Pub Date : 2024-08-01DOI: 10.1016/j.dmpk.2024.101029
Kelvin Musyoka , Chim W. Chan , Evelyn Marie Gutiérrez Rico , Protus Omondi , Caroline Kijogi , Takatsugu Okai , James Kongere , Mtakai Ngara , Wataru Kagaya , Bernard N. Kanoi , Masahiro Hiratsuka , Yasutoshi Kido , Jesse Gitaka , Akira Kaneko
Cytochrome P450 3A4 (CYP3A4) enzyme is involved in the metabolism of about 30 % of clinically used drugs, including the antimalarials artemether and lumefantrine. CYP3A4 polymorphisms yield enzymatic variants that contribute to inter-individual variation in drug metabolism. Here, we examined CYP3A4 polymorphisms in populations from malaria-endemic islands in Lake Victoria, Kenya, and Vanuatu, to expand on the limited data sets. We used archived dried blood spots collected from 142 Kenyan and 263 ni-Vanuatu adults during cross-sectional malaria surveys in 2013 and 2005–13, respectively, to detect CYP3A4 variation by polymerase chain reaction (PCR) and sequencing. In Kenya, we identified 14 CYP3A4 single nucleotide polymorphisms (SNPs), including the 4713G (CYP3A4∗1B; allele frequency 83.9 %) and 19382A (CYP3A4∗15; 0.7 %) variants that were previously linked to altered metabolism of antimalarials. In Vanuatu, we detected 15 SNPs, including the 4713A (CYP3A4∗1A; 88.6 %) and 25183C (CYP3A4∗18; 0.6 %) variants. Additionally, we detected a rare and novel SNP C4614T (0.8 %) in the 5′ untranslated region. A higher proportion of CYP3A4 genetic variance was found among ni-Vanuatu populations (16 %) than among Lake Victoria Kenyan populations (8 %). Our work augments the scarce data sets and contributes to improved precision medicine approaches, particularly to anti-malarial chemotherapy, in East African and Pacific Islander populations.
{"title":"Genetic variation present in the CYP3A4 gene in Ni-Vanuatu and Kenyan populations in malaria endemicity","authors":"Kelvin Musyoka , Chim W. Chan , Evelyn Marie Gutiérrez Rico , Protus Omondi , Caroline Kijogi , Takatsugu Okai , James Kongere , Mtakai Ngara , Wataru Kagaya , Bernard N. Kanoi , Masahiro Hiratsuka , Yasutoshi Kido , Jesse Gitaka , Akira Kaneko","doi":"10.1016/j.dmpk.2024.101029","DOIUrl":"10.1016/j.dmpk.2024.101029","url":null,"abstract":"<div><p>Cytochrome P450 3A4 (CYP3A4) enzyme is involved in the metabolism of about 30 % of clinically used drugs, including the antimalarials artemether and lumefantrine. <em>CYP3A4</em> polymorphisms yield enzymatic variants that contribute to inter-individual variation in drug metabolism. Here, we examined <em>CYP3A4</em> polymorphisms in populations from malaria-endemic islands in Lake Victoria, Kenya, and Vanuatu, to expand on the limited data sets. We used archived dried blood spots collected from 142 Kenyan and 263 ni-Vanuatu adults during cross-sectional malaria surveys in 2013 and 2005–13, respectively, to detect <em>CYP3A4</em> variation by polymerase chain reaction (PCR) and sequencing. In Kenya, we identified 14 <em>CYP3A4</em> single nucleotide polymorphisms (SNPs), including the 4713G (<em>CYP3A4∗1B</em>; allele frequency 83.9 %) and 19382A (<em>CYP3A4∗15</em>; 0.7 %) variants that were previously linked to altered metabolism of antimalarials. In Vanuatu, we detected 15 SNPs, including the 4713A (<em>CYP3A4∗1A</em>; 88.6 %) and 25183C (<em>CYP3A4∗18</em>; 0.6 %) variants. Additionally, we detected a rare and novel SNP C4614T (0.8 %) in the 5′ untranslated region. A higher proportion of <em>CYP3A4</em> genetic variance was found among ni-Vanuatu populations (16 %) than among Lake Victoria Kenyan populations (8 %). Our work augments the scarce data sets and contributes to improved precision medicine approaches, particularly to anti-malarial chemotherapy, in East African and Pacific Islander populations.</p></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"57 ","pages":"Article 101029"},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347436724000351/pdfft?md5=e58051588ccdc0e46f04f97fd0bf3ea1&pid=1-s2.0-S1347436724000351-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141843365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.dmpk.2024.101023
Nilesh Gaud , Dawid Gogola , Anna Kowal-Chwast , Ewelina Gabor-Worwa , Peter Littlewood , Krzysztof Brzózka , Kamil Kus , Maria Walczak
Rosiglitazone is an activator of nuclear peroxisome proliferator-activated (PPAR) receptor gamma used in the treatment of type 2 diabetes mellitus. The elimination of rosiglitazone occurs mainly via metabolism, with major contribution by enzyme cytochrome P450 (CYP) 2C8. Primary routes of rosiglitazone metabolism are N-demethylation and hydroxylation. Modulation of CYP2C8 activity by co-administered drugs lead to prominent changes in the exposure of rosiglitazone and its metabolites. Here, we attempt to develop mechanistic parent-metabolite physiologically based pharmacokinetic (PBPK) model for rosiglitazone. Our goal is to predict potential drug-drug interaction (DDI) and consequent changes in metabolite N-desmethyl rosiglitazone exposure. The PBPK modeling was performed in the PKSim® software using clinical pharmacokinetics data from literature. The contribution to N-desmethyl rosiglitazone formation by CYP2C8 was delineated using vitro metabolite formation rates from recombinant enzyme system. Developed model was verified for prediction of rosiglitazone DDI potential and its metabolite exposure based on observed clinical DDI studies. Developed model exhibited good predictive performance both for rosiglitazone and N-desmethyl rosiglitazone respectively, evaluated based on commonly acceptable criteria. In conclusion, developed model helps with prediction of CYP2C8 DDI using rosiglitazone as a substrate, as well as changes in metabolite exposure. In vitro data for metabolite formation can be successfully utilized to translate to in vivo conditions.
{"title":"Physiologically based pharmacokinetic modeling of CYP2C8 substrate rosiglitazone and its metabolite to predict metabolic drug-drug interaction","authors":"Nilesh Gaud , Dawid Gogola , Anna Kowal-Chwast , Ewelina Gabor-Worwa , Peter Littlewood , Krzysztof Brzózka , Kamil Kus , Maria Walczak","doi":"10.1016/j.dmpk.2024.101023","DOIUrl":"10.1016/j.dmpk.2024.101023","url":null,"abstract":"<div><p>Rosiglitazone is an activator of nuclear peroxisome proliferator-activated (PPAR) receptor gamma used in the treatment of type 2 diabetes mellitus. The elimination of rosiglitazone occurs mainly via metabolism, with major contribution by enzyme cytochrome P450 (CYP) 2C8. Primary routes of rosiglitazone metabolism are N-demethylation and hydroxylation. Modulation of CYP2C8 activity by co-administered drugs lead to prominent changes in the exposure of rosiglitazone and its metabolites. Here, we attempt to develop mechanistic parent-metabolite physiologically based pharmacokinetic (PBPK) model for rosiglitazone. Our goal is to predict potential drug-drug interaction (DDI) and consequent changes in metabolite N-desmethyl rosiglitazone exposure. The PBPK modeling was performed in the PKSim® software using clinical pharmacokinetics data from literature. The contribution to N-desmethyl rosiglitazone formation by CYP2C8 was delineated using vitro metabolite formation rates from recombinant enzyme system. Developed model was verified for prediction of rosiglitazone DDI potential and its metabolite exposure based on observed clinical DDI studies. Developed model exhibited good predictive performance both for rosiglitazone and N-desmethyl rosiglitazone respectively, evaluated based on commonly acceptable criteria. In conclusion, developed model helps with prediction of CYP2C8 DDI using rosiglitazone as a substrate, as well as changes in metabolite exposure. In vitro data for metabolite formation can be successfully utilized to translate to in vivo conditions.</p></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"57 ","pages":"Article 101023"},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.dmpk.2024.101025
Nintedanib is used to treat idiopathic pulmonary fibrosis, systemic sclerosis, interstitial lung disease, and progressive fibrotic interstitial lung disease. It is primarily cleared via hepatic metabolism, hydrolysis, and glucuronidation. In addition, formation of the iminium ion, a possible reactive metabolite, was predicted based on the chemical structure of nintedanib. To obtain a hint which may help to clarify the cause of nintedanib-induced liver injury, we investigated whether iminium ions were formed in the human liver. To detect unstable iminium ions using liquid chromatography-tandem mass spectrometry (LC-MS/MS), potassium cyanide was added to the reaction mixture as a trapping agent. Human liver and intestinal microsomes were incubated with nintedanib in the presence of NADPH to form two iminium ion metabolites on the piperazine ring. Their formation is strongly inhibited by ketoconazole, a potent cytochrome P450 (CYP) 3A4 inhibitor. Among the recombinant P450s, only CYP3A4 formed cyanide adducts. The role of CYP3A4 was supported by the positive correlation between CYP3A4 protein abundance, as determined by LC-MS-based proteomics, and the formation of cyanide adducts in 25 individual human liver microsomes. In conclusion, we have demonstrated that iminium ion metabolites are formed from nintedanib by CYP3A4 as potential reactive metabolites.
{"title":"Iminium ion metabolites are formed from nintedanib by human CYP3A4","authors":"","doi":"10.1016/j.dmpk.2024.101025","DOIUrl":"10.1016/j.dmpk.2024.101025","url":null,"abstract":"<div><p>Nintedanib is used to treat idiopathic pulmonary fibrosis, systemic sclerosis, interstitial lung disease, and progressive fibrotic interstitial lung disease. It is primarily cleared via hepatic metabolism, hydrolysis, and glucuronidation. In addition, formation of the iminium ion, a possible reactive metabolite, was predicted based on the chemical structure of nintedanib. To obtain a hint which may help to clarify the cause of nintedanib-induced liver injury, we investigated whether iminium ions were formed in the human liver. To detect unstable iminium ions using liquid chromatography-tandem mass spectrometry (LC-MS/MS), potassium cyanide was added to the reaction mixture as a trapping agent. Human liver and intestinal microsomes were incubated with nintedanib in the presence of NADPH to form two iminium ion metabolites on the piperazine ring. Their formation is strongly inhibited by ketoconazole, a potent cytochrome P450 (CYP) 3A4 inhibitor. Among the recombinant P450s, only CYP3A4 formed cyanide adducts. The role of CYP3A4 was supported by the positive correlation between CYP3A4 protein abundance, as determined by LC-MS-based proteomics, and the formation of cyanide adducts in 25 individual human liver microsomes. In conclusion, we have demonstrated that iminium ion metabolites are formed from nintedanib by CYP3A4 as potential reactive metabolites.</p></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"57 ","pages":"Article 101025"},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141396519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.dmpk.2024.101031
Substance use disorders (SUDs) are complex mental health conditions involving a problematic pattern of substance use. Challenges remain in understanding their neural mechanisms, which are likely to lead to improved SUD treatments. Human brain organoids, brain-like 3D in vitro cultures derived from human stem cells, show unique potential in recapitulating the response of a developing human brain to substances. Here, we review the recent progress in understanding SUDs using human brain organoid models focusing on neurodevelopmental perspectives. We first summarize the background of SUDs in humans. Moreover, we introduce the development of various human brain organoid models and then discuss current progress and findings underlying the abuse of substances like nicotine, alcohol, and other addictive drugs using organoid models. Furthermore, we review efforts to develop organ chips and microphysiological systems to engineer better human brain organoids for advancing SUD studies. Lastly, we conclude by elaborating on the current challenges and future directions of SUD studies using human brain organoids.
物质使用障碍(SUD)是一种复杂的精神疾病,涉及有问题的物质使用模式。在了解其神经机制方面仍然存在挑战,而了解这些机制很可能有助于改进药物使用障碍的治疗。人脑器官组织是由人类干细胞衍生的类脑三维体外培养物,在重现发育中的人脑对药物的反应方面显示出独特的潜力。在此,我们从神经发育的角度回顾了利用人脑类器官模型了解 SUD 的最新进展。我们首先总结了人类 SUD 的背景。此外,我们还介绍了各种人脑类器官模型的发展,然后讨论了目前利用类器官模型研究尼古丁、酒精和其他成瘾药物滥用的进展和发现。此外,我们还回顾了开发器官芯片和微生理系统的工作,以设计出更好的人脑类器官,推动 SUD 研究。最后,我们阐述了使用人脑器官模型进行 SUD 研究的当前挑战和未来方向。
{"title":"Human brain organoids for understanding substance use disorders","authors":"","doi":"10.1016/j.dmpk.2024.101031","DOIUrl":"10.1016/j.dmpk.2024.101031","url":null,"abstract":"<div><p>Substance use disorders (SUDs) are complex mental health conditions involving a problematic pattern of substance use. Challenges remain in understanding their neural mechanisms, which are likely to lead to improved SUD treatments. Human brain organoids, brain-like 3D in vitro cultures derived from human stem cells, show unique potential in recapitulating the response of a developing human brain to substances. Here, we review the recent progress in understanding SUDs using human brain organoid models focusing on neurodevelopmental perspectives. We first summarize the background of SUDs in humans. Moreover, we introduce the development of various human brain organoid models and then discuss current progress and findings underlying the abuse of substances like nicotine, alcohol, and other addictive drugs using organoid models. Furthermore, we review efforts to develop organ chips and microphysiological systems to engineer better human brain organoids for advancing SUD studies. Lastly, we conclude by elaborating on the current challenges and future directions of SUD studies using human brain organoids.</p></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"58 ","pages":"Article 101031"},"PeriodicalIF":2.7,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141839373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.dmpk.2024.101030
Manna Zhao , Hua Zhang , Sheng Ma , Shuqing Gong , Cheng Wei , Liyan Miao , Weifeng Zhao
Jaktinib is a novel Janus kinase (JAK) inhibitor, and a phase I clinical trial of single-dose Jaktinib was conducted in a population of subjects with hepatic impairment to assess the safety, tolerability, and pharmacokinetic characteristics of Jaktinib. The patients were administered orally with 100 mg Jaktinib on day 1 in all the mild hepatic impairment group (mild group, n = 8), moderate hepatic impairment group (moderate group, n = 8) and normal hepatic function group (normal group, n = 8), and the blood samples were collected for later analysis. The mild to moderate hepatic impairment affected the metabolism of Jaktinib, which may lead to accumulation of original Jaktinib. The pharmacokinetic characteristics of the metabolites (ZG0244 and ZG0245) of Jaktinib were also analyzed. The exposure of Jaktinib is approximately 2-fold in patients with mild and moderate hepatic impairment than normal hepatic function. No serious adverse events occurred. In summary, a dosage reduction is recommended for patients with mild or moderate hepatic impairment. Further investigations for the dose adjustment in mild/moderate hepatic impairment will be considered. Trial registration number: NCT04993404.
{"title":"Clinical pharmacokinetic characteristics of Jaktinib in subjects with hepatic impairment in a phase I trial","authors":"Manna Zhao , Hua Zhang , Sheng Ma , Shuqing Gong , Cheng Wei , Liyan Miao , Weifeng Zhao","doi":"10.1016/j.dmpk.2024.101030","DOIUrl":"10.1016/j.dmpk.2024.101030","url":null,"abstract":"<div><div>Jaktinib is a novel Janus kinase (JAK) inhibitor, and a phase I clinical trial of single-dose Jaktinib was conducted in a population of subjects with hepatic impairment to assess the safety, tolerability, and pharmacokinetic characteristics of Jaktinib. The patients were administered orally with 100 mg Jaktinib on day 1 in all the mild hepatic impairment group (mild group, n = 8), moderate hepatic impairment group (moderate group, n = 8) and normal hepatic function group (normal group, n = 8), and the blood samples were collected for later analysis. The mild to moderate hepatic impairment affected the metabolism of Jaktinib, which may lead to accumulation of original Jaktinib. The pharmacokinetic characteristics of the metabolites (ZG0244 and ZG0245) of Jaktinib were also analyzed. The exposure of Jaktinib is approximately 2-fold in patients with mild and moderate hepatic impairment than normal hepatic function. No serious adverse events occurred. In summary, a dosage reduction is recommended for patients with mild or moderate hepatic impairment. Further investigations for the dose adjustment in mild/moderate hepatic impairment will be considered. Trial registration number: NCT04993404.</div></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"59 ","pages":"Article 101030"},"PeriodicalIF":2.7,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141843018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1016/j.dmpk.2024.101028
Makoto Amifuji , Mai Inagaki , Masahito Yoshida , Takayuki Doi , Masanori Tachikawa
Cyclic peptides have attracted attention as new modalities for drug development owing to their unique pharmacokinetic and pharmacodynamic properties. Destruxin E, a 19-membered cyclodepsipeptide, is a promising candidate drug for cancer therapy. The purpose of the present study was to clarify the molecular mechanisms underlying membrane transport, metabolism, and the binding for target molecules of destruxin E in human cervical carcinoma HeLa cells used as a model of cancer cells. The influx transport and the intracellular metabolism of destruxin E were non-saturable and saturable, respectively, at up to 10 μM. The intracellular amounts of destruxin E and destruxin E-diol after incubation of destruxin E with the cells significantly decreased at 4 °C compared to those at 37 °C. Destruxin E-diol, but not destruxin E, undergoes efflux transport out of cells via P-gp/MDR1/ABCB1 and BCRP/ABCG2. The epoxide hydrolase EPHX2 functions as a potent metabolizing enzyme that can convert the epoxide of destruxin E to the destruxin E-diol. Treatment with an EPHX2 inhibitor increased the intracellular destruxin E levels and enhanced the inhibitory activity of vacuolar type-H+ ATPase. These results suggest that epoxide hydrolase could be a regulatory factor for intracellular destruxin E levels and its pharmacological activity.
环肽因其独特的药代动力学和药效学特性,作为药物开发的新模式备受关注。Destruxin E 是一种 19 元环十二肽,是一种很有前途的癌症治疗候选药物。本研究旨在阐明 destruxin E 在作为癌细胞模型的人宫颈癌 HeLa 细胞中的膜转运、代谢以及与靶分子结合的分子机制。在 10 μM 以下,去铁素 E 的流入转运和细胞内代谢分别是不可饱和和可饱和的。去铁素 E 与细胞培养后,细胞内去铁素 E 和去铁素 E-二醇的含量在 4 ℃ 时比 37 ℃ 时明显减少。destruxin E-diol(而非 destruxin E)可通过 P-gp/MDR1/ABCB1 和 BCRP/ABCG2 从细胞中外流。环氧化物水解酶 EPHX2 是一种有效的代谢酶,可将去铁素 E 的环氧化物转化为去铁素 E-二醇。使用 EPHX2 抑制剂会增加细胞内去铁素 E 的含量,并增强空泡型-H+ ATPase 的抑制活性。这些结果表明,环氧化物水解酶可能是细胞内去铁素 E 含量及其药理活性的一个调节因素。
{"title":"Characteristics of membrane transport, metabolism, and target protein binding of cyclic depsipeptide destruxin E in HeLa cells","authors":"Makoto Amifuji , Mai Inagaki , Masahito Yoshida , Takayuki Doi , Masanori Tachikawa","doi":"10.1016/j.dmpk.2024.101028","DOIUrl":"10.1016/j.dmpk.2024.101028","url":null,"abstract":"<div><p>Cyclic peptides have attracted attention as new modalities for drug development owing to their unique pharmacokinetic and pharmacodynamic properties. Destruxin E, a 19-membered cyclodepsipeptide, is a promising candidate drug for cancer therapy. The purpose of the present study was to clarify the molecular mechanisms underlying membrane transport, metabolism, and the binding for target molecules of destruxin E in human cervical carcinoma HeLa cells used as a model of cancer cells. The influx transport and the intracellular metabolism of destruxin E were non-saturable and saturable, respectively, at up to 10 μM. The intracellular amounts of destruxin E and destruxin E-diol after incubation of destruxin E with the cells significantly decreased at 4 °C compared to those at 37 °C. Destruxin E-diol, but not destruxin E, undergoes efflux transport out of cells via P-gp/MDR1/ABCB1 and BCRP/ABCG2. The epoxide hydrolase EPHX2 functions as a potent metabolizing enzyme that can convert the epoxide of destruxin E to the destruxin E-diol. Treatment with an EPHX2 inhibitor increased the intracellular destruxin E levels and enhanced the inhibitory activity of vacuolar type-H<sup>+</sup> ATPase. These results suggest that epoxide hydrolase could be a regulatory factor for intracellular destruxin E levels and its pharmacological activity.</p></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"58 ","pages":"Article 101028"},"PeriodicalIF":2.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141693654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.dmpk.2024.101022
Kazuya Maeda Ph.D., Masayo Oishi Ph.D.
{"title":"Preface: In silico technologies to facilitate drug development","authors":"Kazuya Maeda Ph.D., Masayo Oishi Ph.D.","doi":"10.1016/j.dmpk.2024.101022","DOIUrl":"https://doi.org/10.1016/j.dmpk.2024.101022","url":null,"abstract":"","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"56 ","pages":"Article 101022"},"PeriodicalIF":2.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.dmpk.2024.101011
Kota Toshimoto
Physiologically-based pharmacokinetic (PBPK) models and quantitative systems pharmacology (QSP) models have contributed to drug development strategies. The parameters of these models are commonly estimated by capturing observed values using the nonlinear least-squares method. Software packages for PBPK and QSP modeling provide a range of parameter estimation algorithms. To choose the most appropriate method, modelers need to understand the basic concept of each approach. This review provides a general introduction to the key points of parameter estimation with a focus on the PBPK and QSP models, and the respective parameter estimation algorithms. The latter part assesses the performance of five parameter estimation algorithms – the quasi-Newton method, Nelder-Mead method, genetic algorithm, particle swarm optimization, and Cluster Gauss-Newton method – using three examples of PBPK and QSP modeling. The assessment revealed that some parameter estimation results were significantly influenced by the initial values. Moreover, the choice of algorithms demonstrating good estimation results heavily depends on factors such as model structure and the parameters to be estimated. To obtain credible parameter estimation results, it is advisable to conduct multiple rounds of parameter estimation under different conditions, employing various estimation algorithms.
{"title":"Beyond the basics: A deep dive into parameter estimation for advanced PBPK and QSP models","authors":"Kota Toshimoto","doi":"10.1016/j.dmpk.2024.101011","DOIUrl":"10.1016/j.dmpk.2024.101011","url":null,"abstract":"<div><p>Physiologically-based pharmacokinetic (PBPK) models and quantitative systems pharmacology (QSP) models have contributed to drug development strategies. The parameters of these models are commonly estimated by capturing observed values using the nonlinear least-squares method. Software packages for PBPK and QSP modeling provide a range of parameter estimation algorithms. To choose the most appropriate method, modelers need to understand the basic concept of each approach. This review provides a general introduction to the key points of parameter estimation with a focus on the PBPK and QSP models, and the respective parameter estimation algorithms. The latter part assesses the performance of five parameter estimation algorithms – the quasi-Newton method, Nelder-Mead method, genetic algorithm, particle swarm optimization, and Cluster Gauss-Newton method – using three examples of PBPK and QSP modeling. The assessment revealed that some parameter estimation results were significantly influenced by the initial values. Moreover, the choice of algorithms demonstrating good estimation results heavily depends on factors such as model structure and the parameters to be estimated. To obtain credible parameter estimation results, it is advisable to conduct multiple rounds of parameter estimation under different conditions, employing various estimation algorithms.</p></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"56 ","pages":"Article 101011"},"PeriodicalIF":2.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S134743672400017X/pdfft?md5=df144f44a617f6c8d8e5f084a82d4f42&pid=1-s2.0-S134743672400017X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140405620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chimeric antigen receptor (CAR) cells are genetically engineered immune cells that specifically target tumor-associated antigens and have revolutionized cancer treatment, particularly in hematological malignancies, with ongoing investigations into their potential applications in solid tumors. This review provides a comprehensive overview of the current status and challenges in drug metabolism and pharmacokinetics (DMPK) for CAR cell therapy, specifically emphasizing on quantitative modeling and simulation (M&S). Furthermore, the recent advances in quantitative model analysis have been reviewed, ranging from clinical data characterization to mechanism-based modeling that connects in vitro and in vivo nonclinical and clinical study data. Additionally, the future perspectives and areas for improvement in CAR cell therapy translation have been reviewed. This includes using formulation quality considerations, characterization of appropriate animal models, refinement of in vitro models for bottom-up approaches, and enhancement of quantitative bioanalytical methodology. Addressing these challenges within a DMPK framework is pivotal in facilitating the translation of CAR cell therapy, ultimately enhancing the patients’ lives through efficient CAR cell therapies.
嵌合抗原受体(CAR)细胞是一种基因工程免疫细胞,可特异性靶向肿瘤相关抗原,为癌症治疗,尤其是血液恶性肿瘤的治疗带来了革命性的变化,目前正在研究其在实体瘤中的潜在应用。本综述全面概述了 CAR 细胞疗法药物代谢和药代动力学 (DMPK) 的现状和挑战,特别强调了定量建模和模拟 (M&S)。此外,还回顾了定量模型分析的最新进展,从临床数据特征描述到连接体外和体内非临床和临床研究数据的基于机理的建模。此外,还回顾了 CAR 细胞疗法转化的未来前景和有待改进的领域。这包括使用制剂质量考虑因素、适当动物模型的特征描述、完善自下而上方法的体外模型,以及加强定量生物分析方法。在 DMPK 框架内应对这些挑战对于促进 CAR 细胞疗法的转化至关重要,最终将通过高效的 CAR 细胞疗法改善患者的生活。
{"title":"DMPK perspective on quantitative model analysis for chimeric antigen receptor cell therapy: Advances and challenges","authors":"Akihiko Goto, Yuu Moriya, Miyu Nakayama, Shinji Iwasaki, Syunsuke Yamamoto","doi":"10.1016/j.dmpk.2024.101003","DOIUrl":"10.1016/j.dmpk.2024.101003","url":null,"abstract":"<div><p>Chimeric antigen receptor (CAR) cells are genetically engineered immune cells that specifically target tumor-associated antigens and have revolutionized cancer treatment, particularly in hematological malignancies, with ongoing investigations into their potential applications in solid tumors. This review provides a comprehensive overview of the current status and challenges in drug metabolism and pharmacokinetics (DMPK) for CAR cell therapy, specifically emphasizing on quantitative modeling and simulation (M&S). Furthermore, the recent advances in quantitative model analysis have been reviewed, ranging from clinical data characterization to mechanism-based modeling that connects <em>in vitro</em> and <em>in vivo</em> nonclinical and clinical study data. Additionally, the future perspectives and areas for improvement in CAR cell therapy translation have been reviewed. This includes using formulation quality considerations, characterization of appropriate animal models, refinement of <em>in vitro</em> models for bottom-up approaches, and enhancement of quantitative bioanalytical methodology. Addressing these challenges within a DMPK framework is pivotal in facilitating the translation of CAR cell therapy, ultimately enhancing the patients’ lives through efficient CAR cell therapies.</p></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"56 ","pages":"Article 101003"},"PeriodicalIF":2.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347436724000090/pdfft?md5=fbce09f1734f25402898ac010f89ccf3&pid=1-s2.0-S1347436724000090-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139873153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A population pharmacokinetic (PopPK) analysis was conducted using data from 215 Japanese administered oral sirolimus (tablet and granule) including healthy subjects and patients with intractable vascular anomalies and other diseases. The analysis included neonates, infants, and adults, and identified covariates that influence sirolimus pharmacokinetics (PK). The final model was used to predict sirolimus trough concentrations for various dosing regimens and covariates of interest. The results showed that sirolimus trough concentrations were predicted to increase with higher levels of hemoglobin, and that the granule formulation had a 1.23-fold higher exposure than the tablet formulation. Coadministration of CYP3A4 inducers was found to decrease trough concentrations by 54 %. The PK simulations showed that administration of the granule formulation at doses of 0.02, 0.04, 0.06, and 0.08 mg/kg/day in ages <3 months, 3 to <6 months, 6 to <12 months, and ≥1 year, respectively, resulted in >70 % target attainment within the therapeutic trough concentration range (5–15 ng/mL). In conclusion, incorporation of time-varying covariates (body weight and age) into the PopPK model appropriately predicted sirolimus concentrations in Japanese subjects from infants to adult sub-populations. This PopPK model would therefore be able to provide a reference for clinical individualization of sirolimus dosing.
{"title":"Population pharmacokinetic analysis of sirolimus in Japanese pediatric and adult subjects receiving tablet or granule formulations","authors":"Taichi Miyazaki , Daichi Hayashi , Akifumi Nozawa , Shiho Yasue , Saori Endo , Hidenori Ohnishi , Ryuta Asada , Mototoshi Kato , Akihiro Fujino , Tatsuo Kuroda , Takanobu Maekawa , Shigehisa Fumino , Naonori Kawakubo , Tatsuro Tajiri , Kenji Shimizu , Chihiro Sanada , Izumi Hamada , Yuko Ishikawa , Mayumi Hasegawa , Kashyap Patel , Michio Ozeki","doi":"10.1016/j.dmpk.2024.101024","DOIUrl":"10.1016/j.dmpk.2024.101024","url":null,"abstract":"<div><div>A population pharmacokinetic (PopPK) analysis was conducted using data from 215 Japanese administered oral sirolimus (tablet and granule) including healthy subjects and patients with intractable vascular anomalies and other diseases. The analysis included neonates, infants, and adults, and identified covariates that influence sirolimus pharmacokinetics (PK). The final model was used to predict sirolimus trough concentrations for various dosing regimens and covariates of interest. The results showed that sirolimus trough concentrations were predicted to increase with higher levels of hemoglobin, and that the granule formulation had a 1.23-fold higher exposure than the tablet formulation. Coadministration of CYP3A4 inducers was found to decrease trough concentrations by 54 %. The PK simulations showed that administration of the granule formulation at doses of 0.02, 0.04, 0.06, and 0.08 mg/kg/day in ages <3 months, 3 to <6 months, 6 to <12 months, and ≥1 year, respectively, resulted in >70 % target attainment within the therapeutic trough concentration range (5–15 ng/mL). In conclusion, incorporation of time-varying covariates (body weight and age) into the PopPK model appropriately predicted sirolimus concentrations in Japanese subjects from infants to adult sub-populations. This PopPK model would therefore be able to provide a reference for clinical individualization of sirolimus dosing.</div></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"59 ","pages":"Article 101024"},"PeriodicalIF":2.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}