首页 > 最新文献

Earth-Science Reviews最新文献

英文 中文
A model of plate tectonic framework for the Southeast Asia margin in the mid-Cretaceous 白垩纪中期东南亚边缘板块构造框架模型
IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-11-05 DOI: 10.1016/j.earscirev.2024.104970
Xiwu Luan
The recent IODP drillings in the South China Sea (SCS) have greatly enhanced our understanding of the tectonics and evolution of the SCS, but also raised new questions on the opening of the SCS and the pre-SCS tectonic history. Recently available data on the South China block (SCB), SCS, Indochina block, Borneo, Sumatra, Andaman, Myanmar, and the Tibetan plateau allow an updated tectonic model for the Southeast Asian margin in the mid-Cretaceous (around 100 Ma). A global scale granitoid belt can be readily identified from Sikhote-Alin in the north all the way to Northwest Borneo and to the Qiangtang terrane, as representing a giant magmatic arc system in response to the direction change of the subduction of the Izinagi plate and the Indian-Australian plate at ∼100 Ma. This global subduction/magmatic system was displaced in the Early Cenozoic as the result of India-Asian collision, followed by the development of the escape tectonics characterized by strike-slip fault systems. The subsequent rifting further broke and dispersed the granitoid belts into fragments to the present locations in the Greater Southeast Asian tectonic realm.
最近在南中国海(SCS)进行的国际大洋钻探计划(IODP)钻探大大提高了我们对南中国海构造和演化的认识,但也对南中国海的开辟和南中国海之前的构造历史提出了新的问题。最近获得的有关华南地块(SCB)、SCS、印度支那地块、婆罗洲、苏门答腊、安达曼、缅甸和青藏高原的数据,为白垩纪中期(约 100 Ma)东南亚边缘的构造模型提供了更新的资料。从北部的锡霍特-阿林一直到婆罗洲西北部和羌塘地层,可以很容易地识别出一个全球规模的花岗岩带,它代表了一个巨型岩浆弧系统,是对伊兹那木板块和印度-澳大利亚板块在 100 Ma 左右的俯冲方向变化的反应。这一全球性俯冲/岩浆系统在早新生代因印度-亚洲碰撞而发生位移,随后以走向滑动断层系统为特征的逃逸构造运动发展起来。随后的断裂进一步将花岗岩带破碎并分散到大东南亚构造领域的现今位置。
{"title":"A model of plate tectonic framework for the Southeast Asia margin in the mid-Cretaceous","authors":"Xiwu Luan","doi":"10.1016/j.earscirev.2024.104970","DOIUrl":"10.1016/j.earscirev.2024.104970","url":null,"abstract":"<div><div>The recent IODP drillings in the South China Sea (SCS) have greatly enhanced our understanding of the tectonics and evolution of the SCS, but also raised new questions on the opening of the SCS and the pre-SCS tectonic history. Recently available data on the South China block (SCB), SCS, Indochina block, Borneo, Sumatra, Andaman, Myanmar, and the Tibetan plateau allow an updated tectonic model for the Southeast Asian margin in the mid-Cretaceous (around 100 Ma). A global scale granitoid belt can be readily identified from Sikhote-Alin in the north all the way to Northwest Borneo and to the Qiangtang terrane, as representing a giant magmatic arc system in response to the direction change of the subduction of the Izinagi plate and the Indian-Australian plate at ∼100 Ma. This global subduction/magmatic system was displaced in the Early Cenozoic as the result of India-Asian collision, followed by the development of the escape tectonics characterized by strike-slip fault systems. The subsequent rifting further broke and dispersed the granitoid belts into fragments to the present locations in the Greater Southeast Asian tectonic realm.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"259 ","pages":"Article 104970"},"PeriodicalIF":10.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The diversity, frequency and severity of natural hazard impacts on subsea telecommunications networks 自然灾害对海底电信网络影响的多样性、频率和严重性
IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1016/j.earscirev.2024.104972
Lucy Bricheno , Isobel Yeo , Michael Clare , James Hunt , Allan Griffiths , Lionel Carter , Peter J. Talling , Megan Baker , Stuart Wilson , Matthew West , Semisi Panuve , Samuiela Fonua
Subsea cables underpin global communications, carrying more than 99 % of all digital data traffic worldwide. While this >1.6 million km-long network has been designed to be highly resilient, subsea cables can be damaged by a number of natural hazards that occur across all water depths in the ocean. Here, we explore the diversity of natural hazards that can damage cables, considering a broad frequency-magnitude spectrum. This paper is the first global perspective of actual and potential hazards affecting cables. As such, it is an accessible overview of the regional variability and complexity of hazards. Relatively rare and extreme events, such as super typhoons, submarine landslides or associated turbidity currents and volcanic eruptions, can synchronously cause widespread damage to multiple systems, in some cases disconnecting entire countries or dramatically slowing data traffic. We show that damage is rarely linked to an initial event, instead arising from cascades of processes that can lag by years. Not all instances of cable damage that relate to natural processes are linked to extreme events. We show that much smaller intensity meteorological and oceanographic processes such as storms and continuous seafloor currents that have been overlooked by previous studies can also damage subsea cables. New analysis of past instances of cable damage reveals that a significant proportion of previously unattributed faults may relate to such low-level but sustained impacts. It is these hazards that are most likely to change in frequency and magnitude in response to ongoing climate change but are also more predictable. Through mapping of exposure to these different hazards, we identify geographically-constrained hazard hotspots and identify various mitigation measures to enhance the evidence base and further strengthen subsea telecommunications network resilience.
海底电缆是全球通信的基础,承载着全球 99% 以上的数字数据流量。虽然这个长达 160 万公里的网络在设计上具有很强的抗灾能力,但海底光缆可能会受到海洋各水深区域发生的多种自然灾害的破坏。在此,我们从广泛的频率-强度频谱出发,探讨了可能损坏电缆的各种自然灾害。本文首次从全球角度阐述了影响电缆的实际和潜在危害。因此,它是对灾害的区域变异性和复杂性的一个通俗易懂的概述。相对罕见的极端事件,如超强台风、海底滑坡或相关的浊流和火山爆发,可同步对多个系统造成大范围破坏,在某些情况下会导致整个国家断开连接或数据流量急剧减慢。我们的研究表明,损坏很少与初始事件有关,而是由一系列可能滞后数年的过程造成的。并非所有与自然过程相关的电缆损坏事件都与极端事件有关。我们的研究表明,以往研究忽略的强度小得多的气象和海洋过程,如风暴和持续海底流,也会损坏海底电缆。对过去电缆损坏情况的新分析表明,很大一部分之前未归因的故障可能与此类低强度但持续的影响有关。正是这些危害最有可能随着持续的气候变化而在频率和规模上发生变化,但也更容易预测。通过绘制这些不同危害的暴露图,我们确定了受地理条件限制的危害热点,并确定了各种缓解措施,以增强证据基础,进一步加强海底电信网络的复原力。
{"title":"The diversity, frequency and severity of natural hazard impacts on subsea telecommunications networks","authors":"Lucy Bricheno ,&nbsp;Isobel Yeo ,&nbsp;Michael Clare ,&nbsp;James Hunt ,&nbsp;Allan Griffiths ,&nbsp;Lionel Carter ,&nbsp;Peter J. Talling ,&nbsp;Megan Baker ,&nbsp;Stuart Wilson ,&nbsp;Matthew West ,&nbsp;Semisi Panuve ,&nbsp;Samuiela Fonua","doi":"10.1016/j.earscirev.2024.104972","DOIUrl":"10.1016/j.earscirev.2024.104972","url":null,"abstract":"<div><div>Subsea cables underpin global communications, carrying more than 99 % of all digital data traffic worldwide. While this &gt;1.6 million km-long network has been designed to be highly resilient, subsea cables can be damaged by a number of natural hazards that occur across all water depths in the ocean. Here, we explore the diversity of natural hazards that can damage cables, considering a broad frequency-magnitude spectrum. This paper is the first global perspective of actual and potential hazards affecting cables. As such, it is an accessible overview of the regional variability and complexity of hazards. Relatively rare and extreme events, such as super typhoons, submarine landslides or associated turbidity currents and volcanic eruptions, can synchronously cause widespread damage to multiple systems, in some cases disconnecting entire countries or dramatically slowing data traffic. We show that damage is rarely linked to an initial event, instead arising from cascades of processes that can lag by years. Not all instances of cable damage that relate to natural processes are linked to extreme events. We show that much smaller intensity meteorological and oceanographic processes such as storms and continuous seafloor currents that have been overlooked by previous studies can also damage subsea cables. New analysis of past instances of cable damage reveals that a significant proportion of previously unattributed faults may relate to such low-level but sustained impacts. It is these hazards that are most likely to change in frequency and magnitude in response to ongoing climate change but are also more predictable. Through mapping of exposure to these different hazards, we identify geographically-constrained hazard hotspots and identify various mitigation measures to enhance the evidence base and further strengthen subsea telecommunications network resilience.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"259 ","pages":"Article 104972"},"PeriodicalIF":10.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reply to comment on: Late Cretaceous-Paleogene orogenic build-up of the Ecuadorian Andes: Review and discussion by Antenor Alemán 回复评论:厄瓜多尔安第斯山脉晚白垩世-古近纪造山运动的形成:Antenor Alemán的评论和讨论
IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.earscirev.2024.104933
Etienne Jaillard
{"title":"Reply to comment on: Late Cretaceous-Paleogene orogenic build-up of the Ecuadorian Andes: Review and discussion by Antenor Alemán","authors":"Etienne Jaillard","doi":"10.1016/j.earscirev.2024.104933","DOIUrl":"10.1016/j.earscirev.2024.104933","url":null,"abstract":"","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104933"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “The uplift of the East Africa – Arabia swell” [Earth Science Review, 257 (2024), 104901] 更正:"东非-阿拉伯涌浪的隆升"[《地球科学评论》,257 (2024),104901]
IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.earscirev.2024.104931
Andrea Sembroni , Claudio Faccenna , Thorsten W. Becker , Paola Molin
{"title":"Corrigendum to “The uplift of the East Africa – Arabia swell” [Earth Science Review, 257 (2024), 104901]","authors":"Andrea Sembroni ,&nbsp;Claudio Faccenna ,&nbsp;Thorsten W. Becker ,&nbsp;Paola Molin","doi":"10.1016/j.earscirev.2024.104931","DOIUrl":"10.1016/j.earscirev.2024.104931","url":null,"abstract":"","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104931"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Floodplain lakes: Linking hydrology to ecology and conservation 洪泛平原湖泊:将水文与生态和保护联系起来
IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.earscirev.2024.104967
Fan Xue , Qi Zhang , John M. Melack , Hongwu Tang , Saiyu Yuan , Yuxue Jia , Chenyang Xue , Yanyan Song
As human activities intensify and global climate change accelerates, floodplain lakes are experiencing hydrological transformations that profoundly impact their ecology. Based on an extensive review of published literature, current knowledge of floodplain lakes and links between hydrology and ecology are summarized and synthesized. River-lake interactions determine hydrological conditions in floodplain lakes, with high spatial heterogeneity influenced by topography, geophysical properties, and climate. Seasonal fluctuations in water level and hydrological connectivity affect the community structure of aquatic organisms and biogeochemical processes. The interplay of floods and terrain shapes vegetation dynamics. Hydrological regimes sustain the quantity and quality of habitats, along with food resources for waterbirds and other organisms. Although certain species have adaptive capacities to changing hydrology through life history strategies, behavioral modifications, or physiological adjustments, long-term pressures from reservoir construction, intensive land use, and other human activities appear to be inducing cumulative, non-linear impacts that may push these ecosystems towards critical thresholds. Sustained pressures increase the risk of regime shifts, threatening ecosystem functionality. Current research often overlooks the complex interactions and feedbacks within ecosystems, leading to uncertain predictions regarding species resilience and ecosystem function. Existing methods are insufficient for fully integrating both short-term disturbances and long-term pressure. Advancing understanding of species adaptations across different temporal scales remains a priority, highlighting the need for more comprehensive frameworks for biodiversity conservation that effectively account for changing environment. Future efforts should focus on comprehensive in-situ monitoring and observation strategies, jointly with the application of advanced mathematical models, to enhance our understanding of ecology of floodplain lakes.
随着人类活动的加剧和全球气候变化的加快,洪泛平原湖泊正经历着深刻影响其生态的水文变化。在广泛查阅已发表文献的基础上,本文对洪泛平原湖泊的现有知识以及水文与生态之间的联系进行了总结和归纳。河流与湖泊之间的相互作用决定了洪泛平原湖泊的水文条件,受地形、地球物理特性和气候的影响,洪泛平原湖泊的空间异质性很高。水位的季节性波动和水文连通性影响着水生生物的群落结构和生物地球化学过程。洪水和地形的相互作用影响着植被动态。水文系统维持着栖息地的数量和质量,以及水鸟和其他生物的食物资源。虽然某些物种通过生活史策略、行为改变或生理调整对水文变化具有适应能力,但水库建设、土地密集利用和其他人类活动带来的长期压力似乎正在产生累积性非线性影响,可能会将这些生态系统推向临界点。持续的压力会增加制度转变的风险,威胁生态系统的功能。目前的研究往往忽略了生态系统内部复杂的相互作用和反馈,导致对物种恢复力和生态系统功能的预测不确定。现有方法不足以全面整合短期干扰和长期压力。推进对物种在不同时间尺度上的适应性的理解仍是当务之急,这凸显了生物多样性保护需要更全面的框架,以有效地考虑不断变化的环境。未来的工作重点应放在全面的现场监测和观测战略上,同时应用先进的数学模型,以加强我们对洪泛平原湖泊生态学的了解。
{"title":"Floodplain lakes: Linking hydrology to ecology and conservation","authors":"Fan Xue ,&nbsp;Qi Zhang ,&nbsp;John M. Melack ,&nbsp;Hongwu Tang ,&nbsp;Saiyu Yuan ,&nbsp;Yuxue Jia ,&nbsp;Chenyang Xue ,&nbsp;Yanyan Song","doi":"10.1016/j.earscirev.2024.104967","DOIUrl":"10.1016/j.earscirev.2024.104967","url":null,"abstract":"<div><div>As human activities intensify and global climate change accelerates, floodplain lakes are experiencing hydrological transformations that profoundly impact their ecology. Based on an extensive review of published literature, current knowledge of floodplain lakes and links between hydrology and ecology are summarized and synthesized. River-lake interactions determine hydrological conditions in floodplain lakes, with high spatial heterogeneity influenced by topography, geophysical properties, and climate. Seasonal fluctuations in water level and hydrological connectivity affect the community structure of aquatic organisms and biogeochemical processes. The interplay of floods and terrain shapes vegetation dynamics. Hydrological regimes sustain the quantity and quality of habitats, along with food resources for waterbirds and other organisms. Although certain species have adaptive capacities to changing hydrology through life history strategies, behavioral modifications, or physiological adjustments, long-term pressures from reservoir construction, intensive land use, and other human activities appear to be inducing cumulative, non-linear impacts that may push these ecosystems towards critical thresholds. Sustained pressures increase the risk of regime shifts, threatening ecosystem functionality. Current research often overlooks the complex interactions and feedbacks within ecosystems, leading to uncertain predictions regarding species resilience and ecosystem function. Existing methods are insufficient for fully integrating both short-term disturbances and long-term pressure. Advancing understanding of species adaptations across different temporal scales remains a priority, highlighting the need for more comprehensive frameworks for biodiversity conservation that effectively account for changing environment. Future efforts should focus on comprehensive in-situ monitoring and observation strategies, jointly with the application of advanced mathematical models, to enhance our understanding of ecology of floodplain lakes.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104967"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of machine learning applications to geophysical logging inversion of unconventional gas reservoir parameters 机器学习在非常规天然气储层参数地球物理测井反演中的应用综述
IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.earscirev.2024.104969
Zihao Wang , Yidong Cai , Dameng Liu , Jun Lu , Feng Qiu , Jinghong Hu , Zhentao Li , Ranjith Pathegama Gamage
Reservoir parameters are crucial indicators for reservoir evaluation and development and provide insights into long-term reservoir behavior. The primary methods for evaluating these parameters include direct core observations, experimental testing, and indirect evaluation techniques. Since its introduction, geophysical logging has been used to evaluate and invert reservoir parameters owing to its wide coverage. With an increasing focus on unconventional natural gas reservoirs, more refined reservoir evaluations and multiparameter analyses are required for their development to address the complex and microscopic models differing from those of the conventional petroleum reservoirs. Geophysical logging is important in several unconventional fields. Machine learning (ML) was used in unconventional gas reservoirs as an effective method to establish relationships between parameters and logging features. However, the accuracy of evaluating storage layers using a single ML method is limited. Studies focusing only on algorithm updates and indicator values are problematic in terms of interpretability and production applications. A need to standardize the use of algorithms and introduce validation comparisons such as geological methods is evident. In this study, we reviewed ML algorithms and models commonly used for logging inversion applications. The current research status and issues were analyzed for different unconventional gas reservoir parameters. Our findings emphasize the importance of combining geological and other methods for logging inversion using ML. We also used the random forest algorithm to accurately predict the reservoir porosity, gas content, coal structure, and macrolithotypes. Combined with established permeability and vitrinite reflectance models, factor analysis was used to comprehensively analyze and evaluate the coalbed methane reservoirs in the study area. In our assessment of the challenges and future work on ML-based inversion, we observed a clear advantage for ML algorithms under geologically validated methods and experimental control. ML has great potential for optimizing the application of logging inversion for unconventional reservoir parameters.
储层参数是储层评价和开发的重要指标,可帮助人们深入了解储层的长期行为。评估这些参数的主要方法包括直接岩心观测、实验测试和间接评估技术。地球物理测井自问世以来,由于其覆盖面广,一直被用于评估和反演储层参数。随着人们对非常规天然气储层的日益关注,开发这些储层需要更精细的储层评价和多参数分析,以解决不同于常规石油储层的复杂微观模型问题。地球物理测井在一些非常规油田中非常重要。在非常规气藏中,机器学习(ML)被用作建立参数与测井特征之间关系的有效方法。然而,使用单一的 ML 方法评估储层的准确性有限。仅关注算法更新和指标值的研究在可解释性和生产应用方面存在问题。显然,需要对算法的使用进行标准化,并引入验证比较,如地质方法。在本研究中,我们回顾了测井反演应用中常用的 ML 算法和模型。针对不同的非常规天然气储层参数,分析了当前的研究现状和问题。我们的研究结果强调了使用 ML 结合地质和其他方法进行测井反演的重要性。我们还使用随机森林算法准确预测了储层孔隙度、含气量、煤结构和巨岩类型。结合已建立的渗透率和玻璃光泽反射率模型,我们使用因子分析法对研究区域的煤层气储层进行了全面分析和评估。在对基于 ML 的反演所面临的挑战和未来工作进行评估时,我们发现在地质验证方法和实验控制下,ML 算法具有明显的优势。ML 在优化非常规储层参数的测井反演应用方面具有巨大潜力。
{"title":"A review of machine learning applications to geophysical logging inversion of unconventional gas reservoir parameters","authors":"Zihao Wang ,&nbsp;Yidong Cai ,&nbsp;Dameng Liu ,&nbsp;Jun Lu ,&nbsp;Feng Qiu ,&nbsp;Jinghong Hu ,&nbsp;Zhentao Li ,&nbsp;Ranjith Pathegama Gamage","doi":"10.1016/j.earscirev.2024.104969","DOIUrl":"10.1016/j.earscirev.2024.104969","url":null,"abstract":"<div><div>Reservoir parameters are crucial indicators for reservoir evaluation and development and provide insights into long-term reservoir behavior. The primary methods for evaluating these parameters include direct core observations, experimental testing, and indirect evaluation techniques. Since its introduction, geophysical logging has been used to evaluate and invert reservoir parameters owing to its wide coverage. With an increasing focus on unconventional natural gas reservoirs, more refined reservoir evaluations and multiparameter analyses are required for their development to address the complex and microscopic models differing from those of the conventional petroleum reservoirs. Geophysical logging is important in several unconventional fields. Machine learning (ML) was used in unconventional gas reservoirs as an effective method to establish relationships between parameters and logging features. However, the accuracy of evaluating storage layers using a single ML method is limited. Studies focusing only on algorithm updates and indicator values are problematic in terms of interpretability and production applications. A need to standardize the use of algorithms and introduce validation comparisons such as geological methods is evident. In this study, we reviewed ML algorithms and models commonly used for logging inversion applications. The current research status and issues were analyzed for different unconventional gas reservoir parameters. Our findings emphasize the importance of combining geological and other methods for logging inversion using ML. We also used the random forest algorithm to accurately predict the reservoir porosity, gas content, coal structure, and macrolithotypes. Combined with established permeability and vitrinite reflectance models, factor analysis was used to comprehensively analyze and evaluate the coalbed methane reservoirs in the study area. In our assessment of the challenges and future work on ML-based inversion, we observed a clear advantage for ML algorithms under geologically validated methods and experimental control. ML has great potential for optimizing the application of logging inversion for unconventional reservoir parameters.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104969"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping the evolution of marine carbon during the last deglaciation: δ13C perspectives on the deglacial ocean carbon cycle 绘制末次冰期海洋碳演变图:δ13C 透视冰期海洋碳循环
IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.earscirev.2024.104966
Ling Fang , Ninglian Wang , Minkyoung Kim
The changes in the ocean circulation and biological pump played crucial roles in the rise in atmospheric CO2 during the last deglaciation. However, our understanding remains limited regarding which processes―air-sea exchange, ocean circulation, and the biological pump―primarily influence the spatial dynamics of the oceanic carbon cycle. To address this knowledge gap, the present study compiles global stable carbon isotope (δ13C) records from various sources, including shallow and deep planktic, along with epifaunal and infaunal benthic foraminifera. The synthesis reveals a total increase of 0.37 ± 0.05 ‰ in marine δ13C values since the last glacial maximum. Of this increase, 68 ± 5 % is attributed to the response of the oceans in the southern hemisphere, while 32 ± 4 % is attributed to the northern hemisphere. By analyzing the difference between planktic and benthic foraminifera, a decreased vertical δ13C gradient (δ13Csp–sb) is observed during the last deglaciation, indicating rapid carbon exchange between surface and deep waters during deglaciation. Additionally, the offset between the epifaunal and infaunal δ13C (δ13Csb–db) provides insights into changes in productivity and bottom water oxygenation. Overall, the global synthesis suggests that the δ13C variation is largely controlled by ocean circulation in the northern hemisphere and at higher latitudes of the southern hemisphere, while primary production significantly influences subtropical regions. Furthermore, the δ13C confirms that the rise in atmospheric CO2 during the first phase of Heinrich Stadial 1 (HS1) resulted from reduced primary production in subtropical regions along with strong ventilation in the second phase of HS1. Interestingly, the δ13C variations during the Younger Dryas (YD) suggest strong ventilation without evident changes in primary production. This four-dimensional dataset provides valuable insights into the transient changes in the ocean carbon cycle during deglaciation.
大洋环流和生物泵的变化对上一次冰期大气中二氧化碳的上升起到了至关重要的作用。然而,我们对哪些过程--海气交换、大洋环流和生物泵--主要影响海洋碳循环的空间动态的了解仍然有限。为了弥补这一知识空白,本研究汇编了来自不同来源的全球稳定碳同位素(δ13C)记录,包括浅海和深海浮游生物,以及上、下底栖有孔虫。综合结果显示,自上一次冰川最大值以来,海洋δ13C值总共增加了0.37±0.05‰。其中,68 ± 5 % 的增长归因于南半球海洋的响应,32 ± 4 % 归因于北半球海洋的响应。通过分析浮游有孔虫和底栖有孔虫之间的差异,可以观察到在末次蜕变期间垂直δ13C梯度(δ13Csp-sb)减小,这表明在蜕变期间表层水和深层水之间的碳交换迅速。此外,表层动物和底层动物的δ13C(δ13Csb-db)之间的偏移也有助于了解生产力和底层水含氧量的变化。总之,全球综合结果表明,δ13C 的变化主要受北半球和南半球高纬度地区海洋环流的控制,而初级生产力对亚热带地区的影响很大。此外,δ13C 证实,在海因里希恒河 1 号(HS1)的第一阶段,大气中二氧化碳的上升是由于亚热带地区初级生产的减少以及 HS1 第二阶段强烈的通风造成的。有趣的是,少干世(YD)期间的 δ13C 变化表明,在初级生产没有明显变化的情况下出现了强烈的通风。这一四维数据集为了解脱冰期海洋碳循环的瞬时变化提供了宝贵的信息。
{"title":"Mapping the evolution of marine carbon during the last deglaciation: δ13C perspectives on the deglacial ocean carbon cycle","authors":"Ling Fang ,&nbsp;Ninglian Wang ,&nbsp;Minkyoung Kim","doi":"10.1016/j.earscirev.2024.104966","DOIUrl":"10.1016/j.earscirev.2024.104966","url":null,"abstract":"<div><div>The changes in the ocean circulation and biological pump played crucial roles in the rise in atmospheric CO<sub>2</sub> during the last deglaciation. However, our understanding remains limited regarding which processes―air-sea exchange, ocean circulation, and the biological pump―primarily influence the spatial dynamics of the oceanic carbon cycle. To address this knowledge gap, the present study compiles global stable carbon isotope (δ<sup>13</sup>C) records from various sources, including shallow and deep planktic, along with epifaunal and infaunal benthic foraminifera. The synthesis reveals a total increase of 0.37 ± 0.05 ‰ in marine δ<sup>13</sup>C values since the last glacial maximum. Of this increase, 68 ± 5 % is attributed to the response of the oceans in the southern hemisphere, while 32 ± 4 % is attributed to the northern hemisphere. By analyzing the difference between planktic and benthic foraminifera, a decreased vertical δ<sup>13</sup>C gradient (δ<sup>13</sup>C<sub>sp–sb</sub>) is observed during the last deglaciation, indicating rapid carbon exchange between surface and deep waters during deglaciation. Additionally, the offset between the epifaunal and infaunal δ<sup>13</sup>C (δ<sup>13</sup>C<sub>sb–db</sub>) provides insights into changes in productivity and bottom water oxygenation. Overall, the global synthesis suggests that the δ<sup>13</sup>C variation is largely controlled by ocean circulation in the northern hemisphere and at higher latitudes of the southern hemisphere, while primary production significantly influences subtropical regions. Furthermore, the δ<sup>13</sup>C confirms that the rise in atmospheric CO<sub>2</sub> during the first phase of Heinrich Stadial 1 (HS1) resulted from reduced primary production in subtropical regions along with strong ventilation in the second phase of HS1. Interestingly, the δ<sup>13</sup>C variations during the Younger Dryas (YD) suggest strong ventilation without evident changes in primary production. This four-dimensional dataset provides valuable insights into the transient changes in the ocean carbon cycle during deglaciation.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104966"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rejection of Holliday et al.'s alleged refutation of the Younger Dryas impact hypothesis 拒绝霍利迪等人所谓的对年轻干 旱纪撞击假说的反驳
IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.earscirev.2024.104960
Martin B. Sweatman , James L. Powell , Allen West
We reject the claim of Holliday et al. (2023) that they have “comprehensively refuted” the Younger Dryas impact hypothesis (YDIH). Scores of peer-reviewed articles in dozens of peer-reviewed journals from hundreds of researchers, many of whom were not members of the core research team of Firestone et al. (2007), have corroborated the YDIH and replicated the key evidence dozens of times (Powell, 2022; Sweatman, 2021). Refuting a hypothesis that is so well established should require compelling new evidence and a plausible alternative process. Holiday et al. (2023) offer neither but, instead, question the peer-reviewed evidence supporting the hypothesis. Many of their arguments are faulty and were already rebutted in earlier reviews. The remaining differences in interpretation are part and parcel of science and do not lend themselves to the refutation—that is, the falsification—of an active hypothesis. Words alone cannot do that, not even the 96,000 words of Holiday et al. (2023). Only evidence can.
霍利迪等人(2023 年)声称他们 "全面驳斥 "了 "年轻干 旱带影响假说"(YDIH),我们拒绝接受这一说法。数百名研究人员(其中许多人并非 Firestone 等人(2007 年)的核心研究团队成员)在数十种同行评审期刊上发表的数十篇文章已经证实了 YDIH,并数十次复制了关键证据(Powell,2022 年;Sweatman,2021 年)。要反驳一个如此成熟的假说,需要令人信服的新证据和可信的替代过程。Holiday 等人(2023 年)既没有提供这些证据,反而质疑支持该假说的同行评审证据。他们的许多论点都是错误的,并已在之前的评论中被反驳。其余的解释分歧是科学的一部分,并不能反驳--也就是证伪--一个活跃的假说。单凭文字是无法做到这一点的,即使是 Holiday 等人(2023 年)的 96,000 字也做不到。只有证据才能做到这一点。
{"title":"Rejection of Holliday et al.'s alleged refutation of the Younger Dryas impact hypothesis","authors":"Martin B. Sweatman ,&nbsp;James L. Powell ,&nbsp;Allen West","doi":"10.1016/j.earscirev.2024.104960","DOIUrl":"10.1016/j.earscirev.2024.104960","url":null,"abstract":"<div><div>We reject the claim of Holliday et al. (2023) that they have “comprehensively refuted” the Younger Dryas impact hypothesis (YDIH). Scores of peer-reviewed articles in dozens of peer-reviewed journals from hundreds of researchers, many of whom were not members of the core research team of Firestone et al. (2007), have corroborated the YDIH and replicated the key evidence dozens of times (Powell, 2022; Sweatman, 2021). Refuting a hypothesis that is so well established should require compelling new evidence and a plausible alternative process. Holiday et al. (2023) offer neither but, instead, question the peer-reviewed evidence supporting the hypothesis. Many of their arguments are faulty and were already rebutted in earlier reviews. The remaining differences in interpretation are part and parcel of science and do not lend themselves to the refutation—that is, the falsification—of an active hypothesis. Words alone cannot do that, not even the 96,000 words of Holiday et al. (2023). Only evidence can.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104960"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical modelling of coupled climate, tectonics, and surface processes on the eastern Himalayan syntaxis 喜马拉雅山脉东部合成地貌的气候、构造和地表过程耦合数值模拟
IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.earscirev.2024.104964
Xueyun Lu , Jingtao Lai , Lining Wang , Jianqing Ji , Dalai Zhong
The geosphere dynamics near Earth's surface is a key scientific issue for understanding how Earth system works. However, the specific mechanisms underlying the interplay between these geospheres still remain unclear. Here, we take the eastern Himalayan syntaxis, the most typical region undergoing ferocious geosphere interplay on the planet, as our primary research area. We incorporated a topography-dependent precipitation model into traditional geomorphological-thermomechanical modelling and conducted over 200 experiments to investigate the interplay between climate, tectonics, and surface processes during the evolution of the orogenic wedge. The results show that a distinct type of orogenic wedge emerges when the convergence rate and average precipitation fall within specific ranges determined by the crustal geothermal field. Within this type of orogenic wedge, a sustained, stationary, localized and relatively rapid erosion process can be established on the windward flank. This can further induce sustained and rapid uplift of rocks, exhumation and deformation, forming a large-scale antiform, which exhibits a certain degree of similarity to the eastern Himalayan syntaxis. We propose that the formation of the eastern Himalayan syntaxis share this similar mechanism. Our analysis of the results indicates that the influences of climatic forcing, tectonic forcing, and geothermal field on the evolution of orogenic wedge can be integrated into a single parameter (EF), and we propose that 0.24≤EF≤0.45 is a necessary condition for the development of a syntaxis, which provides a quantitative constraint on the formation of a syntaxis for the first time.
地球表面附近的地圈动力学是了解地球系统如何运作的一个关键科学问题。然而,这些地圈之间相互作用的具体机制仍不清楚。在这里,我们以喜马拉雅山脉东部的合成地层为主要研究区域,该区域是地球上地圈相互作用最为激烈的典型区域。我们在传统的地貌-热力-力学模型中加入了一个地形依赖降水模型,并进行了 200 多次实验,研究造山楔演化过程中气候、构造和地表过程之间的相互作用。结果表明,当辐合率和平均降水量在地壳地热田确定的特定范围内时,就会出现一种独特类型的造山楔。在这种类型的造山楔中,迎风侧可以形成持续、静止、局部和相对快速的侵蚀过程。这可进一步引起岩石持续而快速的隆起、掘起和变形,形成大尺度的蚁状构造,与喜马拉雅山脉东部的合成地貌有一定程度的相似性。我们认为,喜马拉雅山东部合成岩的形成也具有这种相似的机制。我们的分析结果表明,气候强迫、构造强迫和地热田对造山楔演化的影响可以整合为一个参数(EF),并提出0.24≤EF≤0.45是合成地体发育的必要条件,首次为合成地体的形成提供了定量约束。
{"title":"Numerical modelling of coupled climate, tectonics, and surface processes on the eastern Himalayan syntaxis","authors":"Xueyun Lu ,&nbsp;Jingtao Lai ,&nbsp;Lining Wang ,&nbsp;Jianqing Ji ,&nbsp;Dalai Zhong","doi":"10.1016/j.earscirev.2024.104964","DOIUrl":"10.1016/j.earscirev.2024.104964","url":null,"abstract":"<div><div>The geosphere dynamics near Earth's surface is a key scientific issue for understanding how Earth system works. However, the specific mechanisms underlying the interplay between these geospheres still remain unclear. Here, we take the eastern Himalayan syntaxis, the most typical region undergoing ferocious geosphere interplay on the planet, as our primary research area. We incorporated a topography-dependent precipitation model into traditional geomorphological-thermomechanical modelling and conducted over 200 experiments to investigate the interplay between climate, tectonics, and surface processes during the evolution of the orogenic wedge. The results show that a distinct type of orogenic wedge emerges when the convergence rate and average precipitation fall within specific ranges determined by the crustal geothermal field. Within this type of orogenic wedge, a sustained, stationary, localized and relatively rapid erosion process can be established on the windward flank. This can further induce sustained and rapid uplift of rocks, exhumation and deformation, forming a large-scale antiform, which exhibits a certain degree of similarity to the eastern Himalayan syntaxis. We propose that the formation of the eastern Himalayan syntaxis share this similar mechanism. Our analysis of the results indicates that the influences of climatic forcing, tectonic forcing, and geothermal field on the evolution of orogenic wedge can be integrated into a single parameter (<span><math><msub><mi>E</mi><mi>F</mi></msub></math></span>), and we propose that 0.24≤<span><math><msub><mi>E</mi><mi>F</mi></msub></math></span>≤0.45 is a necessary condition for the development of a syntaxis, which provides a quantitative constraint on the formation of a syntaxis for the first time.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104964"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “Fracture sets and sequencing” [Earth-Science Reviews 257 (2024) 104888] 对 "断裂组合与排序 "的勘误 [Earth-Science Reviews 257 (2024) 104888]
IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.earscirev.2024.104916
David J. Sanderson , David C.P. Peacock , Casey W. Nixon
{"title":"Erratum to “Fracture sets and sequencing” [Earth-Science Reviews 257 (2024) 104888]","authors":"David J. Sanderson ,&nbsp;David C.P. Peacock ,&nbsp;Casey W. Nixon","doi":"10.1016/j.earscirev.2024.104916","DOIUrl":"10.1016/j.earscirev.2024.104916","url":null,"abstract":"","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104916"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Earth-Science Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1