Pub Date : 2024-11-05DOI: 10.1016/j.earscirev.2024.104970
Xiwu Luan
The recent IODP drillings in the South China Sea (SCS) have greatly enhanced our understanding of the tectonics and evolution of the SCS, but also raised new questions on the opening of the SCS and the pre-SCS tectonic history. Recently available data on the South China block (SCB), SCS, Indochina block, Borneo, Sumatra, Andaman, Myanmar, and the Tibetan plateau allow an updated tectonic model for the Southeast Asian margin in the mid-Cretaceous (around 100 Ma). A global scale granitoid belt can be readily identified from Sikhote-Alin in the north all the way to Northwest Borneo and to the Qiangtang terrane, as representing a giant magmatic arc system in response to the direction change of the subduction of the Izinagi plate and the Indian-Australian plate at ∼100 Ma. This global subduction/magmatic system was displaced in the Early Cenozoic as the result of India-Asian collision, followed by the development of the escape tectonics characterized by strike-slip fault systems. The subsequent rifting further broke and dispersed the granitoid belts into fragments to the present locations in the Greater Southeast Asian tectonic realm.
最近在南中国海(SCS)进行的国际大洋钻探计划(IODP)钻探大大提高了我们对南中国海构造和演化的认识,但也对南中国海的开辟和南中国海之前的构造历史提出了新的问题。最近获得的有关华南地块(SCB)、SCS、印度支那地块、婆罗洲、苏门答腊、安达曼、缅甸和青藏高原的数据,为白垩纪中期(约 100 Ma)东南亚边缘的构造模型提供了更新的资料。从北部的锡霍特-阿林一直到婆罗洲西北部和羌塘地层,可以很容易地识别出一个全球规模的花岗岩带,它代表了一个巨型岩浆弧系统,是对伊兹那木板块和印度-澳大利亚板块在 100 Ma 左右的俯冲方向变化的反应。这一全球性俯冲/岩浆系统在早新生代因印度-亚洲碰撞而发生位移,随后以走向滑动断层系统为特征的逃逸构造运动发展起来。随后的断裂进一步将花岗岩带破碎并分散到大东南亚构造领域的现今位置。
{"title":"A model of plate tectonic framework for the Southeast Asia margin in the mid-Cretaceous","authors":"Xiwu Luan","doi":"10.1016/j.earscirev.2024.104970","DOIUrl":"10.1016/j.earscirev.2024.104970","url":null,"abstract":"<div><div>The recent IODP drillings in the South China Sea (SCS) have greatly enhanced our understanding of the tectonics and evolution of the SCS, but also raised new questions on the opening of the SCS and the pre-SCS tectonic history. Recently available data on the South China block (SCB), SCS, Indochina block, Borneo, Sumatra, Andaman, Myanmar, and the Tibetan plateau allow an updated tectonic model for the Southeast Asian margin in the mid-Cretaceous (around 100 Ma). A global scale granitoid belt can be readily identified from Sikhote-Alin in the north all the way to Northwest Borneo and to the Qiangtang terrane, as representing a giant magmatic arc system in response to the direction change of the subduction of the Izinagi plate and the Indian-Australian plate at ∼100 Ma. This global subduction/magmatic system was displaced in the Early Cenozoic as the result of India-Asian collision, followed by the development of the escape tectonics characterized by strike-slip fault systems. The subsequent rifting further broke and dispersed the granitoid belts into fragments to the present locations in the Greater Southeast Asian tectonic realm.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"259 ","pages":"Article 104970"},"PeriodicalIF":10.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.earscirev.2024.104972
Lucy Bricheno , Isobel Yeo , Michael Clare , James Hunt , Allan Griffiths , Lionel Carter , Peter J. Talling , Megan Baker , Stuart Wilson , Matthew West , Semisi Panuve , Samuiela Fonua
Subsea cables underpin global communications, carrying more than 99 % of all digital data traffic worldwide. While this >1.6 million km-long network has been designed to be highly resilient, subsea cables can be damaged by a number of natural hazards that occur across all water depths in the ocean. Here, we explore the diversity of natural hazards that can damage cables, considering a broad frequency-magnitude spectrum. This paper is the first global perspective of actual and potential hazards affecting cables. As such, it is an accessible overview of the regional variability and complexity of hazards. Relatively rare and extreme events, such as super typhoons, submarine landslides or associated turbidity currents and volcanic eruptions, can synchronously cause widespread damage to multiple systems, in some cases disconnecting entire countries or dramatically slowing data traffic. We show that damage is rarely linked to an initial event, instead arising from cascades of processes that can lag by years. Not all instances of cable damage that relate to natural processes are linked to extreme events. We show that much smaller intensity meteorological and oceanographic processes such as storms and continuous seafloor currents that have been overlooked by previous studies can also damage subsea cables. New analysis of past instances of cable damage reveals that a significant proportion of previously unattributed faults may relate to such low-level but sustained impacts. It is these hazards that are most likely to change in frequency and magnitude in response to ongoing climate change but are also more predictable. Through mapping of exposure to these different hazards, we identify geographically-constrained hazard hotspots and identify various mitigation measures to enhance the evidence base and further strengthen subsea telecommunications network resilience.
{"title":"The diversity, frequency and severity of natural hazard impacts on subsea telecommunications networks","authors":"Lucy Bricheno , Isobel Yeo , Michael Clare , James Hunt , Allan Griffiths , Lionel Carter , Peter J. Talling , Megan Baker , Stuart Wilson , Matthew West , Semisi Panuve , Samuiela Fonua","doi":"10.1016/j.earscirev.2024.104972","DOIUrl":"10.1016/j.earscirev.2024.104972","url":null,"abstract":"<div><div>Subsea cables underpin global communications, carrying more than 99 % of all digital data traffic worldwide. While this >1.6 million km-long network has been designed to be highly resilient, subsea cables can be damaged by a number of natural hazards that occur across all water depths in the ocean. Here, we explore the diversity of natural hazards that can damage cables, considering a broad frequency-magnitude spectrum. This paper is the first global perspective of actual and potential hazards affecting cables. As such, it is an accessible overview of the regional variability and complexity of hazards. Relatively rare and extreme events, such as super typhoons, submarine landslides or associated turbidity currents and volcanic eruptions, can synchronously cause widespread damage to multiple systems, in some cases disconnecting entire countries or dramatically slowing data traffic. We show that damage is rarely linked to an initial event, instead arising from cascades of processes that can lag by years. Not all instances of cable damage that relate to natural processes are linked to extreme events. We show that much smaller intensity meteorological and oceanographic processes such as storms and continuous seafloor currents that have been overlooked by previous studies can also damage subsea cables. New analysis of past instances of cable damage reveals that a significant proportion of previously unattributed faults may relate to such low-level but sustained impacts. It is these hazards that are most likely to change in frequency and magnitude in response to ongoing climate change but are also more predictable. Through mapping of exposure to these different hazards, we identify geographically-constrained hazard hotspots and identify various mitigation measures to enhance the evidence base and further strengthen subsea telecommunications network resilience.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"259 ","pages":"Article 104972"},"PeriodicalIF":10.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.earscirev.2024.104933
Etienne Jaillard
{"title":"Reply to comment on: Late Cretaceous-Paleogene orogenic build-up of the Ecuadorian Andes: Review and discussion by Antenor Alemán","authors":"Etienne Jaillard","doi":"10.1016/j.earscirev.2024.104933","DOIUrl":"10.1016/j.earscirev.2024.104933","url":null,"abstract":"","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104933"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.earscirev.2024.104931
Andrea Sembroni , Claudio Faccenna , Thorsten W. Becker , Paola Molin
{"title":"Corrigendum to “The uplift of the East Africa – Arabia swell” [Earth Science Review, 257 (2024), 104901]","authors":"Andrea Sembroni , Claudio Faccenna , Thorsten W. Becker , Paola Molin","doi":"10.1016/j.earscirev.2024.104931","DOIUrl":"10.1016/j.earscirev.2024.104931","url":null,"abstract":"","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104931"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.earscirev.2024.104967
Fan Xue , Qi Zhang , John M. Melack , Hongwu Tang , Saiyu Yuan , Yuxue Jia , Chenyang Xue , Yanyan Song
As human activities intensify and global climate change accelerates, floodplain lakes are experiencing hydrological transformations that profoundly impact their ecology. Based on an extensive review of published literature, current knowledge of floodplain lakes and links between hydrology and ecology are summarized and synthesized. River-lake interactions determine hydrological conditions in floodplain lakes, with high spatial heterogeneity influenced by topography, geophysical properties, and climate. Seasonal fluctuations in water level and hydrological connectivity affect the community structure of aquatic organisms and biogeochemical processes. The interplay of floods and terrain shapes vegetation dynamics. Hydrological regimes sustain the quantity and quality of habitats, along with food resources for waterbirds and other organisms. Although certain species have adaptive capacities to changing hydrology through life history strategies, behavioral modifications, or physiological adjustments, long-term pressures from reservoir construction, intensive land use, and other human activities appear to be inducing cumulative, non-linear impacts that may push these ecosystems towards critical thresholds. Sustained pressures increase the risk of regime shifts, threatening ecosystem functionality. Current research often overlooks the complex interactions and feedbacks within ecosystems, leading to uncertain predictions regarding species resilience and ecosystem function. Existing methods are insufficient for fully integrating both short-term disturbances and long-term pressure. Advancing understanding of species adaptations across different temporal scales remains a priority, highlighting the need for more comprehensive frameworks for biodiversity conservation that effectively account for changing environment. Future efforts should focus on comprehensive in-situ monitoring and observation strategies, jointly with the application of advanced mathematical models, to enhance our understanding of ecology of floodplain lakes.
{"title":"Floodplain lakes: Linking hydrology to ecology and conservation","authors":"Fan Xue , Qi Zhang , John M. Melack , Hongwu Tang , Saiyu Yuan , Yuxue Jia , Chenyang Xue , Yanyan Song","doi":"10.1016/j.earscirev.2024.104967","DOIUrl":"10.1016/j.earscirev.2024.104967","url":null,"abstract":"<div><div>As human activities intensify and global climate change accelerates, floodplain lakes are experiencing hydrological transformations that profoundly impact their ecology. Based on an extensive review of published literature, current knowledge of floodplain lakes and links between hydrology and ecology are summarized and synthesized. River-lake interactions determine hydrological conditions in floodplain lakes, with high spatial heterogeneity influenced by topography, geophysical properties, and climate. Seasonal fluctuations in water level and hydrological connectivity affect the community structure of aquatic organisms and biogeochemical processes. The interplay of floods and terrain shapes vegetation dynamics. Hydrological regimes sustain the quantity and quality of habitats, along with food resources for waterbirds and other organisms. Although certain species have adaptive capacities to changing hydrology through life history strategies, behavioral modifications, or physiological adjustments, long-term pressures from reservoir construction, intensive land use, and other human activities appear to be inducing cumulative, non-linear impacts that may push these ecosystems towards critical thresholds. Sustained pressures increase the risk of regime shifts, threatening ecosystem functionality. Current research often overlooks the complex interactions and feedbacks within ecosystems, leading to uncertain predictions regarding species resilience and ecosystem function. Existing methods are insufficient for fully integrating both short-term disturbances and long-term pressure. Advancing understanding of species adaptations across different temporal scales remains a priority, highlighting the need for more comprehensive frameworks for biodiversity conservation that effectively account for changing environment. Future efforts should focus on comprehensive in-situ monitoring and observation strategies, jointly with the application of advanced mathematical models, to enhance our understanding of ecology of floodplain lakes.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104967"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.earscirev.2024.104969
Zihao Wang , Yidong Cai , Dameng Liu , Jun Lu , Feng Qiu , Jinghong Hu , Zhentao Li , Ranjith Pathegama Gamage
Reservoir parameters are crucial indicators for reservoir evaluation and development and provide insights into long-term reservoir behavior. The primary methods for evaluating these parameters include direct core observations, experimental testing, and indirect evaluation techniques. Since its introduction, geophysical logging has been used to evaluate and invert reservoir parameters owing to its wide coverage. With an increasing focus on unconventional natural gas reservoirs, more refined reservoir evaluations and multiparameter analyses are required for their development to address the complex and microscopic models differing from those of the conventional petroleum reservoirs. Geophysical logging is important in several unconventional fields. Machine learning (ML) was used in unconventional gas reservoirs as an effective method to establish relationships between parameters and logging features. However, the accuracy of evaluating storage layers using a single ML method is limited. Studies focusing only on algorithm updates and indicator values are problematic in terms of interpretability and production applications. A need to standardize the use of algorithms and introduce validation comparisons such as geological methods is evident. In this study, we reviewed ML algorithms and models commonly used for logging inversion applications. The current research status and issues were analyzed for different unconventional gas reservoir parameters. Our findings emphasize the importance of combining geological and other methods for logging inversion using ML. We also used the random forest algorithm to accurately predict the reservoir porosity, gas content, coal structure, and macrolithotypes. Combined with established permeability and vitrinite reflectance models, factor analysis was used to comprehensively analyze and evaluate the coalbed methane reservoirs in the study area. In our assessment of the challenges and future work on ML-based inversion, we observed a clear advantage for ML algorithms under geologically validated methods and experimental control. ML has great potential for optimizing the application of logging inversion for unconventional reservoir parameters.
储层参数是储层评价和开发的重要指标,可帮助人们深入了解储层的长期行为。评估这些参数的主要方法包括直接岩心观测、实验测试和间接评估技术。地球物理测井自问世以来,由于其覆盖面广,一直被用于评估和反演储层参数。随着人们对非常规天然气储层的日益关注,开发这些储层需要更精细的储层评价和多参数分析,以解决不同于常规石油储层的复杂微观模型问题。地球物理测井在一些非常规油田中非常重要。在非常规气藏中,机器学习(ML)被用作建立参数与测井特征之间关系的有效方法。然而,使用单一的 ML 方法评估储层的准确性有限。仅关注算法更新和指标值的研究在可解释性和生产应用方面存在问题。显然,需要对算法的使用进行标准化,并引入验证比较,如地质方法。在本研究中,我们回顾了测井反演应用中常用的 ML 算法和模型。针对不同的非常规天然气储层参数,分析了当前的研究现状和问题。我们的研究结果强调了使用 ML 结合地质和其他方法进行测井反演的重要性。我们还使用随机森林算法准确预测了储层孔隙度、含气量、煤结构和巨岩类型。结合已建立的渗透率和玻璃光泽反射率模型,我们使用因子分析法对研究区域的煤层气储层进行了全面分析和评估。在对基于 ML 的反演所面临的挑战和未来工作进行评估时,我们发现在地质验证方法和实验控制下,ML 算法具有明显的优势。ML 在优化非常规储层参数的测井反演应用方面具有巨大潜力。
{"title":"A review of machine learning applications to geophysical logging inversion of unconventional gas reservoir parameters","authors":"Zihao Wang , Yidong Cai , Dameng Liu , Jun Lu , Feng Qiu , Jinghong Hu , Zhentao Li , Ranjith Pathegama Gamage","doi":"10.1016/j.earscirev.2024.104969","DOIUrl":"10.1016/j.earscirev.2024.104969","url":null,"abstract":"<div><div>Reservoir parameters are crucial indicators for reservoir evaluation and development and provide insights into long-term reservoir behavior. The primary methods for evaluating these parameters include direct core observations, experimental testing, and indirect evaluation techniques. Since its introduction, geophysical logging has been used to evaluate and invert reservoir parameters owing to its wide coverage. With an increasing focus on unconventional natural gas reservoirs, more refined reservoir evaluations and multiparameter analyses are required for their development to address the complex and microscopic models differing from those of the conventional petroleum reservoirs. Geophysical logging is important in several unconventional fields. Machine learning (ML) was used in unconventional gas reservoirs as an effective method to establish relationships between parameters and logging features. However, the accuracy of evaluating storage layers using a single ML method is limited. Studies focusing only on algorithm updates and indicator values are problematic in terms of interpretability and production applications. A need to standardize the use of algorithms and introduce validation comparisons such as geological methods is evident. In this study, we reviewed ML algorithms and models commonly used for logging inversion applications. The current research status and issues were analyzed for different unconventional gas reservoir parameters. Our findings emphasize the importance of combining geological and other methods for logging inversion using ML. We also used the random forest algorithm to accurately predict the reservoir porosity, gas content, coal structure, and macrolithotypes. Combined with established permeability and vitrinite reflectance models, factor analysis was used to comprehensively analyze and evaluate the coalbed methane reservoirs in the study area. In our assessment of the challenges and future work on ML-based inversion, we observed a clear advantage for ML algorithms under geologically validated methods and experimental control. ML has great potential for optimizing the application of logging inversion for unconventional reservoir parameters.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104969"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.earscirev.2024.104966
Ling Fang , Ninglian Wang , Minkyoung Kim
The changes in the ocean circulation and biological pump played crucial roles in the rise in atmospheric CO2 during the last deglaciation. However, our understanding remains limited regarding which processes―air-sea exchange, ocean circulation, and the biological pump―primarily influence the spatial dynamics of the oceanic carbon cycle. To address this knowledge gap, the present study compiles global stable carbon isotope (δ13C) records from various sources, including shallow and deep planktic, along with epifaunal and infaunal benthic foraminifera. The synthesis reveals a total increase of 0.37 ± 0.05 ‰ in marine δ13C values since the last glacial maximum. Of this increase, 68 ± 5 % is attributed to the response of the oceans in the southern hemisphere, while 32 ± 4 % is attributed to the northern hemisphere. By analyzing the difference between planktic and benthic foraminifera, a decreased vertical δ13C gradient (δ13Csp–sb) is observed during the last deglaciation, indicating rapid carbon exchange between surface and deep waters during deglaciation. Additionally, the offset between the epifaunal and infaunal δ13C (δ13Csb–db) provides insights into changes in productivity and bottom water oxygenation. Overall, the global synthesis suggests that the δ13C variation is largely controlled by ocean circulation in the northern hemisphere and at higher latitudes of the southern hemisphere, while primary production significantly influences subtropical regions. Furthermore, the δ13C confirms that the rise in atmospheric CO2 during the first phase of Heinrich Stadial 1 (HS1) resulted from reduced primary production in subtropical regions along with strong ventilation in the second phase of HS1. Interestingly, the δ13C variations during the Younger Dryas (YD) suggest strong ventilation without evident changes in primary production. This four-dimensional dataset provides valuable insights into the transient changes in the ocean carbon cycle during deglaciation.
{"title":"Mapping the evolution of marine carbon during the last deglaciation: δ13C perspectives on the deglacial ocean carbon cycle","authors":"Ling Fang , Ninglian Wang , Minkyoung Kim","doi":"10.1016/j.earscirev.2024.104966","DOIUrl":"10.1016/j.earscirev.2024.104966","url":null,"abstract":"<div><div>The changes in the ocean circulation and biological pump played crucial roles in the rise in atmospheric CO<sub>2</sub> during the last deglaciation. However, our understanding remains limited regarding which processes―air-sea exchange, ocean circulation, and the biological pump―primarily influence the spatial dynamics of the oceanic carbon cycle. To address this knowledge gap, the present study compiles global stable carbon isotope (δ<sup>13</sup>C) records from various sources, including shallow and deep planktic, along with epifaunal and infaunal benthic foraminifera. The synthesis reveals a total increase of 0.37 ± 0.05 ‰ in marine δ<sup>13</sup>C values since the last glacial maximum. Of this increase, 68 ± 5 % is attributed to the response of the oceans in the southern hemisphere, while 32 ± 4 % is attributed to the northern hemisphere. By analyzing the difference between planktic and benthic foraminifera, a decreased vertical δ<sup>13</sup>C gradient (δ<sup>13</sup>C<sub>sp–sb</sub>) is observed during the last deglaciation, indicating rapid carbon exchange between surface and deep waters during deglaciation. Additionally, the offset between the epifaunal and infaunal δ<sup>13</sup>C (δ<sup>13</sup>C<sub>sb–db</sub>) provides insights into changes in productivity and bottom water oxygenation. Overall, the global synthesis suggests that the δ<sup>13</sup>C variation is largely controlled by ocean circulation in the northern hemisphere and at higher latitudes of the southern hemisphere, while primary production significantly influences subtropical regions. Furthermore, the δ<sup>13</sup>C confirms that the rise in atmospheric CO<sub>2</sub> during the first phase of Heinrich Stadial 1 (HS1) resulted from reduced primary production in subtropical regions along with strong ventilation in the second phase of HS1. Interestingly, the δ<sup>13</sup>C variations during the Younger Dryas (YD) suggest strong ventilation without evident changes in primary production. This four-dimensional dataset provides valuable insights into the transient changes in the ocean carbon cycle during deglaciation.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104966"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.earscirev.2024.104960
Martin B. Sweatman , James L. Powell , Allen West
We reject the claim of Holliday et al. (2023) that they have “comprehensively refuted” the Younger Dryas impact hypothesis (YDIH). Scores of peer-reviewed articles in dozens of peer-reviewed journals from hundreds of researchers, many of whom were not members of the core research team of Firestone et al. (2007), have corroborated the YDIH and replicated the key evidence dozens of times (Powell, 2022; Sweatman, 2021). Refuting a hypothesis that is so well established should require compelling new evidence and a plausible alternative process. Holiday et al. (2023) offer neither but, instead, question the peer-reviewed evidence supporting the hypothesis. Many of their arguments are faulty and were already rebutted in earlier reviews. The remaining differences in interpretation are part and parcel of science and do not lend themselves to the refutation—that is, the falsification—of an active hypothesis. Words alone cannot do that, not even the 96,000 words of Holiday et al. (2023). Only evidence can.
{"title":"Rejection of Holliday et al.'s alleged refutation of the Younger Dryas impact hypothesis","authors":"Martin B. Sweatman , James L. Powell , Allen West","doi":"10.1016/j.earscirev.2024.104960","DOIUrl":"10.1016/j.earscirev.2024.104960","url":null,"abstract":"<div><div>We reject the claim of Holliday et al. (2023) that they have “comprehensively refuted” the Younger Dryas impact hypothesis (YDIH). Scores of peer-reviewed articles in dozens of peer-reviewed journals from hundreds of researchers, many of whom were not members of the core research team of Firestone et al. (2007), have corroborated the YDIH and replicated the key evidence dozens of times (Powell, 2022; Sweatman, 2021). Refuting a hypothesis that is so well established should require compelling new evidence and a plausible alternative process. Holiday et al. (2023) offer neither but, instead, question the peer-reviewed evidence supporting the hypothesis. Many of their arguments are faulty and were already rebutted in earlier reviews. The remaining differences in interpretation are part and parcel of science and do not lend themselves to the refutation—that is, the falsification—of an active hypothesis. Words alone cannot do that, not even the 96,000 words of Holiday et al. (2023). Only evidence can.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104960"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.earscirev.2024.104964
Xueyun Lu , Jingtao Lai , Lining Wang , Jianqing Ji , Dalai Zhong
The geosphere dynamics near Earth's surface is a key scientific issue for understanding how Earth system works. However, the specific mechanisms underlying the interplay between these geospheres still remain unclear. Here, we take the eastern Himalayan syntaxis, the most typical region undergoing ferocious geosphere interplay on the planet, as our primary research area. We incorporated a topography-dependent precipitation model into traditional geomorphological-thermomechanical modelling and conducted over 200 experiments to investigate the interplay between climate, tectonics, and surface processes during the evolution of the orogenic wedge. The results show that a distinct type of orogenic wedge emerges when the convergence rate and average precipitation fall within specific ranges determined by the crustal geothermal field. Within this type of orogenic wedge, a sustained, stationary, localized and relatively rapid erosion process can be established on the windward flank. This can further induce sustained and rapid uplift of rocks, exhumation and deformation, forming a large-scale antiform, which exhibits a certain degree of similarity to the eastern Himalayan syntaxis. We propose that the formation of the eastern Himalayan syntaxis share this similar mechanism. Our analysis of the results indicates that the influences of climatic forcing, tectonic forcing, and geothermal field on the evolution of orogenic wedge can be integrated into a single parameter (), and we propose that 0.24≤≤0.45 is a necessary condition for the development of a syntaxis, which provides a quantitative constraint on the formation of a syntaxis for the first time.
{"title":"Numerical modelling of coupled climate, tectonics, and surface processes on the eastern Himalayan syntaxis","authors":"Xueyun Lu , Jingtao Lai , Lining Wang , Jianqing Ji , Dalai Zhong","doi":"10.1016/j.earscirev.2024.104964","DOIUrl":"10.1016/j.earscirev.2024.104964","url":null,"abstract":"<div><div>The geosphere dynamics near Earth's surface is a key scientific issue for understanding how Earth system works. However, the specific mechanisms underlying the interplay between these geospheres still remain unclear. Here, we take the eastern Himalayan syntaxis, the most typical region undergoing ferocious geosphere interplay on the planet, as our primary research area. We incorporated a topography-dependent precipitation model into traditional geomorphological-thermomechanical modelling and conducted over 200 experiments to investigate the interplay between climate, tectonics, and surface processes during the evolution of the orogenic wedge. The results show that a distinct type of orogenic wedge emerges when the convergence rate and average precipitation fall within specific ranges determined by the crustal geothermal field. Within this type of orogenic wedge, a sustained, stationary, localized and relatively rapid erosion process can be established on the windward flank. This can further induce sustained and rapid uplift of rocks, exhumation and deformation, forming a large-scale antiform, which exhibits a certain degree of similarity to the eastern Himalayan syntaxis. We propose that the formation of the eastern Himalayan syntaxis share this similar mechanism. Our analysis of the results indicates that the influences of climatic forcing, tectonic forcing, and geothermal field on the evolution of orogenic wedge can be integrated into a single parameter (<span><math><msub><mi>E</mi><mi>F</mi></msub></math></span>), and we propose that 0.24≤<span><math><msub><mi>E</mi><mi>F</mi></msub></math></span>≤0.45 is a necessary condition for the development of a syntaxis, which provides a quantitative constraint on the formation of a syntaxis for the first time.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104964"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}