Landslide disasters pose significant threats to human life and infrastructure. The instability of a bedding landslide with locked segments results from sudden brittle failure of the locked segments. To mitigate potential threats to life and property, it is crucial to reveal the failure mechanism and identify precursor information. In this study, physical model experiments of bedding landslides with different structures were conducted, and detailed recordings were made of the high-frequency acoustic emission (AE) signals and low-frequency microseismic (MS) signals generated during failure. The dominant frequency, energy, amplitude, the phenomenon of critical slowing down of AE signals and multifractal characteristics of MS signals were analyzed. Results reveal that the failure mode of a bedding rockslide with locked segments is determined by the strength of the rock mass. High-strength landslide fails in the form of bending, whereas rockslide with low strength experience shearing failure. MS events with low dominant frequencies are less numerous but contribute a significant portion of the total energy, but events with high dominant frequencies are more numerous yet contribute only a small fraction of the energy. Furthermore, the study reveals the multifractal characteristics of the evolution process of MS signals and the critical slowing characteristics of AE signals. Based on these findings, a precursory information chain for the failure of bedding landslides with locked segments is proposed, which includes deformation displacement, multifractal characteristics of MS signals, and AE energy variance. These results may contribute to a better understanding of the failure mechanism and can help predict the final failure of bedding landslide with locked segments.