首页 > 最新文献

Current Opinion in Electrochemistry最新文献

英文 中文
Green hydrogen from seawater electrolysis: Recent developments and future perspectives 海水电解产生的绿色氢气:最新进展和未来展望
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-20 DOI: 10.1016/j.coelec.2024.101592
Jaira Neibel Bamba , Alicia Theresse Dumlao , Rosela Mae Lazaro , DJ Donn Matienzo , Joey Ocon
Electrochemical splitting of seawater, especially when powered by renewable energy, presents a promising avenue for generating clean hydrogen without relying on highly pre-processed water from freshwater sources. In this mini-review, we present the fundamental principles of seawater electrolysis, including reaction mechanisms and various electrolyzer configurations, while addressing challenges. The most recent advancements in the field are highlighted, focusing on design strategies for electrocatalysts with high oxygen and hydrogen evolution reaction selectivity, electrolyte optimization, and membrane technologies. Additionally, the economic viability and scalability of seawater electrolysis are discussed, evaluating its feasibility for large-scale implementation. Collectively, this review offers insights into future developments and guides future research in the field, particularly in the rational design of corrosion-resistant seawater splitting technologies.
海水电化学裂解,尤其是以可再生能源为动力的海水电化学裂解,为无需依赖高度预处理的淡水水源而产生清洁氢气提供了一条前景广阔的途径。在这篇小型综述中,我们将介绍海水电解的基本原理,包括反应机制和各种电解槽配置,同时探讨面临的挑战。重点介绍了该领域的最新进展,包括具有高氧气和氢气进化反应选择性的电催化剂设计策略、电解质优化和膜技术。此外,还讨论了海水电解的经济可行性和可扩展性,评估了其大规模实施的可行性。总之,这篇综述为未来的发展提供了见解,并为该领域未来的研究提供了指导,特别是在合理设计耐腐蚀的海水分离技术方面。
{"title":"Green hydrogen from seawater electrolysis: Recent developments and future perspectives","authors":"Jaira Neibel Bamba ,&nbsp;Alicia Theresse Dumlao ,&nbsp;Rosela Mae Lazaro ,&nbsp;DJ Donn Matienzo ,&nbsp;Joey Ocon","doi":"10.1016/j.coelec.2024.101592","DOIUrl":"10.1016/j.coelec.2024.101592","url":null,"abstract":"<div><div>Electrochemical splitting of seawater, especially when powered by renewable energy, presents a promising avenue for generating clean hydrogen without relying on highly pre-processed water from freshwater sources. In this mini-review, we present the fundamental principles of seawater electrolysis, including reaction mechanisms and various electrolyzer configurations, while addressing challenges. The most recent advancements in the field are highlighted, focusing on design strategies for electrocatalysts with high oxygen and hydrogen evolution reaction selectivity, electrolyte optimization, and membrane technologies. Additionally, the economic viability and scalability of seawater electrolysis are discussed, evaluating its feasibility for large-scale implementation. Collectively, this review offers insights into future developments and guides future research in the field, particularly in the rational design of corrosion-resistant seawater splitting technologies.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"48 ","pages":"Article 101592"},"PeriodicalIF":7.9,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into electrode–electrolyte interfaces by in situ scanning tunnelling microscopy 通过原位扫描隧道显微镜深入了解电极-电解质界面
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-12 DOI: 10.1016/j.coelec.2024.101580
Maren-Kathrin Heubach , Yannick Mattausch , Timo Jacob

Fundamental insights into electrode–electrolyte interfaces are crucial for our understanding of electrochemical processes. Standard electrochemical methods, such as cyclic voltammetry, can reveal important information about the systems of interest. Nevertheless, information about structure and morphology of the electrode–electrolyte interface is not that easily accessible. In situ scanning tunnelling microscopy can resolve the electrode as well as the direct interface to the electrolyte in real time during electrochemical measurements. This includes changes of the electrode in the nanometre to micrometre range, for example, during metal deposition or corrosion, as well as the observation of ordered molecular adlayers on the electrode. In this work, we want to highlight the capabilities of such studies to better understand the fundamental processes of electrocatalysis and metal deposition and dissolution, which are essential to electrochemical energy storage systems.

从根本上了解电极-电解质界面对我们理解电化学过程至关重要。循环伏安法等标准电化学方法可以揭示有关系统的重要信息。然而,有关电极-电解质界面结构和形态的信息却不那么容易获得。原位扫描隧道显微镜可以在电化学测量过程中实时解析电极以及与电解质的直接界面。这包括电极在纳米到微米范围内的变化,例如在金属沉积或腐蚀过程中的变化,以及对电极上有序分子吸附层的观察。在这项工作中,我们希望强调此类研究的能力,以便更好地理解电催化和金属沉积与溶解的基本过程,这对电化学储能系统至关重要。
{"title":"Insights into electrode–electrolyte interfaces by in situ scanning tunnelling microscopy","authors":"Maren-Kathrin Heubach ,&nbsp;Yannick Mattausch ,&nbsp;Timo Jacob","doi":"10.1016/j.coelec.2024.101580","DOIUrl":"10.1016/j.coelec.2024.101580","url":null,"abstract":"<div><p>Fundamental insights into electrode–electrolyte interfaces are crucial for our understanding of electrochemical processes. Standard electrochemical methods, such as cyclic voltammetry, can reveal important information about the systems of interest. Nevertheless, information about structure and morphology of the electrode–electrolyte interface is not that easily accessible. <em>In situ</em> scanning tunnelling microscopy can resolve the electrode as well as the direct interface to the electrolyte in real time during electrochemical measurements. This includes changes of the electrode in the nanometre to micrometre range, for example<em>,</em> during metal deposition or corrosion, as well as the observation of ordered molecular adlayers on the electrode. In this work, we want to highlight the capabilities of such studies to better understand the fundamental processes of electrocatalysis and metal deposition and dissolution, which are essential to electrochemical energy storage systems.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"48 ","pages":"Article 101580"},"PeriodicalIF":7.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001418/pdfft?md5=b37fa382e9f43552c855d56f09779eab&pid=1-s2.0-S2451910324001418-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-board hydrogen production from urea via electrolysis to promote low-temperature catalytic reduction of NOx emissions 通过电解利用尿素生产车载氢气,促进氮氧化物排放的低温催化还原
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-12 DOI: 10.1016/j.coelec.2024.101591
Jagoda J. Manss-Chmielarz , Tobias Morawietz , Aldo S. Gago , K. Andreas Friedrich
Nitrogen oxides emissions pose a significant environmental challenge, particularly in heavily industrialized, high-traffic regions. Global NOx levels continue to rise, despite various aftertreatment techniques being deployed to mitigate emission levels of combustion engine vehicles. Novel approaches to enhance NOx conversion efficiency at low exhaust temperatures (< 200 C) include integrating hydrogen and ammonia injection before selective catalytic reduction modules. Urea electrolysis presents a promising avenue for simultaneous hydrogen and ammonia production. An anion exchange membrane electrolyser emerges as a viable and low-cost solution for on-board hydrogen production, offering compact size and compatibility with existing vehicle systems. Overcoming challenges such as catalyst and component selection, electrolyte viability, and system integration remains critical for realising the full potential of electrolysis-based NOx mitigation strategies in passenger vehicles.
氮氧化物排放给环境带来了巨大挑战,尤其是在重工业化、交通繁忙的地区。尽管采用了各种后处理技术来降低内燃机汽车的排放水平,但全球氮氧化物水平仍在持续上升。在低排气温度(< 200 C)下提高氮氧化物转化效率的新方法包括在选择性催化还原模块之前集成氢气和氨气喷射。尿素电解为同时制氢和制氨提供了一条很有前景的途径。阴离子交换膜电解槽是一种可行的车载制氢低成本解决方案,具有体积小、与现有车辆系统兼容等优点。克服催化剂和组件选择、电解质可行性和系统集成等挑战,对于充分发挥基于电解的乘用车氮氧化物减排战略的潜力仍然至关重要。
{"title":"On-board hydrogen production from urea via electrolysis to promote low-temperature catalytic reduction of NOx emissions","authors":"Jagoda J. Manss-Chmielarz ,&nbsp;Tobias Morawietz ,&nbsp;Aldo S. Gago ,&nbsp;K. Andreas Friedrich","doi":"10.1016/j.coelec.2024.101591","DOIUrl":"10.1016/j.coelec.2024.101591","url":null,"abstract":"<div><div>Nitrogen oxides emissions pose a significant environmental challenge, particularly in heavily industrialized, high-traffic regions. Global NO<sub>x</sub> levels continue to rise, despite various aftertreatment techniques being deployed to mitigate emission levels of combustion engine vehicles. Novel approaches to enhance NO<sub>x</sub> conversion efficiency at low exhaust temperatures (&lt; 200 C) include integrating hydrogen and ammonia injection before selective catalytic reduction modules. Urea electrolysis presents a promising avenue for simultaneous hydrogen and ammonia production. An anion exchange membrane electrolyser emerges as a viable and low-cost solution for on-board hydrogen production, offering compact size and compatibility with existing vehicle systems. Overcoming challenges such as catalyst and component selection, electrolyte viability, and system integration remains critical for realising the full potential of electrolysis-based NO<sub>x</sub> mitigation strategies in passenger vehicles.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"48 ","pages":"Article 101591"},"PeriodicalIF":7.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High entropy intermetallic compounds: A discovery platform for structure–property correlations and materials design principles in electrocatalysis 高熵金属间化合物:电催化结构-性能相关性和材料设计原理的发现平台
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-06 DOI: 10.1016/j.coelec.2024.101590
Ridha Zerdoumi , Alfred Ludwig , Wolfgang Schuhmann
The electrocatalytic properties of multi-metal materials are predominantly influenced by electronic and geometric effects related to surface and sub-surface atoms. A comprehensive understanding of these effects and their complex interplay is paramount for the efficient development of high-performance catalysts. Along with compositionally complex solid solutions (CCSS), often called high-entropy alloys (HEAs), high-entropy intermetallic compounds (HEIMCs) are an emerging class of materials with distinctive properties originating from both high-entropy alloys and intermetallic compounds. The ordered intermetallic structure is beneficial for identifying structure–property correlations of catalytic surfaces. This minireview provides a summary of the current knowledge of high entropy intermetallic compounds and their role in catalysis, with a particular focus on the key tunable parameters essential for achieving high-performance materials.
多金属材料的电催化特性主要受到与表面和次表面原子有关的电子和几何效应的影响。全面了解这些效应及其复杂的相互作用对于高效开发高性能催化剂至关重要。高熵金属间化合物(HEIMC)与成分复杂固溶体(CCSS)(通常称为高熵合金(HEA))一样,是一类新兴的材料,具有源于高熵合金和金属间化合物的独特性能。有序的金属间结构有利于确定催化表面的结构-性能相关性。这篇微型综述概述了高熵金属间化合物的现有知识及其在催化中的作用,尤其侧重于实现高性能材料所必需的关键可调参数。
{"title":"High entropy intermetallic compounds: A discovery platform for structure–property correlations and materials design principles in electrocatalysis","authors":"Ridha Zerdoumi ,&nbsp;Alfred Ludwig ,&nbsp;Wolfgang Schuhmann","doi":"10.1016/j.coelec.2024.101590","DOIUrl":"10.1016/j.coelec.2024.101590","url":null,"abstract":"<div><div>The electrocatalytic properties of multi-metal materials are predominantly influenced by electronic and geometric effects related to surface and sub-surface atoms. A comprehensive understanding of these effects and their complex interplay is paramount for the efficient development of high-performance catalysts. Along with compositionally complex solid solutions (CCSS), often called high-entropy alloys (HEAs), high-entropy intermetallic compounds (HEIMCs) are an emerging class of materials with distinctive properties originating from both high-entropy alloys and intermetallic compounds. The ordered intermetallic structure is beneficial for identifying structure–property correlations of catalytic surfaces. This minireview provides a summary of the current knowledge of high entropy intermetallic compounds and their role in catalysis, with a particular focus on the key tunable parameters essential for achieving high-performance materials.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"48 ","pages":"Article 101590"},"PeriodicalIF":7.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001510/pdfft?md5=d8bd53b951901a7be46b049d00173fa0&pid=1-s2.0-S2451910324001510-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current perspectives on rational design of anode electrocatalysts exhibiting CO-tolerance for fuel cells 合理设计燃料电池耐一氧化碳阳极电催化剂的当前视角
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-31 DOI: 10.1016/j.coelec.2024.101582
Daeil Choi , Subin Park , Yun Sik Kang , Sung Jong Yoo

Anode catalysis reduces the cost and remarkably improves the fuel cell performance; however, it is often neglected owing to its fast kinetics. Currently, the majority of hydrogen is obtained by reforming and purifying the hydrocarbons containing impurities such as CO, CO2, and H2S. CO adsorbs more strongly than hydrogen onto the anode catalysts, inhibiting hydrogen oxidation and resulting in performance degradation. Although activity enhancement is essential, impurity tolerance should be preferred over activity for fuel-cell anode catalysts. Various studies have reported improved CO tolerance via lowering the intrinsic CO adsorption energy of the catalyst by tuning the electronic structure or modulating the OH adsorption energy by placing oxophilic materials near the catalysts. Herein, we categorize recent noteworthy studies according to their strategies and present innovative design principles for CO-resistant anode catalysts.

阳极催化可降低成本并显著提高燃料电池的性能;然而,由于其快速的动力学特性,阳极催化常常被忽视。目前,大部分氢气是通过重整和提纯含有 CO、CO 和 HS 等杂质的碳氢化合物获得的。CO 在阳极催化剂上的吸附力比氢更强,会抑制氢氧化,导致性能下降。虽然提高活性至关重要,但对于燃料电池阳极催化剂来说,杂质耐受性应优先于活性。各种研究报告称,通过调整催化剂的电子结构降低催化剂对 CO 的固有吸附能,或通过在催化剂附近放置亲氧材料调节 OH 吸附能,可提高对 CO 的耐受性。在此,我们将近期值得关注的研究按照其策略进行分类,并介绍抗 CO 阳极催化剂的创新设计原则。
{"title":"Current perspectives on rational design of anode electrocatalysts exhibiting CO-tolerance for fuel cells","authors":"Daeil Choi ,&nbsp;Subin Park ,&nbsp;Yun Sik Kang ,&nbsp;Sung Jong Yoo","doi":"10.1016/j.coelec.2024.101582","DOIUrl":"10.1016/j.coelec.2024.101582","url":null,"abstract":"<div><p>Anode catalysis reduces the cost and remarkably improves the fuel cell performance; however, it is often neglected owing to its fast kinetics. Currently, the majority of hydrogen is obtained by reforming and purifying the hydrocarbons containing impurities such as CO, CO<sub>2</sub>, and H<sub>2</sub>S. CO adsorbs more strongly than hydrogen onto the anode catalysts, inhibiting hydrogen oxidation and resulting in performance degradation. Although activity enhancement is essential, impurity tolerance should be preferred over activity for fuel-cell anode catalysts. Various studies have reported improved CO tolerance via lowering the intrinsic CO adsorption energy of the catalyst by tuning the electronic structure or modulating the OH adsorption energy by placing oxophilic materials near the catalysts. Herein, we categorize recent noteworthy studies according to their strategies and present innovative design principles for CO-resistant anode catalysts.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"48 ","pages":"Article 101582"},"PeriodicalIF":7.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001431/pdfft?md5=cf13dcdd20deb47ff48eb77562c3a9c0&pid=1-s2.0-S2451910324001431-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current status of ferro-/ferricyanide for redox flow batteries 用于氧化还原液流电池的铁/铁氰化物的现状
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-28 DOI: 10.1016/j.coelec.2024.101581
Maryam Mouselly , Hussain Alawadhi , Sirugaloor Thangavel Senthilkumar

The ferro-/ferricyanide couple has been extensively investigated as a redox species in various redox flow batteries (RFBs) due to its advantageous electrochemical properties, user-friendliness, and affordable cost. However, the high concentration and stability of ferro-/ferricyanide are important for developing high-energy density and long-cycle life RFBs. Different methods have been explored to increase its concentration through diverse ion effects and cation modification while also exploring the effects of pH, light, and air sensitivity on its stability. This review will provide an overview of recent research on the concentration enhancement of ferro-/ferricyanide and its stability for RFBs.

铁/铁氰化物偶联物因其有利的电化学特性、用户友好性和经济实惠的成本,已被广泛研究用作各种氧化还原液流电池(RFB)中的氧化还原物种。然而,高浓度和稳定的铁氰化物对开发高能量密度和长循环寿命的 RFB 十分重要。人们探索了不同的方法,通过不同的离子效应和阳离子修饰来提高其浓度,同时还探索了 pH 值、光和空气敏感性对其稳定性的影响。本综述将概述有关提高铁/铁氰化物浓度及其在射频电池中稳定性的最新研究。
{"title":"Current status of ferro-/ferricyanide for redox flow batteries","authors":"Maryam Mouselly ,&nbsp;Hussain Alawadhi ,&nbsp;Sirugaloor Thangavel Senthilkumar","doi":"10.1016/j.coelec.2024.101581","DOIUrl":"10.1016/j.coelec.2024.101581","url":null,"abstract":"<div><p>The ferro-/ferricyanide couple has been extensively investigated as a redox species in various redox flow batteries (RFBs) due to its advantageous electrochemical properties, user-friendliness, and affordable cost. However, the high concentration and stability of ferro-/ferricyanide are important for developing high-energy density and long-cycle life RFBs. Different methods have been explored to increase its concentration through diverse ion effects and cation modification while also exploring the effects of pH, light, and air sensitivity on its stability. This review will provide an overview of recent research on the concentration enhancement of ferro-/ferricyanide and its stability for RFBs.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"48 ","pages":"Article 101581"},"PeriodicalIF":7.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-guided design, synthesis, and characterization of atomically dispersed electrocatalysts 机器学习指导下的原子分散电催化剂设计、合成和表征
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-21 DOI: 10.1016/j.coelec.2024.101578
Sirui Li , Hanguang Zhang , Edward F. Holby , Piotr Zelenay , Wilton J.M. Kort-Kamp

The recent integration of machine learning into materials design has revolutionized the understanding of structure–property relationships and optimization of material properties beyond the trial-and-error paradigm. On one hand, machine learning has significantly accelerated the development of atomically dispersed metal-nitrogen-carbon (M-N-C) electrocatalysts, which traditionally heavily relied on heuristic approaches. On the other hand, the primary challenge of leveraging machine learning to expedite M-N-C materials discovery lies in the cost associated with data collection. We review recent machine learning integration strategies for M-N-C catalyst development, including discussions on the typical algorithms such as symbolic regression and convolutional neural networks employed for the theoretical design, synthesis optimization via active learning, and advanced microscopy characterization. Subsequently, we provide our perspective on potential near-future directions for furthering machine learning-assisted development of new M-N-C catalysts and elucidating the complex physicochemical mechanisms governing the selectivity, activity, and durability in this class of materials.

最近,机器学习与材料设计的结合彻底改变了人们对结构-性能关系的理解,并使材料性能的优化超越了试错模式。一方面,机器学习大大加快了原子分散金属-氮-碳(M-N-C)电催化剂的开发速度,而传统的电催化剂主要依赖启发式方法。另一方面,利用机器学习加速 M-N-C 材料发现的主要挑战在于与数据收集相关的成本。我们回顾了最近用于 M-N-C 催化剂开发的机器学习集成策略,包括讨论理论设计、通过主动学习优化合成以及高级显微表征所采用的符号回归和卷积神经网络等典型算法。随后,我们就机器学习辅助开发新型 M-N-C 催化剂的近期潜在方向提出了自己的观点,并阐明了这一类材料的选择性、活性和耐久性的复杂物理化学机制。
{"title":"Machine learning-guided design, synthesis, and characterization of atomically dispersed electrocatalysts","authors":"Sirui Li ,&nbsp;Hanguang Zhang ,&nbsp;Edward F. Holby ,&nbsp;Piotr Zelenay ,&nbsp;Wilton J.M. Kort-Kamp","doi":"10.1016/j.coelec.2024.101578","DOIUrl":"10.1016/j.coelec.2024.101578","url":null,"abstract":"<div><p>The recent integration of machine learning into materials design has revolutionized the understanding of structure–property relationships and optimization of material properties beyond the trial-and-error paradigm. On one hand, machine learning has significantly accelerated the development of atomically dispersed metal-nitrogen-carbon (M-N-C) electrocatalysts, which traditionally heavily relied on heuristic approaches. On the other hand, the primary challenge of leveraging machine learning to expedite M-N-C materials discovery lies in the cost associated with data collection. We review recent machine learning integration strategies for M-N-C catalyst development, including discussions on the typical algorithms such as symbolic regression and convolutional neural networks employed for the theoretical design, synthesis optimization via active learning, and advanced microscopy characterization. Subsequently, we provide our perspective on potential near-future directions for furthering machine learning-assisted development of new M-N-C catalysts and elucidating the complex physicochemical mechanisms governing the selectivity, activity, and durability in this class of materials.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"48 ","pages":"Article 101578"},"PeriodicalIF":7.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling oxygen reduction activity loss mechanisms in atomically dispersed Fe–N–C electrocatalysts 原子分散的 Fe-N-C 电催化剂中氧还原活性损失机制建模
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-21 DOI: 10.1016/j.coelec.2024.101579
Sirui Li , Wilton J.M. Kort-Kamp , Piotr Zelenay , Edward F. Holby

Materials degradation is a major factor that limits the wider adoption of renewable and clean energy technologies. This is particularly true for the Pt group metal-free (PGM-free) atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts. While many experimental studies have investigated and reported the phenomenological aspects of M-N-C degradation, only a few modeling studies have considered degradation mechanisms at the atomic level. Understanding the mechanisms responsible for activity loss occurring in atomically dispersed M-N-C’s is crucial towards rationally designing active, durable, and less expensive Earth-abundant catalysts. Towards this end, we have surveyed recent literature concerning the modeling of corrosion mechanisms that impact M-N-C catalysts (Fe–N–C, in particular) and offer our own perspectives on the future direction of this field.

材料降解是限制可再生能源和清洁能源技术广泛应用的一个主要因素。对于铂族无金属(PGM-free)原子分散金属-氮-碳(M-N-C)催化剂来说尤其如此。虽然许多实验研究已经调查并报告了 M-N-C 降解的现象,但只有少数建模研究考虑了原子层面的降解机制。了解原子分散的 M-N-C 中发生活性损失的机理,对于合理设计活性、耐久性和低成本的地球富集催化剂至关重要。为此,我们对近期有关影响 M-N-C 催化剂(尤其是 Fe-N-C)腐蚀机制建模的文献进行了调查,并对该领域的未来发展方向提出了自己的看法。
{"title":"Modeling oxygen reduction activity loss mechanisms in atomically dispersed Fe–N–C electrocatalysts","authors":"Sirui Li ,&nbsp;Wilton J.M. Kort-Kamp ,&nbsp;Piotr Zelenay ,&nbsp;Edward F. Holby","doi":"10.1016/j.coelec.2024.101579","DOIUrl":"10.1016/j.coelec.2024.101579","url":null,"abstract":"<div><p>Materials degradation is a major factor that limits the wider adoption of renewable and clean energy technologies. This is particularly true for the Pt group metal-free (PGM-free) atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts. While many experimental studies have investigated and reported the phenomenological aspects of M-N-C degradation, only a few modeling studies have considered degradation mechanisms at the atomic level. Understanding the mechanisms responsible for activity loss occurring in atomically dispersed M-N-C’s is crucial towards rationally designing active, durable, and less expensive Earth-abundant catalysts. Towards this end, we have surveyed recent literature concerning the modeling of corrosion mechanisms that impact M-N-C catalysts (Fe–N–C, in particular) and offer our own perspectives on the future direction of this field.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"48 ","pages":"Article 101579"},"PeriodicalIF":7.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current-mediated suppression of hydrogen evolution reaction in determination of Zn-metal Coulombic efficiency 在测定锌-金属库仑效率时以电流为媒介抑制氢进化反应
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-08 DOI: 10.1016/j.coelec.2024.101571
Mingyu Lee , Hyuntae Lee , Jaewoong Han , Chanyeon Kim , Hongkyung Lee

Coulombic efficiency (CE) is a crucial metric in battery research, particularly for aqueous Zinc (Zn)-metal batteries. Nonetheless, the accurate determination of Zn CE is complicated due to a lack of awareness about charge loss triggered by the hydrogen evolution reaction (HER) and non-standardized testing conditions. This study reveals the governing factors affecting the Zn CE measurement under different testing conditions, such as applied current density, Zn-plating capacity, and half-cell platforms. Through literature and experimental studies, it is evident that the Zn CE inherently increases with higher current densities and capacities. When decoupling the actual potentials of HER and Zn deposition, HER-triggered parasitic reactions can be self-suppressed owing to greater overpotential for HER than for Zn-plating at higher current densities. A consistent trend was observed when using different Zn salts and current collectors. This awareness can help standardize CE measuring protocols for validating novel concepts and materials.

库仑效率(CE)是电池研究中的一个重要指标,尤其是对于锌(Zn)金属水电池而言。然而,由于缺乏对氢进化反应(HER)引发的电荷损失的认识以及测试条件不规范,准确测定锌CE非常复杂。本研究揭示了不同测试条件下影响 Zn CE 测量的主要因素,如应用电流密度、镀锌容量和半电池平台。通过文献和实验研究发现,锌 CE 会随着电流密度和容量的增加而增加。如果将 HER 和 Zn 沉积的实际电位脱钩,由于在较高电流密度下 HER 的过电位大于 Zn 镀层的过电位,HER 触发的寄生反应可以自我抑制。在使用不同的锌盐和电流收集器时,观察到了一致的趋势。这种认识有助于标准化 CE 测量协议,以验证新概念和新材料。
{"title":"Current-mediated suppression of hydrogen evolution reaction in determination of Zn-metal Coulombic efficiency","authors":"Mingyu Lee ,&nbsp;Hyuntae Lee ,&nbsp;Jaewoong Han ,&nbsp;Chanyeon Kim ,&nbsp;Hongkyung Lee","doi":"10.1016/j.coelec.2024.101571","DOIUrl":"10.1016/j.coelec.2024.101571","url":null,"abstract":"<div><p>Coulombic efficiency (CE) is a crucial metric in battery research, particularly for aqueous Zinc (Zn)-metal batteries. Nonetheless, the accurate determination of Zn CE is complicated due to a lack of awareness about charge loss triggered by the hydrogen evolution reaction (HER) and non-standardized testing conditions. This study reveals the governing factors affecting the Zn CE measurement under different testing conditions, such as applied current density, Zn-plating capacity, and half-cell platforms. Through literature and experimental studies, it is evident that the Zn CE inherently increases with higher current densities and capacities. When decoupling the actual potentials of HER and Zn deposition, HER-triggered parasitic reactions can be self-suppressed owing to greater overpotential for HER than for Zn-plating at higher current densities. A consistent trend was observed when using different Zn salts and current collectors. This awareness can help standardize CE measuring protocols for validating novel concepts and materials.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101571"},"PeriodicalIF":7.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroanalysis as a method for monitoring photocatalytic processes: A perspective beyond remediation 电分析作为一种监测光催化过程的方法:超越补救的视角
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-30 DOI: 10.1016/j.coelec.2024.101570
Pádraig McDonagh , Nathan Skillen , Peter K.J. Robertson , Denis McCrudden

The advancement of photocatalytic technologies requires complete system efficiency, and to this end, electrochemical sensors have the potential to complement and enhance the development of semiconductor catalyst and reactor design. A particular advantage of electroanalysis is that the sensors may be incorporated directly into photocatalytic reactors to allow real-time in situ analysis. This can then facilitate more accurate process control in the photocatalytic reactor. This report highlights the use of electroanalysis to monitor photocatalytic processes, considering applications where it has been used to date. Relevant properties of the sensors, with particular interest on sensitivity and response times are detailed alongside comparison to the more commonly used analytical techniques. It also explores the most recent progressions beyond monitoring photocatalytic remediation processes including photocatalytic valorization and reactive oxygen species monitoring.

光催化技术的发展需要全面的系统效率,为此,电化学传感器有可能补充和加强半导体催化剂和反应器设计的发展。电分析法的一个特别优势是可以将传感器直接集成到光催化反应器中,进行实时分析。这将有助于对光催化反应器进行更精确的过程控制。本报告重点介绍了使用电分析法监测光催化过程的情况,并考虑了迄今为止使用电分析法的应用领域。报告详细介绍了传感器的相关特性,尤其是灵敏度和响应时间,并与更常用的分析技术进行了比较。报告还探讨了光催化修复过程监测以外的最新进展,包括光催化估值和活性氧监测。
{"title":"Electroanalysis as a method for monitoring photocatalytic processes: A perspective beyond remediation","authors":"Pádraig McDonagh ,&nbsp;Nathan Skillen ,&nbsp;Peter K.J. Robertson ,&nbsp;Denis McCrudden","doi":"10.1016/j.coelec.2024.101570","DOIUrl":"10.1016/j.coelec.2024.101570","url":null,"abstract":"<div><p>The advancement of photocatalytic technologies requires complete system efficiency, and to this end, electrochemical sensors have the potential to complement and enhance the development of semiconductor catalyst and reactor design. A particular advantage of electroanalysis is that the sensors may be incorporated directly into photocatalytic reactors to allow real-time <em>in situ</em> analysis. This can then facilitate more accurate process control in the photocatalytic reactor. This report highlights the use of electroanalysis to monitor photocatalytic processes, considering applications where it has been used to date. Relevant properties of the sensors, with particular interest on sensitivity and response times are detailed alongside comparison to the more commonly used analytical techniques. It also explores the most recent progressions beyond monitoring photocatalytic remediation processes including photocatalytic valorization and reactive oxygen species monitoring.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101570"},"PeriodicalIF":7.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001315/pdfft?md5=bb9fcdad05edbaf96150a6a478d57d99&pid=1-s2.0-S2451910324001315-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Opinion in Electrochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1