Pub Date : 2024-10-09DOI: 10.1016/j.earscirev.2024.104954
Zhiming Yang , Kang Cao
<div><div>This paper presents a review of the geology and geochemistry of post-collisional PCDs in Tibet, including their spatial–temporal distribution, features of the ore-forming porphyries, magmatic origin and evolution, water–metal–S sources, alteration and mineralization features, fluid sources and evolution, conditions of Cu–Mo mineralization, and geodynamic models of their formation.</div><div>The post-collisional PCDs in Tibet contain total resources of ∼46 million tonnes (Mt) Cu at an average grade of 0.3–0.6 % Cu. They are mainly concentrated in the Gangdese, Yulong, and Ailaoshan–Red River belts, with ages of 30–13, 43–37, and 36–34 Ma, respectively. Their ore-forming porphyries have compositions that vary from granodiorite to monzogranite, syenogranite, and granite, and are high-K calc-alkaline to shoshonitic, with adakite-like signatures and highly variable Sr–Nd–Pb–Hf isotopic compositions. The ore-forming porphyries were mainly generated by partial melting of subduction-modified, thickened mafic lower crust with contributions from metasomatized lithospheric mantle. The causes of lower-crustal melting include asthenospheric upwelling associated with delamination of lithospheric mantle or slab tearing/break-off, and/or underplating of mafic magmas derived from metasomatized subcontinental lithospheric mantle. Ore-forming metals and S were mainly sourced by remelting of sulfide phases introduced into the lower crust during pre-collisional arc magmatism. Water necessary for mineralization was concentrated by dehydration reactions in the upper part of the subducting continental plate and/or degassing of water-rich ultrapotassic and/or alkaline mafic magmas derived from the mantle.</div><div>Similar to subduction-related PCDs, post-collisional PCDs in Tibet exhibit typical alteration zoning from inner potassic to outer propylitic zones, but with more intense overprinting of phyllic alteration on the former two alteration zones, likely due to higher rates of <em>syn</em>-mineralization uplift. Copper mineralization in post-collisional PCDs is mainly associated with phyllic alteration (particularly chlorite–sericite alteration) and, to a lesser extent, with potassic alteration, which is different from the typical association with potassic alteration in subduction-related PCDs. The initial ore-forming fluids in the post-collisional PCDs are single-phase, intermediate-density, and low-salinity fluids derived from evolved magma reservoirs. With ascent and decompression, the single-phase fluids separate into immiscible metal-rich hypersaline liquids responsible for potassic alteration and a low-salinity vapor. The evolved single-phase fluids are possibly diluted by meteoric waters, which leads to phyllic alteration. Cooling of magmatic–hydrothermal fluids may control metal precipitation in some post-collisional PCDs.</div><div>The development of post-collisional PCDs in Tibet indicates that other collision zones worldwide also have the potenti
本文综述了西藏碰撞后多金属结核的地质和地球化学特征,包括其时空分布、成矿斑岩特征、岩浆成因与演化、水-金属-S来源、蚀变与成矿特征、流体来源与演化、铜-钼成矿条件及其形成的地球动力学模型。它们主要集中在冈底斯带、玉龙带和艾劳山-红河带,年龄分别为30-13、43-37和36-34Ma。其成矿斑岩的成分从花岗闪长岩到单斜花岗岩、正长岩、花岗闪长岩不等,为高K钙碱性至shoshonitic,具有阿达克岩样特征,Sr-Nd-Pb-Hf同位素成分变化很大。成矿斑岩主要是由俯冲改造、增厚的岩浆岩下地壳部分熔化产生的,其中也有变质岩石圈地幔的参与。下地壳熔融的原因包括与岩石圈地幔分层或板块撕裂/断裂有关的星体层上涌,和/或来自变质次大陆岩石圈地幔的岩浆下溢。成矿金属和 S 主要来源于碰撞前弧状岩浆作用期间引入下地壳的硫化物相的重熔。成矿所需的水是通过俯冲大陆板块上部的脱水反应和/或来自地幔的富水超钾盐岩浆和/或碱性岩浆的脱气作用而富集的。与俯冲相关的多金属结核类似,西藏的碰撞后多金属结核表现出典型的从内侧钾盐带到外侧丙铁矿带的蚀变分带,但前两个蚀变带上的植蚀作用更为强烈,这可能是由于同步成矿上升速率较高所致。碰撞后多金属结核中的铜矿化主要与辉绿岩蚀变(尤其是绿泥石-闪长岩蚀变)有关,其次与钾长石蚀变有关,这与俯冲相关多金属结核中典型的钾长石蚀变不同。碰撞后多金属结核中最初的成矿流体是来自演化岩浆储层的单相、中等密度和低盐度流体。随着上升和减压,单相流体分离为造成钾盐蚀变的不溶性富金属超盐液体和低盐度蒸汽。演化出的单相流体可能会被陨石水稀释,从而导致植蚀作用。岩浆-热液的冷却可能会控制某些碰撞后多金属结核的金属沉淀。西藏碰撞后多金属结核的发育表明,世界上其他碰撞带也有可能孕育经济型多金属结核。在区域范围内,高全岩Sr/Y、V/Sc、Eu/Eu*和10,000*(Eu/Eu*)/Y比值;高锆石Eu/Eu*和10,000*(Eu/Eu*)/Y比值;高ΔFMQ值;高磷灰石SO3含量;以及锆石Lu-Hf同位素图谱可作为碰撞后多金属结核区域勘探的肥度指标。在地区范围内,野外地质和地球化学方法可以有效地寻找露头或近地表的碰撞后斑岩矿化。未来的研究还有许多问题需要澄清,例如下地壳中铜的富集和迁移机制;Cl 的来源;铜的沉淀机制;关键元素(Re、Se 和 Te)的出现、资源潜力和富集过程;以及利用矿物化学来帮助 PCD 勘探。
{"title":"Post-collisional porphyry copper deposits in Tibet: An overview","authors":"Zhiming Yang , Kang Cao","doi":"10.1016/j.earscirev.2024.104954","DOIUrl":"10.1016/j.earscirev.2024.104954","url":null,"abstract":"<div><div>This paper presents a review of the geology and geochemistry of post-collisional PCDs in Tibet, including their spatial–temporal distribution, features of the ore-forming porphyries, magmatic origin and evolution, water–metal–S sources, alteration and mineralization features, fluid sources and evolution, conditions of Cu–Mo mineralization, and geodynamic models of their formation.</div><div>The post-collisional PCDs in Tibet contain total resources of ∼46 million tonnes (Mt) Cu at an average grade of 0.3–0.6 % Cu. They are mainly concentrated in the Gangdese, Yulong, and Ailaoshan–Red River belts, with ages of 30–13, 43–37, and 36–34 Ma, respectively. Their ore-forming porphyries have compositions that vary from granodiorite to monzogranite, syenogranite, and granite, and are high-K calc-alkaline to shoshonitic, with adakite-like signatures and highly variable Sr–Nd–Pb–Hf isotopic compositions. The ore-forming porphyries were mainly generated by partial melting of subduction-modified, thickened mafic lower crust with contributions from metasomatized lithospheric mantle. The causes of lower-crustal melting include asthenospheric upwelling associated with delamination of lithospheric mantle or slab tearing/break-off, and/or underplating of mafic magmas derived from metasomatized subcontinental lithospheric mantle. Ore-forming metals and S were mainly sourced by remelting of sulfide phases introduced into the lower crust during pre-collisional arc magmatism. Water necessary for mineralization was concentrated by dehydration reactions in the upper part of the subducting continental plate and/or degassing of water-rich ultrapotassic and/or alkaline mafic magmas derived from the mantle.</div><div>Similar to subduction-related PCDs, post-collisional PCDs in Tibet exhibit typical alteration zoning from inner potassic to outer propylitic zones, but with more intense overprinting of phyllic alteration on the former two alteration zones, likely due to higher rates of <em>syn</em>-mineralization uplift. Copper mineralization in post-collisional PCDs is mainly associated with phyllic alteration (particularly chlorite–sericite alteration) and, to a lesser extent, with potassic alteration, which is different from the typical association with potassic alteration in subduction-related PCDs. The initial ore-forming fluids in the post-collisional PCDs are single-phase, intermediate-density, and low-salinity fluids derived from evolved magma reservoirs. With ascent and decompression, the single-phase fluids separate into immiscible metal-rich hypersaline liquids responsible for potassic alteration and a low-salinity vapor. The evolved single-phase fluids are possibly diluted by meteoric waters, which leads to phyllic alteration. Cooling of magmatic–hydrothermal fluids may control metal precipitation in some post-collisional PCDs.</div><div>The development of post-collisional PCDs in Tibet indicates that other collision zones worldwide also have the potenti","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104954"},"PeriodicalIF":10.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.earscirev.2024.104953
Ce Wang , Heqi Cui , Cheng-Shing Chiang , Ming Su , Letian Zeng , Junmin Jia , Liangjie Wei
U–Pb geochronology of detrital zircon is a powerful proxy that has seen significant growth and led to breakthroughs in understanding the sedimentary process and tectonic evolution in the South China Sea and its adjacent source terranes. However, uncertainties remain in determining the provenance of sediments due to the lack of systematic age compositions of the surrounding eroding sources. Here we present a new zircon U–Pb geochronological dataset from major drainage systems in seven geological domains surrounding the South China Sea, including large and coastal rivers in the South China and Indochina blocks, as well as rivers on the islands of Hainan, Taiwan, Luzon, Palawan, and Borneo. This dataset, combined with published data, forms a comprehensive detrital zircon U–Pb geochronological and Hf isotopic database (n = 21,580) for fluvial systems discharging into the South China Sea. The results show that these detrital zircons, with ages ranging from the Archean to the Cenozoic, have two major age groups at 260–220 Ma and 130–80 Ma and subordinate age populations at 2600–2400 Ma, 1900–1700 Ma, 1000–600 Ma, 500–390 Ma, and 40–20 Ma, corresponding to the major tectono-magmatic events in East and Southeast Asia. Detailed comparisons reveal distinct age signatures for each drainage system correlated with the basement characteristics of river basins, indicating a heterogeneous zircon age distribution. The findings indicate that the surrounding terranes have a significantly different crustal evolution history, with juvenile crustal growth occurring in the East and Southeast Asian continent predominantly during 2600–2400 Ma, 1800–1500 Ma, and 1000–700 Ma, and on the island of Luzon during the Cenozoic. This study provides a detrital zircon record for drainage systems surrounding the South China Sea and presents a method for defining regional first-order strategies to characterize the provenance and crustal evolution of the source terranes. The integrated dataset provides a critical foundation for investigating regional sediment provenance and tectonic correlations in East and Southeast Asia.
碎屑锆石的铀-铅地质年代学是一种强有力的替代方法,在了解中国南海及其邻近源地的沉积过程和构造演化方面取得了重大进展和突破。然而,由于缺乏周围侵蚀源的系统年龄组成,在确定沉积物的来源方面仍存在不确定性。在此,我们展示了一个新的锆石 U-Pb 地球时序数据集,该数据集来自南海周边七个地质区域的主要排水系统,包括华南和印度支那区块的大河和沿海河流,以及海南岛、台湾岛、吕宋岛、巴拉望岛和婆罗洲岛的河流。该数据集与已发表的数据相结合,形成了一个全面的锆英石U-Pb地质年代和Hf同位素数据库(n = 21,580),用于研究流入中国南海的河流系统。结果表明,这些碎屑锆石的年龄从奥陶纪到新生代不等,有两个主要年龄组,分别为260-220 Ma和130-80 Ma,以及从属年龄组,分别为2600-2400 Ma、1900-1700 Ma、1000-600 Ma、500-390 Ma和40-20 Ma,与东亚和东南亚的主要构造运动事件相对应。通过详细比较发现,每个排水系统都有不同的年龄特征,这与河流盆地的基底特征相关,表明锆石年龄分布具有异质性。研究结果表明,周围的地层具有明显不同的地壳演化历史,东亚和东南亚大陆的幼年地壳增长主要发生在 2600-2400 Ma、1800-1500 Ma 和 1000-700 Ma 期间,而吕宋岛则发生在新生代。该研究提供了南海周边排水系统的锆英石记录,并提出了一种定义区域一阶策略的方法,以描述源地陆相的产状和地壳演化。综合数据集为研究东亚和东南亚的区域沉积物出露和构造关联提供了重要依据。
{"title":"Regional detrital zircon record of the drainage sediments surrounding the South China Sea: Provenance signature and tectonic implications","authors":"Ce Wang , Heqi Cui , Cheng-Shing Chiang , Ming Su , Letian Zeng , Junmin Jia , Liangjie Wei","doi":"10.1016/j.earscirev.2024.104953","DOIUrl":"10.1016/j.earscirev.2024.104953","url":null,"abstract":"<div><div>U–Pb geochronology of detrital zircon is a powerful proxy that has seen significant growth and led to breakthroughs in understanding the sedimentary process and tectonic evolution in the South China Sea and its adjacent source terranes. However, uncertainties remain in determining the provenance of sediments due to the lack of systematic age compositions of the surrounding eroding sources. Here we present a new zircon U–Pb geochronological dataset from major drainage systems in seven geological domains surrounding the South China Sea, including large and coastal rivers in the South China and Indochina blocks, as well as rivers on the islands of Hainan, Taiwan, Luzon, Palawan, and Borneo. This dataset, combined with published data, forms a comprehensive detrital zircon U–Pb geochronological and Hf isotopic database (<em>n</em> = 21,580) for fluvial systems discharging into the South China Sea. The results show that these detrital zircons, with ages ranging from the Archean to the Cenozoic, have two major age groups at 260–220 Ma and 130–80 Ma and subordinate age populations at 2600–2400 Ma, 1900–1700 Ma, 1000–600 Ma, 500–390 Ma, and 40–20 Ma, corresponding to the major tectono-magmatic events in East and Southeast Asia. Detailed comparisons reveal distinct age signatures for each drainage system correlated with the basement characteristics of river basins, indicating a heterogeneous zircon age distribution. The findings indicate that the surrounding terranes have a significantly different crustal evolution history, with juvenile crustal growth occurring in the East and Southeast Asian continent predominantly during 2600–2400 Ma, 1800–1500 Ma, and 1000–700 Ma, and on the island of Luzon during the Cenozoic. This study provides a detrital zircon record for drainage systems surrounding the South China Sea and presents a method for defining regional first-order strategies to characterize the provenance and crustal evolution of the source terranes. The integrated dataset provides a critical foundation for investigating regional sediment provenance and tectonic correlations in East and Southeast Asia.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104953"},"PeriodicalIF":10.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<div><div>The Deccan-associated sediments (Lameta and intertrappean deposits) hold great potential for understanding the role of Deccan Volcanism in the late Maastrichtian ecological upheaval. However, it is challenging to ascertain Deccan Volcanism driven floral changes on the Indian Plate due to unresolvedstratigraphyic and lack of well-dated terrestrial sequences. We provide a thorough palaeobotanical, palaeoclimatic and palaeobiogeographic review of the pre-Deccan (Lameta deposits) and <em>syn</em>-Deccan (intertrappean deposits) sequences. We present a detailed palynological analysis of C29R magnetochron intertrappean section from Yeotmal, central India, depicting episodic regional floral responses to volcanism. We have critically reviewed the Indian Maastrichtian palaeofloral and palaeoclimatic records within the best-resolved chronologies to clarify the spatiotemporal changes in palaeovegetation and palaeoclimate pertaining to the Deccan Volcanism. Furthermore, we evaluated the global fossil records of all the nearest living relatives of the studied assemblage to enhance our understanding of the genesis of the late Maastrichtian flora of the Deccan Volcanic Province.</div><div>Our study showcases three stages of the Maastrichtian floral succession, corresponding to a quiescent phase between two secondary magmatic pulses of the C29R Magnetochron. Palaeowildfires and massive magmatic outflow caused by the active volcanism severely damaged the pre-existing flora. Progressively, confined and diminished volcanism at Stage-I allowed few aquatic and herbaceous species to flourish within the accessible lacustrine habitats. The dormant volcanic activity at Stage-II, in conjunction with the warm (MAT - ∼26 °C) and moist (MAP - ∼2270 mm) conditions due to latitudinal shifting of the Indian Plate within the Inter Tropical Convergence Zone, facilitated rapid expansion and diversification of the low-lying megathermal angiosperm forest within various habitats along shallow embayments. The gradual resurgence of volcanic activity at Stage-III resulted in widespread wildfires and forest knockdowns. The swift revival of the hyper-diverse tropical flora during the quiescent phase (Stage-II) does not show long-term (millennial scale) adverse impact of the Deccan Volcanism on the Indian Maastrichtian flora. The palaeobotanical and palaeoclimatic review suggests a consistent subtropical to tropical climate on the Indian Plate during the late Maastrichtian. However, a shift in seasonality from a seasonally dry climate supporting gymnosperm-angiosperm flora during the pre-Deccan phase to a seasonally wet climate and angiosperm-dominated flora during the <em>syn</em>-Deccan phase is noticeable. Furthermore, the palaeobiogeographic analysis suggests that much of the Maastrichtian biodiversity on the Indian Plate is a consequence of floral influx from South America and Africa via the Kohistan-Ladakh Island arc. Nonetheless, 41.2 % of the palaeoendemic taxa in the stu
{"title":"Did the Deccan Volcanism impact the Indian flora during the Maastrichtian?","authors":"Shreya Mishra , Mahi Bansal , Vandana Prasad , Vikram Partap Singh , Srikanta Murthy , Shalini Parmar , Torsten Utescher , Ranjit Khangar","doi":"10.1016/j.earscirev.2024.104950","DOIUrl":"10.1016/j.earscirev.2024.104950","url":null,"abstract":"<div><div>The Deccan-associated sediments (Lameta and intertrappean deposits) hold great potential for understanding the role of Deccan Volcanism in the late Maastrichtian ecological upheaval. However, it is challenging to ascertain Deccan Volcanism driven floral changes on the Indian Plate due to unresolvedstratigraphyic and lack of well-dated terrestrial sequences. We provide a thorough palaeobotanical, palaeoclimatic and palaeobiogeographic review of the pre-Deccan (Lameta deposits) and <em>syn</em>-Deccan (intertrappean deposits) sequences. We present a detailed palynological analysis of C29R magnetochron intertrappean section from Yeotmal, central India, depicting episodic regional floral responses to volcanism. We have critically reviewed the Indian Maastrichtian palaeofloral and palaeoclimatic records within the best-resolved chronologies to clarify the spatiotemporal changes in palaeovegetation and palaeoclimate pertaining to the Deccan Volcanism. Furthermore, we evaluated the global fossil records of all the nearest living relatives of the studied assemblage to enhance our understanding of the genesis of the late Maastrichtian flora of the Deccan Volcanic Province.</div><div>Our study showcases three stages of the Maastrichtian floral succession, corresponding to a quiescent phase between two secondary magmatic pulses of the C29R Magnetochron. Palaeowildfires and massive magmatic outflow caused by the active volcanism severely damaged the pre-existing flora. Progressively, confined and diminished volcanism at Stage-I allowed few aquatic and herbaceous species to flourish within the accessible lacustrine habitats. The dormant volcanic activity at Stage-II, in conjunction with the warm (MAT - ∼26 °C) and moist (MAP - ∼2270 mm) conditions due to latitudinal shifting of the Indian Plate within the Inter Tropical Convergence Zone, facilitated rapid expansion and diversification of the low-lying megathermal angiosperm forest within various habitats along shallow embayments. The gradual resurgence of volcanic activity at Stage-III resulted in widespread wildfires and forest knockdowns. The swift revival of the hyper-diverse tropical flora during the quiescent phase (Stage-II) does not show long-term (millennial scale) adverse impact of the Deccan Volcanism on the Indian Maastrichtian flora. The palaeobotanical and palaeoclimatic review suggests a consistent subtropical to tropical climate on the Indian Plate during the late Maastrichtian. However, a shift in seasonality from a seasonally dry climate supporting gymnosperm-angiosperm flora during the pre-Deccan phase to a seasonally wet climate and angiosperm-dominated flora during the <em>syn</em>-Deccan phase is noticeable. Furthermore, the palaeobiogeographic analysis suggests that much of the Maastrichtian biodiversity on the Indian Plate is a consequence of floral influx from South America and Africa via the Kohistan-Ladakh Island arc. Nonetheless, 41.2 % of the palaeoendemic taxa in the stu","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104950"},"PeriodicalIF":10.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1016/j.earscirev.2024.104912
Zachary F.M. Burton , Tim R. McHargue , Stephan A. Graham
Global sedimentary hiatuses are well-documented in ancient pelagic sediment, and include Paleocene, Eocene-Oligocene boundary, and Miocene hiatuses. Less clear is the extent of these hiatuses in continental margin settings. Here, we test the hypothesis that global hiatuses evident in pelagic sections are also manifested in siliciclastic basins of continental margins globally. We choose to focus on the Eocene greenhouse to Oligocene icehouse transition, a period that is remarkable as the most profound climatic transition of the Cenozoic, and a period characterized by extreme cooling and expansion of polar ice, sea-level fall, and global changes to ocean circulation. We perform a comprehensive review of marine siliciclastic basin literature to produce a global inventory of Eocene-Oligocene unconformities. We find evidence for a prominent Eocene-Oligocene unconformity in sedimentary basins along the margins of every continent. The globally-widespread distribution of unconformities suggests global controls on their development. Furthermore, Eocene-Oligocene erosion surfaces are common in shelf settings, as well as in deep-water settings from slope to basin floor, indicating unconformity-generating processes across a wide range of water depths. Global sea-level fall may have driven subaerial shelf exposure and erosive down-slope processes including submarine canyon cutting and mass wasting. Meanwhile, the intensification of deep-ocean thermohaline currents potentially induced erosion of not only pelagic successions, but also of clastic successions. Overall, our documentation of globally-widespread Eocene-Oligocene unconformities suggests global controls, of which the extreme climatic and oceanographic changes of the greenhouse to icehouse transition seem particularly compelling.
{"title":"Global Eocene-Oligocene unconformity in clastic sedimentary basins","authors":"Zachary F.M. Burton , Tim R. McHargue , Stephan A. Graham","doi":"10.1016/j.earscirev.2024.104912","DOIUrl":"10.1016/j.earscirev.2024.104912","url":null,"abstract":"<div><div>Global sedimentary hiatuses are well-documented in ancient pelagic sediment, and include Paleocene, Eocene-Oligocene boundary, and Miocene hiatuses. Less clear is the extent of these hiatuses in continental margin settings. Here, we test the hypothesis that global hiatuses evident in pelagic sections are also manifested in siliciclastic basins of continental margins globally. We choose to focus on the Eocene greenhouse to Oligocene icehouse transition, a period that is remarkable as the most profound climatic transition of the Cenozoic, and a period characterized by extreme cooling and expansion of polar ice, sea-level fall, and global changes to ocean circulation. We perform a comprehensive review of marine siliciclastic basin literature to produce a global inventory of Eocene-Oligocene unconformities. We find evidence for a prominent Eocene-Oligocene unconformity in sedimentary basins along the margins of every continent. The globally-widespread distribution of unconformities suggests global controls on their development. Furthermore, Eocene-Oligocene erosion surfaces are common in shelf settings, as well as in deep-water settings from slope to basin floor, indicating unconformity-generating processes across a wide range of water depths. Global sea-level fall may have driven subaerial shelf exposure and erosive down-slope processes including submarine canyon cutting and mass wasting. Meanwhile, the intensification of deep-ocean thermohaline currents potentially induced erosion of not only pelagic successions, but also of clastic successions. Overall, our documentation of globally-widespread Eocene-Oligocene unconformities suggests global controls, of which the extreme climatic and oceanographic changes of the greenhouse to icehouse transition seem particularly compelling.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104912"},"PeriodicalIF":10.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.earscirev.2024.104946
David B. Kemp , Zhong Han , Xiumian Hu , Wenhan Chen , Simin Jin , Kentaro Izumi , Qing Yan , Viktória Baranyi , Xin Jin , Jacopo Dal Corso , Yuzhu Ge
An intensification of the hydrological cycle is an expected consequence of global warming, and this will likely lead to spatially variable precipitation and drought extremes, and more intense tropical storms. Deep time hyperthermal events, characterised by large-scale carbon release and transient global warming, have the potential to provide insights into the nature and magnitude of hydroclimate changes in response to warming. The Toarcian oceanic anoxic event (T-OAE, or Jenkyns Event, ∼183 Ma) was a severe hyperthermal, and is associated with evidence for marked changes in hydroclimate, including: intensified tropical cyclone activity, an increase in global chemical weathering rates, and elevated freshwater runoff and terrigenous sediment fluxes to basins. Nevertheless, key knowledge gaps exist regarding the scale, significance, distribution and interpretation of these changes. Here, we review the evidence for T-OAE hydroclimate changes based on published data from 109 sites. Although these sites are primarily concentrated in the northwest Tethys region, we show that evidence for T-OAE hydroclimate change was globally distributed, and that most sites (63 %) record evidence consistent with an intensification of hydrological cycling under hotter conditions likely characterised by weather/precipitation extremes. Evidence for enhanced storm activity is common; recorded at up to a third of sites from both low and middle latitudes. This evidence is consistent with climate model predictions of increased tropical cyclone intensity and a poleward shift in storm tracks under elevated atmospheric CO2. Evidence for enhanced weathering and terrigenous fluxes is also common. This evidence, coupled with the evidence for increased storminess, may help explain increased turbidite deposition during the event recorded at some deep-water sites. Although affected by geographic and perhaps sedimentological biases, our findings underline how hydroclimate change was an inherent and perhaps defining characteristic of the T-OAE, potentially of equal paleoenvironmental significance to the seawater deoxygenation that originally defined the event.
{"title":"Global hydroclimate perturbations during the Toarcian oceanic anoxic event","authors":"David B. Kemp , Zhong Han , Xiumian Hu , Wenhan Chen , Simin Jin , Kentaro Izumi , Qing Yan , Viktória Baranyi , Xin Jin , Jacopo Dal Corso , Yuzhu Ge","doi":"10.1016/j.earscirev.2024.104946","DOIUrl":"10.1016/j.earscirev.2024.104946","url":null,"abstract":"<div><div>An intensification of the hydrological cycle is an expected consequence of global warming, and this will likely lead to spatially variable precipitation and drought extremes, and more intense tropical storms. Deep time hyperthermal events, characterised by large-scale carbon release and transient global warming, have the potential to provide insights into the nature and magnitude of hydroclimate changes in response to warming. The Toarcian oceanic anoxic event (T-OAE, or Jenkyns Event, ∼183 Ma) was a severe hyperthermal, and is associated with evidence for marked changes in hydroclimate, including: intensified tropical cyclone activity, an increase in global chemical weathering rates, and elevated freshwater runoff and terrigenous sediment fluxes to basins. Nevertheless, key knowledge gaps exist regarding the scale, significance, distribution and interpretation of these changes. Here, we review the evidence for T-OAE hydroclimate changes based on published data from 109 sites. Although these sites are primarily concentrated in the northwest Tethys region, we show that evidence for T-OAE hydroclimate change was globally distributed, and that most sites (63 %) record evidence consistent with an intensification of hydrological cycling under hotter conditions likely characterised by weather/precipitation extremes. Evidence for enhanced storm activity is common; recorded at up to a third of sites from both low and middle latitudes. This evidence is consistent with climate model predictions of increased tropical cyclone intensity and a poleward shift in storm tracks under elevated atmospheric CO<sub>2</sub>. Evidence for enhanced weathering and terrigenous fluxes is also common. This evidence, coupled with the evidence for increased storminess, may help explain increased turbidite deposition during the event recorded at some deep-water sites. Although affected by geographic and perhaps sedimentological biases, our findings underline how hydroclimate change was an inherent and perhaps defining characteristic of the T-OAE, potentially of equal paleoenvironmental significance to the seawater deoxygenation that originally defined the event.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104946"},"PeriodicalIF":10.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.earscirev.2024.104947
Nicholas J. Gardiner , Richard M. Palin , Lot Koopmans , Martin F. Mangler , Laurence J. Robb
<div><div>The battery metals tin and lithium (Sn<img>Li) are key to renewable energy technologies, with demand driving new interest in the formation and exploration of tin granites and lithium-caesium‑tantalum (LCT) pegmatites. These magmatic-hydrothermal systems originate from highly evolved, reduced, peraluminous, volatile-rich granitic melts which develop elevated concentrations of incompatible metals. Tin granite deposits form either as disseminated magmatic cassiterite, or hydrothermal quartz-cassiterite lodes and greisens, with Li-bearing fluids driving late-stage mica alteration to Li-rich varieties. Conversely, LCT pegmatites record a complex crystallization with Li ores forming during primary magmatic crystallization, and Sn associated with hydrothermal overprints.</div><div>The first appearance in the geological record of Sn<img>Li granites and pegmatites is linked to the global onset of crustal reworking during Neoarchean terrane assembly, highlighting the key role of crustal evolution processes in their formation. In this contribution, we review our current understanding of Sn<img>Li metallogeny from source to sink through the lens of crustal processes. We focus on recent advances in petrological modelling and in situ microanalysis of rock-forming and accessory minerals, to examine tin granite and LCT pegmatite formation from partial melting of a source rock through melt extraction; emplacement, crystallization, and fractionation; to late-stage hydrothermal processes.</div><div>Quantitative thermodynamic modelling of crustal melting brings the ability to explore source rock anatexis and resulting melt compositions under various <em>P-T</em> conditions. Melt Sn<img>Li concentrations are controlled by mineral breakdown and metal partitioning between restite and melt. Sn and Li are primarily hosted in muscovite and biotite; deep crustal melting driving biotite breakdown releases Sn and Li into the melt, however shallow muscovite-driven melting restricts melt Li enrichment. It is difficult to generate a melt capable of saturating Li ore minerals from melting an ordinary clay protolith, hence either multi-stage melting or source metal pre-enrichment may be required.</div><div>Microanalysis allows high-precision geochemical and isotopic characterization of mineral phases. We review and summarize case studies using accessory minerals such as zircon, apatite, and mica, whose compositions are particularly powerful in tracking metal concentration and mobility during magma evolution and the magmatic-hydrothermal transition, with potential applications to exploration efforts. In tandem, the development of novel geochronometers such as cassiterite or columbite U<img>Pb help improve constraints on the age and timing of mineralization with respect to magmatism.</div><div>Finally, we consider the formation of tin granites and LCT pegmatites in 4D using the framework of long-lived, transcrustal magmatic systems. These models may help describe how prol
{"title":"On tin and lithium granite systems: A crustal evolution perspective","authors":"Nicholas J. Gardiner , Richard M. Palin , Lot Koopmans , Martin F. Mangler , Laurence J. Robb","doi":"10.1016/j.earscirev.2024.104947","DOIUrl":"10.1016/j.earscirev.2024.104947","url":null,"abstract":"<div><div>The battery metals tin and lithium (Sn<img>Li) are key to renewable energy technologies, with demand driving new interest in the formation and exploration of tin granites and lithium-caesium‑tantalum (LCT) pegmatites. These magmatic-hydrothermal systems originate from highly evolved, reduced, peraluminous, volatile-rich granitic melts which develop elevated concentrations of incompatible metals. Tin granite deposits form either as disseminated magmatic cassiterite, or hydrothermal quartz-cassiterite lodes and greisens, with Li-bearing fluids driving late-stage mica alteration to Li-rich varieties. Conversely, LCT pegmatites record a complex crystallization with Li ores forming during primary magmatic crystallization, and Sn associated with hydrothermal overprints.</div><div>The first appearance in the geological record of Sn<img>Li granites and pegmatites is linked to the global onset of crustal reworking during Neoarchean terrane assembly, highlighting the key role of crustal evolution processes in their formation. In this contribution, we review our current understanding of Sn<img>Li metallogeny from source to sink through the lens of crustal processes. We focus on recent advances in petrological modelling and in situ microanalysis of rock-forming and accessory minerals, to examine tin granite and LCT pegmatite formation from partial melting of a source rock through melt extraction; emplacement, crystallization, and fractionation; to late-stage hydrothermal processes.</div><div>Quantitative thermodynamic modelling of crustal melting brings the ability to explore source rock anatexis and resulting melt compositions under various <em>P-T</em> conditions. Melt Sn<img>Li concentrations are controlled by mineral breakdown and metal partitioning between restite and melt. Sn and Li are primarily hosted in muscovite and biotite; deep crustal melting driving biotite breakdown releases Sn and Li into the melt, however shallow muscovite-driven melting restricts melt Li enrichment. It is difficult to generate a melt capable of saturating Li ore minerals from melting an ordinary clay protolith, hence either multi-stage melting or source metal pre-enrichment may be required.</div><div>Microanalysis allows high-precision geochemical and isotopic characterization of mineral phases. We review and summarize case studies using accessory minerals such as zircon, apatite, and mica, whose compositions are particularly powerful in tracking metal concentration and mobility during magma evolution and the magmatic-hydrothermal transition, with potential applications to exploration efforts. In tandem, the development of novel geochronometers such as cassiterite or columbite U<img>Pb help improve constraints on the age and timing of mineralization with respect to magmatism.</div><div>Finally, we consider the formation of tin granites and LCT pegmatites in 4D using the framework of long-lived, transcrustal magmatic systems. These models may help describe how prol","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104947"},"PeriodicalIF":10.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.earscirev.2024.104952
Darko Spahić , Fabrizio Cocco , Pavle Tančić
Intra-Ordovician geodynamics along the northern Gondwana margin, defined in most parts of exotic southern peri-Gondwanan Europe, had a far-field effect on the subsiding Gondwanan interior. The outboard peripheral Cenerian Orogeny influenced the ongoing subsidence and deposition of monotonous clastic Cambrian – Lower Ordovician mega-sequence unconformably overlying North African basements. A combination of literature review and field mapping provides first-order constraints between the truncated Cambro-Ordovician successions of central Libya and peri-Gondwanan intra-Ordovician deformation recorded in south-European and Alpine-Carpathian-Balkan basements (unconformity markers). The data synthesis further permits a genetic connection between the detached exotic Ordovician northeastern Gondwanan flank (south Europe/Alps-Carpathian-Balkans) and its subsiding Ordovician intra-cratonic hinterland. By coupling the complex stratigraphic, detrital zircon, and ironstone datasets as unconformity markers, link between south-central European and North African Ordovician imprints is provided.
Several Gondwanan intraplate truncations in stratigraphy coincide with recurrent Ordovician geodynamical interferences, particularly unconformities embedded into the northeastern Gondwanan assemblage. The most relevant of these intraplate truncations is the so-called "intra-Arenigian" angular unconformity. The “intra-Arenigian” angular unconformity coincides with eastern Gondwanan Cenerian or Sardic intra-Ordovician deformational episodes. The “intra-Arenigian” angular unconformity separates monotoneous super-mature clastic Cambrian-Lower Ordovician from Darriwilian strata of North African hinterland, or the Hasawnah from the Hawaz Formations. The stratigraphic position of this angular unconformity fits with the outer-shelf active margin-related geodynamic compressional interferences (collision or “docking”, no crustal thickening involved). Broadly analogous intra-Ordovician geodynamic relationship was already recognized in detached exotic south European Variscan terranes referred to as the Sardic and Sarrabese mid-Ordovician tectonic phases. The detrital zircon populations within the transgressive Middle Ordovician Hawaz Formation suggest a provenance change consistent with a vast shallow shelf linking the northeastern Gondwanan flank and hinterland. The post-unconformity sequence or stratigraphically lowermost Hawaz K-bentonites of the Darriwilian age and the recently mapped basalts interbedded within the Melaz Shuqrāne Formation (Upper Katian-Hirnantian) could be in correlation with a short-lived back-arc or rift-related (intracratonic) volcanism. The Ordovician back-arc extension or rifting event postdates the accretionary tectonics in the outboard flanking Cenerian Orogeny. Such magmatism could be in relation to the Late Ordovician – Silurian rift and drift-off of the peri-Godwanan terrane assembly.
{"title":"The far-field interplay between peripheral Cenerian Orogeny and inner north Gondwanan hinterland: Cambro-Ordovician siliciclastic veneer and pre-Hirnantian unconformities (Sahara, central Libya)","authors":"Darko Spahić , Fabrizio Cocco , Pavle Tančić","doi":"10.1016/j.earscirev.2024.104952","DOIUrl":"10.1016/j.earscirev.2024.104952","url":null,"abstract":"<div><div>Intra-Ordovician geodynamics along the northern Gondwana margin, defined in most parts of exotic southern peri-Gondwanan Europe, had a far-field effect on the subsiding Gondwanan interior. The outboard peripheral Cenerian Orogeny influenced the ongoing subsidence and deposition of monotonous clastic Cambrian – Lower Ordovician mega-sequence unconformably overlying North African basements. A combination of literature review and field mapping provides first-order constraints between the truncated Cambro-Ordovician successions of central Libya and peri-Gondwanan intra-Ordovician deformation recorded in south-European and Alpine-Carpathian-Balkan basements (unconformity markers). The data synthesis further permits a genetic connection between the detached exotic Ordovician northeastern Gondwanan flank (south Europe/Alps-Carpathian-Balkans) and its subsiding Ordovician intra-cratonic hinterland. By coupling the complex stratigraphic, detrital zircon, and ironstone datasets as unconformity markers, link between south-central European and North African Ordovician imprints is provided.</div><div>Several Gondwanan intraplate truncations in stratigraphy coincide with recurrent Ordovician geodynamical interferences, particularly unconformities embedded into the northeastern Gondwanan assemblage. The most relevant of these intraplate truncations is the so-called \"intra-Arenigian\" angular unconformity. The “intra-Arenigian” angular unconformity coincides with eastern Gondwanan Cenerian or Sardic intra-Ordovician deformational episodes. The “intra-Arenigian” angular unconformity separates monotoneous super-mature clastic Cambrian-Lower Ordovician from Darriwilian strata of North African hinterland, or the Hasawnah from the Hawaz Formations. The stratigraphic position of this angular unconformity fits with the outer-shelf active margin-related geodynamic compressional interferences (collision or “docking”, no crustal thickening involved). Broadly analogous intra-Ordovician geodynamic relationship was already recognized in detached exotic south European Variscan terranes referred to as the Sardic and Sarrabese mid-Ordovician tectonic phases. The detrital zircon populations within the transgressive Middle Ordovician Hawaz Formation suggest a provenance change consistent with a vast shallow shelf linking the northeastern Gondwanan flank and hinterland. The post-unconformity sequence or stratigraphically lowermost Hawaz K-bentonites of the Darriwilian age and the recently mapped basalts interbedded within the Melaz Shuqrāne Formation (Upper Katian-Hirnantian) could be in correlation with a short-lived back-arc or rift-related (intracratonic) volcanism. The Ordovician back-arc extension or rifting event postdates the accretionary tectonics in the outboard flanking Cenerian Orogeny. Such magmatism could be in relation to the Late Ordovician – Silurian rift and drift-off of the peri-Godwanan terrane assembly.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104952"},"PeriodicalIF":10.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.earscirev.2024.104948
Wenping Gong , Shaoyan Zhang , C. Hsein Juang , Huiming Tang , Shiva P. Pudasaini
In this paper, a critical review of the landslide displacement prediction is conducted, based on a database of 359 articles on landslide displacement prediction published from 1985 to 2023. The statistical analysis of this database shows that the methods taken for the landslide displacement prediction could be categorized into physics-based and data-driven approaches. In the context of the physics-based approaches, the displacement of a landslide is characterized and predicted by a physics-based model that approximates the deformation mechanism of the landslide; whereas, the displacement, in the data-driven approaches, is often characterized and predicted by a mathematical or machine learning model, established based on analyses of the historical data. Note that although physics-based approaches were generally adopted in the early studies, data-driven approaches are becoming more and more popular in recent years. The main components involved in the physics-based approaches, including principles for establishing the prediction model, determination of model parameters, solution strategies of the model built, evaluation of the model's predictive performance, are first reviewed based on the literature database; then, those of the data-driven approaches, including methods for pre-processing the landslide displacement and influencing factors, algorithms for establishing the prediction model, calibration of model parameters, probabilistic prediction methods of landslide displacement, and evaluation of the model's predictive performance, are analyzed. Based on analyses of the information collected from the literature and our experience, we further discuss the challenges faced in landslide displacement prediction and offer recommendations for future research. We suggest that a hybrid prediction framework that takes advantage of both physics-based and data-driven approaches, a multi-field and multi-parameter landslide monitoring scheme, and an efficient strategy for the calibration of model parameters warrant further investigations.
{"title":"Displacement prediction of landslides at slope-scale: Review of physics-based and data-driven approaches","authors":"Wenping Gong , Shaoyan Zhang , C. Hsein Juang , Huiming Tang , Shiva P. Pudasaini","doi":"10.1016/j.earscirev.2024.104948","DOIUrl":"10.1016/j.earscirev.2024.104948","url":null,"abstract":"<div><div>In this paper, a critical review of the landslide displacement prediction is conducted, based on a database of 359 articles on landslide displacement prediction published from 1985 to 2023. The statistical analysis of this database shows that the methods taken for the landslide displacement prediction could be categorized into physics-based and data-driven approaches. In the context of the physics-based approaches, the displacement of a landslide is characterized and predicted by a physics-based model that approximates the deformation mechanism of the landslide; whereas, the displacement, in the data-driven approaches, is often characterized and predicted by a mathematical or machine learning model, established based on analyses of the historical data. Note that although physics-based approaches were generally adopted in the early studies, data-driven approaches are becoming more and more popular in recent years. The main components involved in the physics-based approaches, including principles for establishing the prediction model, determination of model parameters, solution strategies of the model built, evaluation of the model's predictive performance, are first reviewed based on the literature database; then, those of the data-driven approaches, including methods for pre-processing the landslide displacement and influencing factors, algorithms for establishing the prediction model, calibration of model parameters, probabilistic prediction methods of landslide displacement, and evaluation of the model's predictive performance, are analyzed. Based on analyses of the information collected from the literature and our experience, we further discuss the challenges faced in landslide displacement prediction and offer recommendations for future research. We suggest that a hybrid prediction framework that takes advantage of both physics-based and data-driven approaches, a multi-field and multi-parameter landslide monitoring scheme, and an efficient strategy for the calibration of model parameters warrant further investigations.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104948"},"PeriodicalIF":10.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.earscirev.2024.104951
Fadi H. Nader , Liviu C. Matenco , Bilal U. Haq
A new conceptual diagenetic model is proposed to better understand the relationship between multi-scale tectonic and the ensuing diagenetic processes, whereby the physio-chemical fluid-rock interaction processes are linked to tectonic controls, in terms of creation or destruction of accommodation space, the evolution of overburden and compaction, exhumation, as well as fracturing and creation of fluid flow pathways. In our research, key processes involved in diagenetic fluid-rock interactions have been applied to a recent multi-scale tectonically induced sedimentation model in order to define a linked diagenetic-tectonic cyclicity concept. We demonstrate the applicability of this concept in various tectonic and depositional systems with worldwide examples. Four distinct diagenetic fluid types modify the properties of sedimentary systems, which are basinal fluids, compactional fluids, meteoric fluids, and fault-associated fluids. The related, time-independent, diagenetic facies and their extent in the subsurface defined as diagenetic facies tracts include the modified rock affected by a singular diagenetic fluid or process. The proposed diagenetic facies tracts are the basinal diagenetic facies tract, compactional diagenetic facies tract, meteoric diagenetic facies tract and fracture-associated diagenetic facies tract. Their subsurface extent is controlled by the tectonic evolution, and we demonstrate that quantification and prediction is possible using a previously defined tectonic successions model. Each diagenetic facies tract is associated with a set of diagenetic processes and resulting products, that ultimately impact the pore space of the host rock and its flow properties. The combinations of several diagenetic tracts (into diagenetic facies tracts complexes) have been assessed, showing that the optimal situation for enhanced flow is the one that combines meteoric diagenetic facies tracts with fracture-associated diagenetic facies tracts, where karst dissolution together with fracturing are common. Contrastingly, quiescent tectonic settings with a typical burial history result in excessive cementation and therefore reduced flow. These attributes are critical for the large-scale screening and quantification of subsurface geo-resources, conventional and particularly important for the sustainable ones (e.g., geothermal energy) and geological storage (e.g., CO2 or energy) that are associated with enhanced fluid-rock interaction processes.
{"title":"Conceptualizing fluid-rock interaction diagenetic models with focus on tectonic settings","authors":"Fadi H. Nader , Liviu C. Matenco , Bilal U. Haq","doi":"10.1016/j.earscirev.2024.104951","DOIUrl":"10.1016/j.earscirev.2024.104951","url":null,"abstract":"<div><div>A new conceptual diagenetic model is proposed to better understand the relationship between multi-scale tectonic and the ensuing diagenetic processes, whereby the physio-chemical fluid-rock interaction processes are linked to tectonic controls, in terms of creation or destruction of accommodation space, the evolution of overburden and compaction, exhumation, as well as fracturing and creation of fluid flow pathways. In our research, key processes involved in diagenetic fluid-rock interactions have been applied to a recent multi-scale tectonically induced sedimentation model in order to define a linked diagenetic-tectonic cyclicity concept. We demonstrate the applicability of this concept in various tectonic and depositional systems with worldwide examples. Four distinct diagenetic fluid types modify the properties of sedimentary systems, which are basinal fluids, compactional fluids, meteoric fluids, and fault-associated fluids. The related, time-independent, diagenetic facies and their extent in the subsurface defined as diagenetic facies tracts include the modified rock affected by a singular diagenetic fluid or process. The proposed diagenetic facies tracts are the basinal diagenetic facies tract, compactional diagenetic facies tract, meteoric diagenetic facies tract and fracture-associated diagenetic facies tract. Their subsurface extent is controlled by the tectonic evolution, and we demonstrate that quantification and prediction is possible using a previously defined tectonic successions model. Each diagenetic facies tract is associated with a set of diagenetic processes and resulting products, that ultimately impact the pore space of the host rock and its flow properties. The combinations of several diagenetic tracts (into diagenetic facies tracts complexes) have been assessed, showing that the optimal situation for enhanced flow is the one that combines meteoric diagenetic facies tracts with fracture-associated diagenetic facies tracts, where karst dissolution together with fracturing are common. Contrastingly, quiescent tectonic settings with a typical burial history result in excessive cementation and therefore reduced flow. These attributes are critical for the large-scale screening and quantification of subsurface geo-resources, conventional and particularly important for the sustainable ones (e.g., geothermal energy) and geological storage (e.g., CO<sub>2</sub> or energy) that are associated with enhanced fluid-rock interaction processes.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104951"},"PeriodicalIF":10.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1016/j.earscirev.2024.104944
Mounir H. El-Azabi
The Miocene is a crucial epoch in the evolution of the Gulf of Suez basin. Its deposits experienced rapid and distinct spatial and temporal variations in facies and thickness due to deposition in a complex system of fault-bounded sub-basins that were continuously active throughout most of the Miocene. This review addresses the evolution of Miocene facies in the Gulf of Suez, which remains a major challenge, by integrating a detailed stratigraphic and sedimentological study. Two markedly different facies characterize Miocene deposits: marginal and deeper marine facies. Regionally traced unconformities intersect these facies, reflecting the nature of the tectonically active rift basin in which they accumulated. They define seven depositional sequences in the lower and middle Miocene facies exposed along the rift margins. Unconformities and related sea-level falls formed in response to major rift events, although some are associated with eustatic sea-level falls. The latter played an important role during the rift abandonment, when tectonic subsidence was slow. The evolution of Miocene facies reveals three distinct phases of rifting, each showing unique subsidence rate, sedimentation rate, structural relief, depositional systems, and facies architectures. These phases define four depositional stages, including the shallow marine stage, the open marine stage, the transitional stage, and the restriction stage. The first stage displays slow tectonic subsidence and initial marine invasion during the Aquitanian–early Burdigalian (Nukhul Formation). The second stage shows a rapid increase in rates of crustal extension, tectonic subsidence, and sedimentation during the early–late Burdigalian (Rudeis Formation), and a marked uplift of the rift shoulders in the late Burdigalian. The third stage indicates reduced rates of extension, subsidence, and sedimentation during the Langhian (Kareem Formation). The final stage shows a very slow subsidence with periodic water inflows from the Mediterranean during the Serravallian (Belayim Formation), and ends with an uplift in the northernmost Gulf of Suez basin that permanently isolates it from the north during the Tortonian–Messinian (South Gharib and Zeit formations). Facies attributed to the Gharamul and Gemsa formations, and the Sarbut El-Gamal Formation developed simultaneously along the western and eastern rift margins, respectively, during the second, third, and the lower part of the fourth evolutionary stages.
{"title":"Sedimentary evolution of the Miocene syn-rift marginal and deeper marine facies in the Gulf of Suez rift basin, Egypt: A review","authors":"Mounir H. El-Azabi","doi":"10.1016/j.earscirev.2024.104944","DOIUrl":"10.1016/j.earscirev.2024.104944","url":null,"abstract":"<div><div>The Miocene is a crucial epoch in the evolution of the Gulf of Suez basin. Its deposits experienced rapid and distinct spatial and temporal variations in facies and thickness due to deposition in a complex system of fault-bounded sub-basins that were continuously active throughout most of the Miocene. This review addresses the evolution of Miocene facies in the Gulf of Suez, which remains a major challenge, by integrating a detailed stratigraphic and sedimentological study. Two markedly different facies characterize Miocene deposits: marginal and deeper marine facies. Regionally traced unconformities intersect these facies, reflecting the nature of the tectonically active rift basin in which they accumulated. They define seven depositional sequences in the lower and middle Miocene facies exposed along the rift margins. Unconformities and related sea-level falls formed in response to major rift events, although some are associated with eustatic sea-level falls. The latter played an important role during the rift abandonment, when tectonic subsidence was slow. The evolution of Miocene facies reveals three distinct phases of rifting, each showing unique subsidence rate, sedimentation rate, structural relief, depositional systems, and facies architectures. These phases define four depositional stages, including the shallow marine stage, the open marine stage, the transitional stage, and the restriction stage. The first stage displays slow tectonic subsidence and initial marine invasion during the Aquitanian–early Burdigalian (Nukhul Formation). The second stage shows a rapid increase in rates of crustal extension, tectonic subsidence, and sedimentation during the early–late Burdigalian (Rudeis Formation), and a marked uplift of the rift shoulders in the late Burdigalian. The third stage indicates reduced rates of extension, subsidence, and sedimentation during the Langhian (Kareem Formation). The final stage shows a very slow subsidence with periodic water inflows from the Mediterranean during the Serravallian (Belayim Formation), and ends with an uplift in the northernmost Gulf of Suez basin that permanently isolates it from the north during the Tortonian–Messinian (South Gharib and Zeit formations). Facies attributed to the Gharamul and Gemsa formations, and the Sarbut El-Gamal Formation developed simultaneously along the western and eastern rift margins, respectively, during the second, third, and the lower part of the fourth evolutionary stages.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104944"},"PeriodicalIF":10.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}