrl":"10.1016/j.pbi.2024.102655","url":null,"abstract":"<div><div>The integration of bulk transcriptomic, proteomic, and genomic data generated from numerous systems biology studies of tuberizing plants has resulted in a better understanding of the molecular and morphological aspects of tuberization. The identified conserved integrated hormonal, transcriptional, and metabolic pathways of tuberization in crops from various plant lineages support the hypothesis of a fundamental tuberization process. However, further studies are required to specify the additional processes defined by the genomics and phylogeny of the particular plant lineages, which control the morphological diversity of tubers. This review summarizes the latest molecular and morphological discoveries on the tuberization process in stem tubers and tuberous roots and discusses future trajectories of the field.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102655"},"PeriodicalIF":8.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}