All-solid-state batteries (ASSBs) have gained much interest in recent years because they promise higher energy and power densities as well as improved safety over lithium-ion batteries (LIBs). This is achieved by using non-flammable solid electrolytes (SEs) together with lithium metal or high-capacity silicon anodes. One major hurdle to overcome is the permanent intimate contact of all cell components to enable long-term cycling stability. This study investigates the macroscopic (microstructure) and microscopic (atomistic) effects of uniaxial stack pressure on the transport properties of free-standing, slurry-processed tetragonal