The contamination of soil and water by heavy metals poses a significant environmental and public health concern worldwide. To address this issue, a novel graphene quantum dot (GQD)-based surface plasmon resonance (SPR) sensor is developed for the detection of mercury ions (Hg2+), a notorious heavy metal pollutant. The thiol and amine-functionalized GQDs (S,N-GQDs), synthesized via pyrolysis of citric acid and L-cysteine, are directly immobilized onto the SPR chip surface without prior pretreatment, demonstrating their potential as efficient sensing materials. The SPR sensor exhibits high sensitivity and selectivity toward Hg2+ ions, as confirmed by kinetic binding analysis and isotherm modeling. The Langmuir isotherm model, which accurately describes the interactions between Hg2+ and S,N-GQDs, provides insights into the sensor's mechanism of action. Furthermore, the sensor demonstrates robustness and reusability, with recoveries ranging from 98% to 104% over multiple cycles of analysis. Given the presence of contaminants in tap water, the developed sensor system holds significant importance for environmental monitoring and public health protection, offering a rapid, accurate, and cost-effective solution for detecting Hg2+ ions in such samples. Overall, this study represents a significant advancement in the field of heavy metal detection, with potential implications for addressing environmental pollution and ensuring water quality.
{"title":"Engineering a Graphene Quantum Dot-Enhanced Surface Plasmon Resonance Sensor for Ultra-Sensitive Detection of Hg2⁺ Ions","authors":"Recep Üzek","doi":"10.1002/admi.202400679","DOIUrl":"https://doi.org/10.1002/admi.202400679","url":null,"abstract":"<p>The contamination of soil and water by heavy metals poses a significant environmental and public health concern worldwide. To address this issue, a novel graphene quantum dot (GQD)-based surface plasmon resonance (SPR) sensor is developed for the detection of mercury ions (Hg<sup>2+</sup>), a notorious heavy metal pollutant. The thiol and amine-functionalized GQDs (S,N-GQDs), synthesized via pyrolysis of citric acid and L-cysteine, are directly immobilized onto the SPR chip surface without prior pretreatment, demonstrating their potential as efficient sensing materials. The SPR sensor exhibits high sensitivity and selectivity toward Hg<sup>2+</sup> ions, as confirmed by kinetic binding analysis and isotherm modeling. The Langmuir isotherm model, which accurately describes the interactions between Hg<sup>2+</sup> and S,N-GQDs, provides insights into the sensor's mechanism of action. Furthermore, the sensor demonstrates robustness and reusability, with recoveries ranging from 98% to 104% over multiple cycles of analysis. Given the presence of contaminants in tap water, the developed sensor system holds significant importance for environmental monitoring and public health protection, offering a rapid, accurate, and cost-effective solution for detecting Hg<sup>2+</sup> ions in such samples. Overall, this study represents a significant advancement in the field of heavy metal detection, with potential implications for addressing environmental pollution and ensuring water quality.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400679","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruben Windey, Nick Goossens, Marion Cardous, Jeroen Soete, Jozef Vleugels, Martine Wevers
All-solid-state polymer dielectrics benefit from a superior voltage window and conveniently circumvent fire hazards associated with liquid electrolytes. Nevertheless, their future competitiveness with alternative energy storage technologies requires a significant enhancement in their energy density. The addition of conductive 2D MXene particles is a promising strategy for creating percolation-based nanodielectrics with improved dielectric response. However, a full understanding of the nanodielectric production – microstructure – dielectric performance correlations is crucial. Therefore, this research considered Ti3AlC2 MAX phase and Ti3C2Tz MXene as electrically conductive ceramic fillers in polyvinylidene fluoride (PVDF). Microstructural characterization of both nanodielectrics demonstrated excellent filler dispersion. Additionally, the exfoliation of Ti3AlC2 brought forth extensive alignment and interface accessibility, synergistically activating a pronounced interfacial polarization and nanocapacitor mechanism that enhanced the energy density of PVDF by a factor 100 to 3.1 Wh kg−1@0.1 Hz at 22.9 vol% MXene filler. The stellar increase in the PVDF energy density occurred for a broad MXene filler loading range owing to the unique 2D morphology of MXenes, whereas the addition of Ti3AlC2 fillers only caused a detrimental reduction. Hence, this study buttressed the importance to exfoliate the parental MAX phase into multi-layered MXene as a decisive strategy for boosting nanodielectric performance.
{"title":"Exfoliating Ti3AlC2 MAX into Ti3C2Tz MXene: A Powerful Strategy to Enhance High-Voltage Dielectric Performance of Percolation-Based PVDF Nanodielectrics","authors":"Ruben Windey, Nick Goossens, Marion Cardous, Jeroen Soete, Jozef Vleugels, Martine Wevers","doi":"10.1002/admi.202400499","DOIUrl":"https://doi.org/10.1002/admi.202400499","url":null,"abstract":"<p>All-solid-state polymer dielectrics benefit from a superior voltage window and conveniently circumvent fire hazards associated with liquid electrolytes. Nevertheless, their future competitiveness with alternative energy storage technologies requires a significant enhancement in their energy density. The addition of conductive 2D MXene particles is a promising strategy for creating percolation-based nanodielectrics with improved dielectric response. However, a full understanding of the nanodielectric production – microstructure – dielectric performance correlations is crucial. Therefore, this research considered Ti<sub>3</sub>AlC<sub>2</sub> MAX phase and Ti<sub>3</sub>C<sub>2</sub>T<i><sub>z</sub></i> MXene as electrically conductive ceramic fillers in polyvinylidene fluoride (PVDF). Microstructural characterization of both nanodielectrics demonstrated excellent filler dispersion. Additionally, the exfoliation of Ti<sub>3</sub>AlC<sub>2</sub> brought forth extensive alignment and interface accessibility, synergistically activating a pronounced interfacial polarization and nanocapacitor mechanism that enhanced the energy density of PVDF by a factor 100 to 3.1 Wh kg<sup>−1</sup>@0.1 Hz at 22.9 vol% MXene filler. The stellar increase in the PVDF energy density occurred for a broad MXene filler loading range owing to the unique 2D morphology of MXenes, whereas the addition of Ti<sub>3</sub>AlC<sub>2</sub> fillers only caused a detrimental reduction. Hence, this study buttressed the importance to exfoliate the parental MAX phase into multi-layered MXene as a decisive strategy for boosting nanodielectric performance.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 36","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400499","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Infection-induced bone defects present significant challenges in clinical bone regeneration, frequently leading to poor bone induction, recurring infections, and complications such as pain and chronic inflammation. This study introduces a novel Ti/Lignin-Ag@PLL composite coating with a “sandwich” structure, designed to integrate pro-adhesion, photothermal-photodynamic antibacterial, and osteogenic properties. The Ti/Lignin-Ag@PLL composite coating is fabricated using self-assembly technology, in which Ag+ is reduced to silver nanoparticles (Ag-NPs) by lignin, followed by Polylysine (PLL) grafting. Photothermal conversion efficiency is evaluated under near-infrared (NIR) laser irradiation, while antibacterial activity is tested against E. coli and S. aureus. Biocompatibility is also assessed using vascular endothelial cells (VECs) and osteoblasts (OBs). The results indicate that the Ti/Lignin-Ag@PLL coating demonstrates a 31% photothermal conversion efficiency and nearly 100% antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) under NIR irradiation for 10 min. Without irradiation, the antibacterial rates are 85% and 94%, respectively, after 24 h. Additionally, the coating significantly promotes cell adhesion, proliferation, and osteogenesis, as evidenced by the upregulation of Runx2 and Collagen I. This study uniquely contributes to the development of a multifunctional composite coating that effectively combines robust antibacterial properties with enhanced osteogenic potential, offering a promising solution for bone tissue repair and infection prevention.
{"title":"Bone-Induced Nanocomposite Coating with a “Sandwich” Structure","authors":"Yushuang Guan, Guoming Zou, Henigul osman, Dong Zhang, Tianyou Zhou, Wenguo Cui, Yingbo Wang","doi":"10.1002/admi.202400164","DOIUrl":"https://doi.org/10.1002/admi.202400164","url":null,"abstract":"<p>Infection-induced bone defects present significant challenges in clinical bone regeneration, frequently leading to poor bone induction, recurring infections, and complications such as pain and chronic inflammation. This study introduces a novel Ti/Lignin-Ag@PLL composite coating with a “sandwich” structure, designed to integrate pro-adhesion, photothermal-photodynamic antibacterial, and osteogenic properties. The Ti/Lignin-Ag@PLL composite coating is fabricated using self-assembly technology, in which Ag<sup>+</sup> is reduced to silver nanoparticles (Ag-NPs) by lignin, followed by Polylysine (PLL) grafting. Photothermal conversion efficiency is evaluated under near-infrared (NIR) laser irradiation, while antibacterial activity is tested against E. coli and S. aureus. Biocompatibility is also assessed using vascular endothelial cells (VECs) and osteoblasts (OBs). The results indicate that the Ti/Lignin-Ag@PLL coating demonstrates a 31% photothermal conversion efficiency and nearly 100% antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) under NIR irradiation for 10 min. Without irradiation, the antibacterial rates are 85% and 94%, respectively, after 24 h. Additionally, the coating significantly promotes cell adhesion, proliferation, and osteogenesis, as evidenced by the upregulation of Runx2 and Collagen I. This study uniquely contributes to the development of a multifunctional composite coating that effectively combines robust antibacterial properties with enhanced osteogenic potential, offering a promising solution for bone tissue repair and infection prevention.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 36","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Morales, Max Gertig, Małgorzata Kot, Carlos Alvarado, Markus Andreas Schubert, Marvin Hartwig Zoellner, Christian Wenger, Karsten Henkel, Jan Ingo Flege
Thermal atomic layer deposition (ALD) of cerium oxide using commercial Ce(thd)4 precursor and O3 on SiO2 substrates is studied employing in-situ X-ray photoelectron spectroscopy (XPS). The system presents a complex growth behavior determined by the change in the reaction mechanism when the precursor interacts with the substrate or the cerium oxide surface. During the first growth stage, non-ALD side reactions promoted by the substrate affect the growth per cycle, the amount of carbon residue on the surface, and the oxidation degree of cerium oxide. On the contrary, the second growth stage is characterized by a constant growth per cycle in good agreement with the literature, low carbon residues, and almost fully oxidized cerium oxide films. This distinction between two growth regimes is not unique to the CeOx/SiO2 system but can be generalized to other metal oxide substrates. Furthermore, the film growth deviates from the ideal layer-by-layer mode, forming micrometric inhomogeneous and defective flakes that eventually coalesce for deposit thicknesses above 10 nm. The ALD-cerium oxide films present less order and a higher density of defects than films grown by physical vapor deposition techniques, likely affecting their reactivity in oxidizing and reducing conditions.
{"title":"In Situ X-Ray Photoelectron Spectroscopy Study of Atomic Layer Deposited Cerium Oxide on SiO2: Substrate Influence on the Reaction Mechanism During the Early Stages of Growth","authors":"Carlos Morales, Max Gertig, Małgorzata Kot, Carlos Alvarado, Markus Andreas Schubert, Marvin Hartwig Zoellner, Christian Wenger, Karsten Henkel, Jan Ingo Flege","doi":"10.1002/admi.202400537","DOIUrl":"https://doi.org/10.1002/admi.202400537","url":null,"abstract":"<p>Thermal atomic layer deposition (ALD) of cerium oxide using commercial Ce(thd)<sub>4</sub> precursor and O<sub>3</sub> on SiO<sub>2</sub> substrates is studied employing in-situ X-ray photoelectron spectroscopy (XPS). The system presents a complex growth behavior determined by the change in the reaction mechanism when the precursor interacts with the substrate or the cerium oxide surface. During the first growth stage, non-ALD side reactions promoted by the substrate affect the growth per cycle, the amount of carbon residue on the surface, and the oxidation degree of cerium oxide. On the contrary, the second growth stage is characterized by a constant growth per cycle in good agreement with the literature, low carbon residues, and almost fully oxidized cerium oxide films. This distinction between two growth regimes is not unique to the CeO<sub>x</sub>/SiO<sub>2</sub> system but can be generalized to other metal oxide substrates. Furthermore, the film growth deviates from the ideal layer-by-layer mode, forming micrometric inhomogeneous and defective flakes that eventually coalesce for deposit thicknesses above 10 nm. The ALD-cerium oxide films present less order and a higher density of defects than films grown by physical vapor deposition techniques, likely affecting their reactivity in oxidizing and reducing conditions.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400537","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gwang Min Park, Seunghyeok Lee, Tae Joo Park, Seung-Hyub Baek, Jin-Sang Kim, Seong Keun Kim
Enhancing the performance of thermoelectric materials remains critical for practical applications. Increasing the power factor and reducing the thermal conductivity are key strategies for improving the thermoelectric performance. Doping, incorporating secondary phases, and generating dislocations can be used to introduce defects and grain boundaries to improve the thermoelectric performance. The application of an ultrathin film as a coating on thermoelectric materials via atomic layer deposition (ALD) has recently attracted attention as a novel approach to enhance the performance. The excellent conformality of ALD enables the conformal deposition of ultrathin films on powder to enable the interfacial properties to be meticulously controlled even after sintering. Using ALD to deposit an ultrathin layer on the thermoelectric powder matrix induces various defects through the interactions of the coating material with the thermoelectric matrix, which provide exquisite control over the material properties. This review discusses the phenomena induced by applying ultrathin coatings to thermoelectric materials through ALD, elucidates the underlying mechanisms, and examines the effects on the thermoelectric performance. Based on these insights, innovative pathways for applying ALD to thermoelectric materials are proposed, and robust strategies for enhancing these properties through the precise modulation of diverse defects and interfaces are discussed.
{"title":"Controlled Engineering of Defects and Interfaces in Thermoelectric Materials With Atomic Layer Deposition","authors":"Gwang Min Park, Seunghyeok Lee, Tae Joo Park, Seung-Hyub Baek, Jin-Sang Kim, Seong Keun Kim","doi":"10.1002/admi.202400581","DOIUrl":"https://doi.org/10.1002/admi.202400581","url":null,"abstract":"<p>Enhancing the performance of thermoelectric materials remains critical for practical applications. Increasing the power factor and reducing the thermal conductivity are key strategies for improving the thermoelectric performance. Doping, incorporating secondary phases, and generating dislocations can be used to introduce defects and grain boundaries to improve the thermoelectric performance. The application of an ultrathin film as a coating on thermoelectric materials via atomic layer deposition (ALD) has recently attracted attention as a novel approach to enhance the performance. The excellent conformality of ALD enables the conformal deposition of ultrathin films on powder to enable the interfacial properties to be meticulously controlled even after sintering. Using ALD to deposit an ultrathin layer on the thermoelectric powder matrix induces various defects through the interactions of the coating material with the thermoelectric matrix, which provide exquisite control over the material properties. This review discusses the phenomena induced by applying ultrathin coatings to thermoelectric materials through ALD, elucidates the underlying mechanisms, and examines the effects on the thermoelectric performance. Based on these insights, innovative pathways for applying ALD to thermoelectric materials are proposed, and robust strategies for enhancing these properties through the precise modulation of diverse defects and interfaces are discussed.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 3","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400581","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trevor R. Smith, Spencer McDermott, Vatsalkumar Patel, Ross Anthony, Manu Hedge, Sophie E. Bierer, Sunzhuoran Wang, Andrew P. Knights, Ryan B. Lewis
The explosion of artificial intelligence, the possible end of Moore's law, dawn of quantum computing, and the continued exponential growth of data communications traffic have brought new urgency to the need for laser integration on the diversified Si platform. While diode lasers on group III-V platforms have long-powered internet data communications and other optoelectronic technologies, direct integration with Si remains problematic. A paradigm-shifting solution requires exploring new and unconventional materials and integration approaches. In this work, it is shown that a sub-10-nm ultra-thin Si1−xGex buffer layer fabricated by an oxidative solid-phase epitaxy process can facilitate extraordinarily efficient strain relaxation. The Si1−xGex layer is formed by ion implanting Ge into Si(111) and selectively oxidizing Si atoms in the resulting ion-damaged layer, precipitating a fully strain-relaxed Ge-rich layer between the Si substrate and surface oxide. The efficient strain relaxation results from the high oxidation temperature, producing a periodic network of dislocations at the substrate interface, coinciding with modulations of the Ge content in the Si1−xGex layer and indicating the presence of defect-mediated diffusion of Si through the layer. The epitaxial growth of high-quality GaAs is demonstrated on this ultra-thin Si1−xGex layer, demonstrating a promising new pathway for integrating III-V lasers directly on the Si platform.
{"title":"Ultra-Thin Strain-Relieving Si1−xGex Layers Enabling III-V Epitaxy on Si","authors":"Trevor R. Smith, Spencer McDermott, Vatsalkumar Patel, Ross Anthony, Manu Hedge, Sophie E. Bierer, Sunzhuoran Wang, Andrew P. Knights, Ryan B. Lewis","doi":"10.1002/admi.202400580","DOIUrl":"https://doi.org/10.1002/admi.202400580","url":null,"abstract":"<p>The explosion of artificial intelligence, the possible end of Moore's law, dawn of quantum computing, and the continued exponential growth of data communications traffic have brought new urgency to the need for laser integration on the diversified Si platform. While diode lasers on group III-V platforms have long-powered internet data communications and other optoelectronic technologies, direct integration with Si remains problematic. A paradigm-shifting solution requires exploring new and unconventional materials and integration approaches. In this work, it is shown that a sub-10-nm ultra-thin Si<sub>1−x</sub>Ge<sub>x</sub> buffer layer fabricated by an oxidative solid-phase epitaxy process can facilitate extraordinarily efficient strain relaxation. The Si<sub>1−x</sub>Ge<sub>x</sub> layer is formed by ion implanting Ge into Si(111) and selectively oxidizing Si atoms in the resulting ion-damaged layer, precipitating a fully strain-relaxed Ge-rich layer between the Si substrate and surface oxide. The efficient strain relaxation results from the high oxidation temperature, producing a periodic network of dislocations at the substrate interface, coinciding with modulations of the Ge content in the Si<sub>1−x</sub>Ge<sub>x</sub> layer and indicating the presence of defect-mediated diffusion of Si through the layer. The epitaxial growth of high-quality GaAs is demonstrated on this ultra-thin Si<sub>1−x</sub>Ge<sub>x</sub> layer, demonstrating a promising new pathway for integrating III-V lasers directly on the Si platform.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 3","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400580","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soroush Ghandiparsi, Bikram Chatterjee, Jimmy-Xuan Shen, Miranda S. Gottlieb, Clint D. Frye, Joseph D. Schneider, Ryan D. Muir, Brandon W. Buckley, Sara E. Harrison, Qinghui Shao, Joel B. Varley, Lars F. Voss
Optically addressable light valves (OALVs) are specialized optical components utilized for spatial beam shaping in various laser-based applications, including optics damage mitigation, and enhanced functionality in diode-based additive manufacturing requiring high intensities. Current state-of-the-art OALVs employ photoconductors such as Bismuth Silicon Oxide (BSO) or Bismuth Germanium Oxide (BGO), which suffer from limited laser-induced damage thresholds (LiDT) and inadequate thermal conductivities, thus restricting their use in high peak and average power applications. Aluminum nitride (AlN), an emerging ultra-wide band gap (UWBG) III–V semiconductor, offers promising optoelectronic properties and superior thermal conductivity (>300 Wm−1K−1 at 298° K, compared to BSO's 3.29 Wm−1K−1). In this study, the first AlN-based OALVs are designed, fabricated, and experimentally demonstrated using commercially available single-crystal AlN substrates. These AlN-based OALVs have shown clear superiority over BSO and BGO-based devices. Design considerations for OALVs incorporating UWBG photoconductors are discussed, and the photoresponsivity from defect-mediated sub-bandgap absorption in AlN crystals is verified as sufficient for OALVs operating under high light fluences. The optimum driving voltage for the AlN-based OALV is determined to be ≈ 45 Vpp at 100 Hz, achieving a transmittance of 91.3%, an extinction ratio (ER) of more than 100, and a 51:1 image contrast.
{"title":"Enhanced Laser Damage Threshold in Optically Addressable Light Valves via Aluminum Nitride Photoconductors","authors":"Soroush Ghandiparsi, Bikram Chatterjee, Jimmy-Xuan Shen, Miranda S. Gottlieb, Clint D. Frye, Joseph D. Schneider, Ryan D. Muir, Brandon W. Buckley, Sara E. Harrison, Qinghui Shao, Joel B. Varley, Lars F. Voss","doi":"10.1002/admi.202400639","DOIUrl":"https://doi.org/10.1002/admi.202400639","url":null,"abstract":"<p>Optically addressable light valves (OALVs) are specialized optical components utilized for spatial beam shaping in various laser-based applications, including optics damage mitigation, and enhanced functionality in diode-based additive manufacturing requiring high intensities. Current state-of-the-art OALVs employ photoconductors such as Bismuth Silicon Oxide (BSO) or Bismuth Germanium Oxide (BGO), which suffer from limited laser-induced damage thresholds (LiDT) and inadequate thermal conductivities, thus restricting their use in high peak and average power applications. Aluminum nitride (AlN), an emerging ultra-wide band gap (UWBG) III–V semiconductor, offers promising optoelectronic properties and superior thermal conductivity (>300 Wm<sup>−1</sup>K<sup>−1</sup> at 298° K, compared to BSO's 3.29 Wm<sup>−1</sup>K<sup>−1</sup>). In this study, the first AlN-based OALVs are designed, fabricated, and experimentally demonstrated using commercially available single-crystal AlN substrates. These AlN-based OALVs have shown clear superiority over BSO and BGO-based devices. Design considerations for OALVs incorporating UWBG photoconductors are discussed, and the photoresponsivity from defect-mediated sub-bandgap absorption in AlN crystals is verified as sufficient for OALVs operating under high light fluences. The optimum driving voltage for the AlN-based OALV is determined to be ≈ 45 <i>V<sub>pp</sub></i> at 100 Hz, achieving a transmittance of 91.3%, an extinction ratio (ER) of more than 100, and a 51:1 image contrast.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400639","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}