Methane (CH4) is a potent greenhouse gas that has a major impact on Earth's climate. CH4 is accommodated in discrete bubbles in aquatic muds, whose sizes greatly exceed the pore size of the hosting sediment. This critical review examines the mechanics of CH4 gas in consolidated aquatic muds at the scale of a single bubble and at a macroscale of gassy sediments, obtained from lab experiments, field observations, and numerical and analytical modeling. Linear elastic fracture mechanics (LEFM) theory is shown to control the single bubble shape, size, morphology, and inner pressure evolution over its entire life cycle. Reviewed implications focus on the effects of the inner bubble pressure on its solute exchange with ambient pore waters; on the dynamic water load effect (e.g., waves, tides) on the bubble growth rate and its release from sediment into the water column; and on competitive bubble pair growth in the aquatic muds, the process that presumably shapes the bubble size distribution pattern in muds. Alternatively, gassy sediment effective mechanical and physical characteristics and effective gassy media theories are examined at the macroscale, which makes them suitable for remote sensing acoustic applications. This review indicates, however, that most of the developed macroscale effective medium theories rely on the cumulative sediment gas content. Moreover, no theory for proper upscaling of the entire set of the microscale single bubble descriptors addressed in this review – bubble size distribution, their orientations and spatial locations, and inner bubble pressures – to the effective medium mechanical properties of gassy muds, exists. This review will serve, therefore, as a basis for the improved upscaling, while preserving the basic microscale bubble descriptors, their growth physics, and controls. Laying this foundation will enhance the accuracy of the acoustic applications. Improved assessment of sediment gas retention based on this upscaling will contribute to geohazard prediction and should reduce a long-persisting uncertainty related to CH4 fluxes from the aquatic sediments.
Geological storage of CO2 is a promising technique to mitigate anthropogenic CO2 emissions. The effectiveness of CO2 storage in the subsurface formations relies on various trapping mechanisms that immobilize the injected CO2. Among these mechanisms, residual trapping has been identified as a critical factor, closely associated with residual CO2 saturation. The extent of residual CO2 saturation is strongly influenced by the petrophysical physicochemical and hydrodynamic properties of CO2/fluid/rock systems and operational conditions, thereby governing the overall residual trapping efficiency.
This article reviews the published experimental datasets on the initial and residual CO2 saturation and analyzes the corresponding trapping efficiency for a range of in-situ CO2/fluid/rock systems. We explore the factors that influence trapping efficiency, including wettability, rock type, rock properties, and flow rate. The gas saturations and trapping efficiencies of different gas types (i.e., CO2, N2, and H2) are also discussed. Finally, we present the knowledge gaps and outline prospects for future research. This review establishes a state-of-art data repository of gas saturations in different conditions, enhancing our understanding of residual trapping in subsurface gas storage.
The Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE 2, ca. 94 Ma) is characterized by a marked positive carbon isotope excursion (CIE) recorded in global marine basins. This CIE results from a global-scale increase in organic matter burial, facilitated by high productivity and seawater deoxygenation. To date, however, the precise pattern of changes in the burial rate of organic matter through the event has not been well constrained. In this work, we present a compilation of data from 42 globally distributed OAE 2 sites, as well as organic carbon isotope (13Corg), total organic carbon (TOC), and trace element concentration data from a new OAE 2 interval in southern Tibet, China. In southern Tibet, the absence of redox-sensitive trace element enrichment through OAE 2 indicates prevailing oxic conditions. Organic carbon (OC) mass accumulation rate (MAR) at this site decreased from the lower part of the CIE to the upper part, in contrast to an approximate doubling of organic carbon MAR in the upper part observed globally. This result, coupled with detailed analysis of the compilation, shows that redox was a key factor controlling organic burial rates during OAE 2, with OC MAR scaling positively with increasing deoxygenation. Leveraging a biogeochemical model to simulate these data suggets that 5–20% of the seafloor became anoxic during OAE 2, and that this deoxygenation was accompanied by 100% to 200% increase in global seawater P concentration. Our findings indicate that during OAE 2, elevated nutrient levels may have resulted from enhanced recycling from sediments under reducing conditions, sustaining intensified primary production and subsequent organic carbon export and burial.
The East Africa - Arabia topographic swell is an anomalously high-elevation region of ∼4000 km long (from southern Ethiopia to Jordan) and ∼ 1500 km wide (from Egypt to Saudi Arabia) extent. The swell is dissected by the Main Ethiopian, Red Sea, and Gulf of Aden rifts, and characterized by widespread basaltic volcanic deposits emplaced from the Eocene to the present. Geochemical and geophysical data confirm the involvement of mantle processes in swell formation; however, they have not been able to fully resolve some issues, e.g., regarding the number and location of plumes and uplift patterns. This study addresses these questions and provides a general evolutionary model of the region by focusing on the present topographic configuration through a quantitative analysis and correlating long and intermediate wavelength features with mantle and rifting processes. Moreover, the isostatic and dynamic components of topography have been evaluated considering a range of seismic tomographic models for the latter. When interpreted jointly with geological data including volcanic deposits, the constraints do imply causation by a single process which shaped the past and present topography of the study area: the upwelling of the Afar superplume. Once hot mantle material reached the base of the lithosphere below the Horn of Africa during the Late Eocene, the plume flowed laterally toward the Levant area guided by pre-existing discontinuities in the Early Miocene. Plume material reached the Anatolian Plateau in the Late Miocene after slab break-off and the consequent formation of a slab window. During plume material advance, buoyancy forces led to the formation of the topographic swell and tilting of the Arabia Peninsula. The persistence of mantle support beneath the study area for tens of million years also affected the formation and evolution of the Nile and Euphrates-Tigris fluvial networks. Subsequently, surface processes, tectonics, and volcanism partly modified the initial topography and shaped the present-day landscape.
The forearc region remains key in understanding the dynamics of convergent plate tectonics. This study focuses on the mechanisms governing tectonic processes within the overriding plate forearc which spans from the trench to the volcanic arc at two key and relatively well studied regions: the Japan Trench and the Middle America Trench offshore SE Costa Rica. We address the questions that have arisen concerning material input into the plate boundary, whether by subduction, accretionary prism formation, or tectonic erosion. In the Japan Trench case study, while tectonic accretion occurs near the trench axis, significant forearc subsidence suggests net material removal, possibly through tectonic erosion that has transferred material to the subducting slab. Debate surrounds the mechanism driving forearc subsidence, with recent studies proposing extensional tectonism as a possible mechanism to exclude subduction erosion. However, seismic evidence challenges this hypothesis, as normal faults indicative of forearc extension are not prominent. Moreover, a quantitative mass-balance analysis fails for the forearc if extensional tectonics rather than tectonic erosion is assumed to have predominantly shaped the margin. The spatio-temporal progression of subsidence across the forearc is further explored; this indicates that peak subduction erosion has occurred beneath the lower slope. The Middle America Trench in SE Costa Rica has also been extensively studied with several drilling expeditions, with particular focus on the area where the aseismic Cocos Ridge is subducting beneath the Caribbean plate. Here the subduction of topographic relief has been traditionally viewed as a process that enhances subduction erosion. Recent studies have challenged this perspective, suggesting instead that subducting topography might lead to net accretion to the margin through various mechanisms. Ocean drilling expeditions provide valuable data on sedimentary successions and forearc tectonic evolution. These drilling data have been not always used to the best of their capacity, which has led to significant discrepancies between drilling-based inferences and seismic interpretations, in particular regarding the presence and nature of unconformities within the forearc sediments. Borehole observations strongly favor the inference that inboard the Cocos Ridge a large amount of subsidence has occurred, linked to recent subduction erosion beneath this forearc.
Fractures in a network are commonly divided into “sets” to facilitate their description and analysis. Sets can be based on many different criteria that include the type, geometry, size, spatial distribution, relative age and the kinematics of the fractures. Orientation is the most widely used criterion, but alone may be inadequate to define a fracture set, since fractures of different type, origin and age may share similar orientations. The criteria used should be clearly stated, with quantitative measures where possible, to allow unambiguous and reproducible allocation of fractures to sets, with assessment of the variability or uncertainty involved. Identifying a consistent sequence of development is a key aspect of fracture set determination. This can be quantified by considering the abutting and cross-cutting relationships between different fracture sets using a sequence matrix.
Examples of networks of joints and faults are presented to illustrate different aspects of set definition and network characterization, emphasising the need for criteria that are appropriate for the type of fracture network, available data and the hypotheses to be tested. We discuss how the “deconstruction” of a fracture network into sets is important for fracture network characterization, and how these sets may then be used to “reconstruct” a fracture network to produce models suitable for studies of tectonics, mechanics and fluid flow.
The desertification baseline is the standard to measure the severity of desertification and is imperative to achieve the target of land degradation neutrality of UN Sustainable Development Goal (SDG) 15.3. However, desertification baselines are fragmented because of various modeling approaches and incompatible thresholds of indicators, leading to the evaluation results of desertification shrouded in controversy. In this review, we have examined the current status of the desertification baseline and explored its current problems and potential directions. Potential natural conditions, the theoretical conditions that would occur under existing environmental conditions without active human intervention, can standardize the evaluation of desertification and restoration in drylands to make assessments more compatible across and within regions. The results of our perspective will raise attention to desertification and put forward the establishment of a robust and unified desertification baseline to help achieve land degradation neutrality and conserve the multiple environmental, economic, and social benefits drylands provide.