首页 > 最新文献

Energy最新文献

英文 中文
The real-time detection of defects in nuclear power pipeline thermal insulation glass fiber by deep-learning 利用深度学习实时检测核电管道保温玻璃纤维的缺陷
IF 9 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-11-09 DOI: 10.1016/j.energy.2024.133774
Qiankang Zheng , Le Lu , Zhaofeng Chen , Qiong Wu , Mengmeng Yang , Bin Hou , Shijie Chen , Zhuoke Zhang , Lixia Yang , Sheng Cui
Glass fiber, prized for its high-temperature thermal insulation and radiation resistance, serves as a crucial material for insulating nuclear power pipelines. However, the harsh operational conditions often lead to material defects, underscoring the importance of defect detection for energy efficiency and personnel safety, and manually segmenting and classifying defects can be time-consuming and increase risks. Hence, there is a pressing need for a real-time and accurate detection method. In this work, infrared images of nuclear power pipeline thermal insulation glass fiber defects were collected to establish the dataset, and the damage mechanisms were analyzed. Besides, various prevalent object detection models were tested and found that YOLOv8n exhibited significant potential for improvement with exceptional speed performance and detection accuracy. Through integrated EMA attention blocks, incorporating the FasterNet blocks into the backbone, retrofitting the neck layers with the slim-neck structure, and implementing DyHead in the YOLOv8n's head, our improved model achieves the highest values of mean Average Precision (mAP) scores with 0.5:0.95 intersection over union (IoU) of 57.6 %, and 0.5 IoU of 86.8 %, while maintaining the original high detection speed and low number of parameters, ensures suitability for real-time detection deployment on edge devices of nuclear power plants.
玻璃纤维因其高温隔热和抗辐射性能而备受推崇,是核电管道隔热的关键材料。然而,苛刻的运行条件往往会导致材料缺陷,这凸显了缺陷检测对能源效率和人员安全的重要性,而人工分割和分类缺陷可能会耗费大量时间并增加风险。因此,迫切需要一种实时、准确的检测方法。本研究收集了核电管道隔热玻璃纤维缺陷的红外图像,建立了数据集,并分析了其损伤机理。此外,还测试了各种流行的物体检测模型,发现 YOLOv8n 在速度性能和检测精度方面都有显著的改进潜力。通过集成 EMA 注意力块、将 FasterNet 块纳入主干网、将颈部层改装为细颈结构以及在 YOLOv8n 的头部实现 DyHead,我们改进的模型实现了最高的平均精度(mAP)分数,平均精度为 0.5:0.95 intersection over union (IoU) 为 57.6 %,0.5 IoU 为 86.8 %。
{"title":"The real-time detection of defects in nuclear power pipeline thermal insulation glass fiber by deep-learning","authors":"Qiankang Zheng ,&nbsp;Le Lu ,&nbsp;Zhaofeng Chen ,&nbsp;Qiong Wu ,&nbsp;Mengmeng Yang ,&nbsp;Bin Hou ,&nbsp;Shijie Chen ,&nbsp;Zhuoke Zhang ,&nbsp;Lixia Yang ,&nbsp;Sheng Cui","doi":"10.1016/j.energy.2024.133774","DOIUrl":"10.1016/j.energy.2024.133774","url":null,"abstract":"<div><div>Glass fiber, prized for its high-temperature thermal insulation and radiation resistance, serves as a crucial material for insulating nuclear power pipelines. However, the harsh operational conditions often lead to material defects, underscoring the importance of defect detection for energy efficiency and personnel safety, and manually segmenting and classifying defects can be time-consuming and increase risks. Hence, there is a pressing need for a real-time and accurate detection method. In this work, infrared images of nuclear power pipeline thermal insulation glass fiber defects were collected to establish the dataset, and the damage mechanisms were analyzed. Besides, various prevalent object detection models were tested and found that YOLOv8n exhibited significant potential for improvement with exceptional speed performance and detection accuracy. Through integrated EMA attention blocks, incorporating the FasterNet blocks into the backbone, retrofitting the neck layers with the slim-neck structure, and implementing DyHead in the YOLOv8n's head, our improved model achieves the highest values of mean Average Precision (mAP) scores with 0.5:0.95 intersection over union (IoU) of 57.6 %, and 0.5 IoU of 86.8 %, while maintaining the original high detection speed and low number of parameters, ensures suitability for real-time detection deployment on edge devices of nuclear power plants.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133774"},"PeriodicalIF":9.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of trade-off, exergetic performance, and greenhouse gas impact-cost analysis of a diesel engine running with different proportions of TiO2, Ag2O, and CeO2 nanoadditives 使用不同比例的 TiO2、Ag2O 和 CeO2 纳米添加剂的柴油发动机的权衡评估、能效和温室气体影响成本分析
IF 9 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-11-09 DOI: 10.1016/j.energy.2024.133786
Halil Erdi Gülcan , Derviş Erol , Mehmet Çelik , Cihan Bayındırlı
In this study, the effects of adding different proportions of TiO2, Ag2O, and CeO2 nanoparticles to a three-cylinder, water-cooled, four-stroke, direct injection diesel engine on engine performance and exhaust emissions are experimentally investigated. The experiments are conducted at four different engine loads (10, 20, 30, and 40 Nm) and a constant engine speed (1800 rpm). TiO2, Ag2O, and CeO2 nanoparticles are added to the diesel fuel at concentrations of 50 and 75 ppm each. The test fuels used in the study are as follows: D100, DTi50, DTi75, DAg50, DAg75, DCe50 and DCe75. Using the experimental results, analyses of energy, exergy, sustainability, greenhouse gas (GHG) emission impact, and cost are performed. The experimental results reveal that the use of nanoparticles in diesel fuel reduces BSFC. The highest reduction in BSFC is achieved with DTi75 fuel, averaging 9 %. Additionally, DTi75 fuel shows an average increase of 19 % in NOx emissions compared to D100 fuel, while smoke emissions decrease by an average of 30 %. The highest average increase in exergy efficiency compared to D100 fuel is obtained with DAg50 fuel (5.6 %), followed by DTi75 fuel (5.3 %). The addition of nanoparticles to diesel fuel also leads to an increase in GHG emissions. Compared to D100 fuel, the highest average contribution to GHG emissions increase is shown by DTi75 fuel (12 %), while the lowest average contribution is observed with DAg50 fuel (4 %).
本研究通过实验研究了在三缸水冷四冲程直喷式柴油发动机中添加不同比例的 TiO2、Ag2O 和 CeO2 纳米粒子对发动机性能和废气排放的影响。实验在四种不同的发动机负荷(10、20、30 和 40 牛米)和恒定的发动机转速(1800 转/分钟)下进行。在柴油中分别添加了浓度为 50 和 75 ppm 的 TiO2、Ag2O 和 CeO2 纳米粒子。研究中使用的测试燃料如下:D100、DTi50、DTi75、DAg50、DAg75、DCe50 和 DCe75。利用实验结果,对能量、放能、可持续性、温室气体(GHG)排放影响和成本进行了分析。实验结果表明,在柴油中使用纳米颗粒可降低 BSFC。DTi75 燃料的 BSFC 降低幅度最大,平均为 9%。此外,与 D100 燃料相比,DTi75 燃料的氮氧化物排放量平均增加了 19%,而烟雾排放量平均减少了 30%。与 D100 燃料相比,DAg50 燃料的放能效平均增幅最高(5.6%),其次是 DTi75 燃料(5.3%)。在柴油中添加纳米颗粒也会导致温室气体排放量的增加。与 D100 燃料相比,DTi75 燃料对温室气体排放增加的平均贡献率最高(12%),而 DAg50 燃料的平均贡献率最低(4%)。
{"title":"Assessment of trade-off, exergetic performance, and greenhouse gas impact-cost analysis of a diesel engine running with different proportions of TiO2, Ag2O, and CeO2 nanoadditives","authors":"Halil Erdi Gülcan ,&nbsp;Derviş Erol ,&nbsp;Mehmet Çelik ,&nbsp;Cihan Bayındırlı","doi":"10.1016/j.energy.2024.133786","DOIUrl":"10.1016/j.energy.2024.133786","url":null,"abstract":"<div><div>In this study, the effects of adding different proportions of TiO<sub>2</sub>, Ag<sub>2</sub>O, and CeO<sub>2</sub> nanoparticles to a three-cylinder, water-cooled, four-stroke, direct injection diesel engine on engine performance and exhaust emissions are experimentally investigated. The experiments are conducted at four different engine loads (10, 20, 30, and 40 Nm) and a constant engine speed (1800 rpm). TiO<sub>2</sub>, Ag<sub>2</sub>O, and CeO<sub>2</sub> nanoparticles are added to the diesel fuel at concentrations of 50 and 75 ppm each. The test fuels used in the study are as follows: D100, DTi50, DTi75, DAg50, DAg75, DCe50 and DCe75. Using the experimental results, analyses of energy, exergy, sustainability, greenhouse gas (GHG) emission impact, and cost are performed. The experimental results reveal that the use of nanoparticles in diesel fuel reduces BSFC. The highest reduction in BSFC is achieved with DTi75 fuel, averaging 9 %. Additionally, DTi75 fuel shows an average increase of 19 % in NO<sub>x</sub> emissions compared to D100 fuel, while smoke emissions decrease by an average of 30 %. The highest average increase in exergy efficiency compared to D100 fuel is obtained with DAg50 fuel (5.6 %), followed by DTi75 fuel (5.3 %). The addition of nanoparticles to diesel fuel also leads to an increase in GHG emissions. Compared to D100 fuel, the highest average contribution to GHG emissions increase is shown by DTi75 fuel (12 %), while the lowest average contribution is observed with DAg50 fuel (4 %).</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133786"},"PeriodicalIF":9.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction and optimization design of porous structure properties of biomass-derived biochar using machine learning methods 利用机器学习方法预测和优化设计生物质衍生生物炭的多孔结构特性
IF 9 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-11-09 DOI: 10.1016/j.energy.2024.133707
Zejian Ai , Song Luo , Zhengyong Xu , Jianbing Cao , Lijian Leng , Hailong Li
Biochar produced from biomass by pyrolysis and activation is a platform porous carbon material that has been widely used in many areas. The porosity properties of biochar such as specific surface area (SSA), total pore volume (Total_PV), micropore volume (Micro_PV), mesopore volume (Meso_PV), and average pore size (Average_PS) are essential to biochar applications. Although previous machine learning (ML) models can precisely predict SSA and Total_PV, these models are unable to comprehensively predict the other porosity characteristics. More importantly, activation, which is a critical process for preparing high-porosity biochar, was generally not considered in previous studies. Here, six single-target models were established first based on pyrolysis & activation conditions for the prediction of SSA, Total_PV, Micro_PV, Meso_PV, Average_PS, and yield, obtaining test R2 of 0.89, 0.86, 0.88, 0.89, 0.76 and 0.91, respectively. Then, a multi-target model was established for simultaneous prediction with an average test R2 of 0.87. ML model interpretation indicated agent type and ratio were crucial to porosity properties. Finally, activation and direct pyrolysis biochar production optimum schemes were derived from ML model for a high porosity. Favorable experimental verification results were obtained with validation R2 of 0.98, indicating the great potential of using ML for biochar engineering.
生物质经热解和活化产生的生物炭是一种平台多孔碳材料,已被广泛应用于许多领域。生物炭的孔隙率特性,如比表面积(SSA)、总孔体积(Total_PV)、微孔体积(Micro_PV)、中孔体积(Mes_PV)和平均孔径(Average_PS)对生物炭的应用至关重要。虽然以前的机器学习(ML)模型可以精确预测 SSA 和总孔隙率,但这些模型无法全面预测其他孔隙率特征。更重要的是,活化是制备高孔隙率生物炭的关键过程,但以往的研究一般都没有考虑到这一点。在此,首先根据热解& 和活化条件建立了六个单目标模型,用于预测 SSA、Total_PV、Micro_PV、Meso_PV、Average_PS 和产量,测试 R2 分别为 0.89、0.86、0.88、0.89、0.76 和 0.91。然后,建立了一个多目标同时预测模型,平均测试 R2 为 0.87。多目标模型解释表明,药剂类型和比例对孔隙率特性至关重要。最后,根据 ML 模型得出了活化和直接热解生物炭生产的最佳方案,以获得高孔隙率。实验验证结果良好,验证 R2 为 0.98,表明使用 ML 进行生物炭工程具有巨大潜力。
{"title":"Prediction and optimization design of porous structure properties of biomass-derived biochar using machine learning methods","authors":"Zejian Ai ,&nbsp;Song Luo ,&nbsp;Zhengyong Xu ,&nbsp;Jianbing Cao ,&nbsp;Lijian Leng ,&nbsp;Hailong Li","doi":"10.1016/j.energy.2024.133707","DOIUrl":"10.1016/j.energy.2024.133707","url":null,"abstract":"<div><div>Biochar produced from biomass by pyrolysis and activation is a platform porous carbon material that has been widely used in many areas. The porosity properties of biochar such as specific surface area (SSA), total pore volume (Total_PV), micropore volume (Micro_PV), mesopore volume (Meso_PV), and average pore size (Average_PS) are essential to biochar applications. Although previous machine learning (ML) models can precisely predict SSA and Total_PV, these models are unable to comprehensively predict the other porosity characteristics. More importantly, activation, which is a critical process for preparing high-porosity biochar, was generally not considered in previous studies. Here, six single-target models were established first based on pyrolysis &amp; activation conditions for the prediction of SSA, Total_PV, Micro_PV, Meso_PV, Average_PS, and yield, obtaining test R<sup>2</sup> of 0.89, 0.86, 0.88, 0.89, 0.76 and 0.91, respectively. Then, a multi-target model was established for simultaneous prediction with an average test R<sup>2</sup> of 0.87. ML model interpretation indicated agent type and ratio were crucial to porosity properties. Finally, activation and direct pyrolysis biochar production optimum schemes were derived from ML model for a high porosity. Favorable experimental verification results were obtained with validation R<sup>2</sup> of 0.98, indicating the great potential of using ML for biochar engineering.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133707"},"PeriodicalIF":9.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic characteristics of pumped thermal-liquid air energy storage system: Modeling, analysis, and optimization 抽水蓄热-液态空气储能系统的动态特性:建模、分析和优化
IF 9 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-11-09 DOI: 10.1016/j.energy.2024.133776
Wei Ai , Liang Wang , Xipeng Lin , Yakai Bai , Jingjian Huang , Jiexiang Hu , Haisheng Chen
Pumped thermal-liquid air energy storage (PTLAES) is a novel energy storage technology that combines pumped thermal- and liquid air energy storage and eliminates the need for cold storage. However, existing studies on this system are all based on steady-state assumption, lacking dynamic analysis and optimization to better understand the system's performance under cyclic operation. To fill this gap, the mainbody-linearized cyclic dynamic model of the PTLAES system with packed bed thermal energy storage (TES) was first developed. Then, the dynamic characteristics of the baseline system were investigated. Sensitivity analyses were carried out on TES parameters. Minimal values of levelized cost of storage (LCOS) were observed for all parameters in the range of interest. Subsequently, the TES circuit was optimized, and a triple improvement of efficiency and energy density enhancement, discharge stabilization, and cost reduction was achieved. The optimized system's round-trip efficiency and energy density increased from 61.7 % to 63.1 % and from 141.9 kWh/m³ to 159.2 kWh/m³, and the LCOS decreased from 163.2 $/MWh to 159.4 $/MWh. A power offset ratio lower than 3 % was reached, which is the lowest value ever reported in the literature. This study provides reference for future design and operation of the PTLAES system.
抽水蓄热-液态空气储能(PTLAES)是一种新型储能技术,它将抽水蓄热和液态空气储能结合在一起,无需冷库。然而,现有关于该系统的研究都是基于稳态假设,缺乏动态分析和优化,无法更好地了解系统在循环运行下的性能。为了填补这一空白,我们首先开发了带填料床热能储存(TES)的 PTLAES 系统的主体线性化循环动态模型。然后,研究了基线系统的动态特性。对 TES 参数进行了敏感性分析。观察到所有参数在相关范围内的平准化储能成本(LCOS)均为最小值。随后,对 TES 电路进行了优化,实现了提高效率和能量密度、稳定放电和降低成本的三重改进。优化系统的往返效率和能量密度分别从 61.7% 和 141.9 kWh/m³ 提高到 63.1% 和 159.2 kWh/m³,LCOS 从 163.2 美元/MWh 降至 159.4 美元/MWh。功率偏移比低于 3%,是文献报道的最低值。这项研究为 PTLAES 系统今后的设计和运行提供了参考。
{"title":"Dynamic characteristics of pumped thermal-liquid air energy storage system: Modeling, analysis, and optimization","authors":"Wei Ai ,&nbsp;Liang Wang ,&nbsp;Xipeng Lin ,&nbsp;Yakai Bai ,&nbsp;Jingjian Huang ,&nbsp;Jiexiang Hu ,&nbsp;Haisheng Chen","doi":"10.1016/j.energy.2024.133776","DOIUrl":"10.1016/j.energy.2024.133776","url":null,"abstract":"<div><div>Pumped thermal-liquid air energy storage (PTLAES) is a novel energy storage technology that combines pumped thermal- and liquid air energy storage and eliminates the need for cold storage. However, existing studies on this system are all based on steady-state assumption, lacking dynamic analysis and optimization to better understand the system's performance under cyclic operation. To fill this gap, the mainbody-linearized cyclic dynamic model of the PTLAES system with packed bed thermal energy storage (TES) was first developed. Then, the dynamic characteristics of the baseline system were investigated. Sensitivity analyses were carried out on TES parameters. Minimal values of levelized cost of storage (LCOS) were observed for all parameters in the range of interest. Subsequently, the TES circuit was optimized, and a triple improvement of efficiency and energy density enhancement, discharge stabilization, and cost reduction was achieved. The optimized system's round-trip efficiency and energy density increased from 61.7 % to 63.1 % and from 141.9 kWh/m³ to 159.2 kWh/m³, and the LCOS decreased from 163.2 $/MWh to 159.4 $/MWh. A power offset ratio lower than 3 % was reached, which is the lowest value ever reported in the literature. This study provides reference for future design and operation of the PTLAES system.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133776"},"PeriodicalIF":9.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigation of T2∗-based and T2-based petrophysical parameters frequency-dependent in shale oil 页岩油中基于 T2∗ 和基于 T2 的岩石物理参数频率依赖性的数值研究
IF 9 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-11-09 DOI: 10.1016/j.energy.2024.133788
Jilong Liu, Ranhong Xie, Jiangfeng Guo
In this paper, the T2∗-based relaxation theory and numerical simulation method in shale oil were established for the first time, which have been verified through free induction decay (FID) pulse sequence experiments. For the first time, the digital core technology was combined with organic carbon and Rock-Eval analysis, X-ray diffraction quantitative analysis experiments to construct representative digital shale cores. The effects of magnetic field frequency (f), mineral contents and types, as well as the magnetic susceptibilities difference (MSD) on T2∗ responses were simulated based on the random walk method. For the first time, the frequency conversion cross-plots for T2∗-based and T2-based petrophysical parameters were proposed. The results show these effects on NMR-based petrophysical parameters are non-negligible. When Td = 1 μs, TE = 0.08 ms, f is 200 MHz, pyrite content is 5.43 %, and MSD is 9 × 10−5SI, the porosity, T2LM, and organic matter content of T2∗ distribution is 1.32 %, 0.013 ms, and 9.019 %, which are 1.33 times, 0.006 times, and 1.37 times those of T2 distribution. This work contributes to frequency conversion of petrophysical parameters between in the laboratory NMR instrument and NMR logging.
本文首次建立了基于 T2∗ 的页岩油弛豫理论和数值模拟方法,并通过自由感应衰变(FID)脉冲序列实验进行了验证。首次将数字岩心技术与有机碳、Rock-Eval 分析、X 射线衍射定量分析实验相结合,构建了具有代表性的数字页岩岩心。基于随机游走法模拟了磁场频率(f)、矿物含量和类型以及磁感应强度差(MSD)对 T2∗ 响应的影响。首次提出了基于 T2∗ 和基于 T2 岩石物理参数的频率转换交叉图。结果表明,这些影响对基于核磁共振的岩石物理参数的影响是不可忽略的。当 Td = 1 μs、TE = 0.08 ms、f 为 200 MHz、黄铁矿含量为 5.43 %、MSD 为 9 × 10-5SI 时,T2∗ 分布的孔隙度、T2LM∗ 和有机质含量分别为 1.32 %、0.013 ms 和 9.019 %,是 T2 分布的 1.33 倍、0.006 倍和 1.37 倍。这项工作有助于在实验室核磁共振仪器和核磁共振测井之间实现岩石物理参数的频率转换。
{"title":"Numerical investigation of T2∗-based and T2-based petrophysical parameters frequency-dependent in shale oil","authors":"Jilong Liu,&nbsp;Ranhong Xie,&nbsp;Jiangfeng Guo","doi":"10.1016/j.energy.2024.133788","DOIUrl":"10.1016/j.energy.2024.133788","url":null,"abstract":"<div><div>In this paper, the <em>T</em><sub>2</sub>∗-based relaxation theory and numerical simulation method in shale oil were established for the first time, which have been verified through free induction decay (FID) pulse sequence experiments. For the first time, the digital core technology was combined with organic carbon and Rock-Eval analysis, X-ray diffraction quantitative analysis experiments to construct representative digital shale cores. The effects of magnetic field frequency (<em>f</em>), mineral contents and types, as well as the magnetic susceptibilities difference (MSD) on <em>T</em><sub>2</sub>∗ responses were simulated based on the random walk method. For the first time, the frequency conversion cross-plots for <em>T</em><sub>2</sub>∗-based and <em>T</em><sub>2</sub>-based petrophysical parameters were proposed. The results show these effects on NMR-based petrophysical parameters are non-negligible. When <em>T</em><sub>d</sub> = 1 μs, <em>T</em><sub>E</sub> = 0.08 ms, <em>f</em> is 200 MHz, pyrite content is 5.43 %, and MSD is 9 × 10<sup>−5</sup>SI, the porosity, <span><math><mrow><msubsup><mi>T</mi><mrow><mn>2</mn><mtext>LM</mtext></mrow><mo>∗</mo></msubsup></mrow></math></span>, and organic matter content of <em>T</em><sub>2</sub>∗ distribution is 1.32 %, 0.013 ms, and 9.019 %, which are 1.33 times, 0.006 times, and 1.37 times those of <em>T</em><sub>2</sub> distribution. This work contributes to frequency conversion of petrophysical parameters between in the laboratory NMR instrument and NMR logging.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133788"},"PeriodicalIF":9.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of biogas productivity from distillery wastewater by partial potassium reduction pretreatment using two-step microfiltration and nanofiltration 利用两步微滤和纳滤进行部分降钾预处理,提高酒厂废水的沼气生产率
IF 9 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-11-09 DOI: 10.1016/j.energy.2024.133779
Kessara Seneesrisakul , Kittitut Kunta , Krittiya Pornmai , Masahiko Abe , Prapan Ariyamethee , Tanakorn Boonayamanop , Sumaeth Chavadej
The main purpose of the current study was to employ filtration pretreatment to lower the K concentration in distillery wastewater (DW) from a very high level (8800 mg/L) close to severe inhibition (>12000 mg/L) to 4350 mg/L, which was in the moderate toxic range (2500–4500 mg/L) for methanogens. The filtration pretreatment system consisted of the two steps of microfiltration (MF) to remove large solid particles and nanofiltration (NF) to reduce K concentration in the retained DW. Both steps of MF and NF were operated in batch mode with continuous recirculation. The permeate of the MF step was fed to the NF unit in conjunction with different dilution ratios (dilution water volume-to-feed volume) to lower the K content in the retentate. The higher the cumulative dilution ratio, the lower the K concentration in the retentate of the NF step. However, it has to be traded off against the increasing total volume of permeate with the higher cumulative dilution ratio. Thus, at the optimum cumulative dilution ratio of 0.5:1, the DW from filtration pretreatment with a high COD value of 111500 mg/L and a low K content of 4350 mg/L was found to have significantly higher methanogenic productivities in terms of average production rate and yields of both biogas and methane with a higher optimum COD loading rate, as compared to those of the untreated DW. Moreover, the use of the two-step filtration in this investigation could significantly lower the dilution ratio as compared to the sole dilution method (0.5:1 against 2:1).
本研究的主要目的是采用过滤预处理技术,将酒厂废水(DW)中的钾浓度从接近严重抑制(12000 毫克/升)的极高水平(8800 毫克/升)降至 4350 毫克/升,该浓度处于甲烷菌的中等毒性范围(2500-4500 毫克/升)。过滤预处理系统包括微滤(MF)和纳滤(NF)两个步骤,前者用于去除大的固体颗粒,后者用于降低截留 DW 中的 K 浓度。微滤和纳滤这两个步骤都是以连续再循环的批次模式运行的。中质过滤步骤的渗透液与不同的稀释比(稀释水体积与进水体积之比)一起送入纳滤装置,以降低截留液中的钾含量。累积稀释比越高,纳滤步骤的回流水中的钾浓度就越低。然而,随着累积稀释比的提高,渗透物的总体积也会随之增大。因此,在最佳累积稀释比为 0.5:1 时,经过滤预处理的 DW(COD 值高达 111500 mg/L,K 含量低至 4350 mg/L)与未经处理的 DW 相比,在平均生产率和沼气及甲烷产量方面都有显著提高。此外,与单一稀释法(0.5:1 对 2:1)相比,本研究中使用的两步过滤法可显著降低稀释率。
{"title":"Improvement of biogas productivity from distillery wastewater by partial potassium reduction pretreatment using two-step microfiltration and nanofiltration","authors":"Kessara Seneesrisakul ,&nbsp;Kittitut Kunta ,&nbsp;Krittiya Pornmai ,&nbsp;Masahiko Abe ,&nbsp;Prapan Ariyamethee ,&nbsp;Tanakorn Boonayamanop ,&nbsp;Sumaeth Chavadej","doi":"10.1016/j.energy.2024.133779","DOIUrl":"10.1016/j.energy.2024.133779","url":null,"abstract":"<div><div>The main purpose of the current study was to employ filtration pretreatment to lower the K concentration in distillery wastewater (DW) from a very high level (8800 mg/L) close to severe inhibition (&gt;12000 mg/L) to 4350 mg/L, which was in the moderate toxic range (2500–4500 mg/L) for methanogens. The filtration pretreatment system consisted of the two steps of microfiltration (MF) to remove large solid particles and nanofiltration (NF) to reduce K concentration in the retained DW. Both steps of MF and NF were operated in batch mode with continuous recirculation. The permeate of the MF step was fed to the NF unit in conjunction with different dilution ratios (dilution water volume-to-feed volume) to lower the K content in the retentate. The higher the cumulative dilution ratio, the lower the K concentration in the retentate of the NF step. However, it has to be traded off against the increasing total volume of permeate with the higher cumulative dilution ratio. Thus, at the optimum cumulative dilution ratio of 0.5:1, the DW from filtration pretreatment with a high COD value of 111500 mg/L and a low K content of 4350 mg/L was found to have significantly higher methanogenic productivities in terms of average production rate and yields of both biogas and methane with a higher optimum COD loading rate, as compared to those of the untreated DW. Moreover, the use of the two-step filtration in this investigation could significantly lower the dilution ratio as compared to the sole dilution method (0.5:1 against 2:1).</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133779"},"PeriodicalIF":9.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heuristics for multi-objective operation of EV charging stations based on Chicken Swarm Optimization 基于鸡群优化的电动汽车充电站多目标运行启发式方法
IF 9 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-11-09 DOI: 10.1016/j.energy.2024.133749
Sulabh Sachan
The emissions of greenhouse gasses and high vehicle operating cost are the widespread issues, majorly derived by the large number of conventional fossil-fuel based vehicles. This had led many automobile manufacturers to move towards electric vehicles (EVs). However, EVs significantly impact the power grid because of the energy needed to re-energize their batteries. This study introduces an effective multi-objective function that utilizes Chicken Swarm Optimization (CSO) to perform the optimal operation for the Charging Stations (CSs) within the distribution network. The aim here is to reduce the power losses, the average voltage deviation index (AVDI), voltage stability index (VSI), and the impact of harmonic distortion. The simulations are conducted on 69-bus radial distribution network.
温室气体排放和高昂的汽车运营成本是普遍存在的问题,这主要是由大量使用化石燃料的传统汽车造成的。这促使许多汽车制造商转向电动汽车(EV)。然而,电动汽车由于需要为电池重新充电,因此对电网产生了很大影响。本研究引入了一种有效的多目标函数,利用鸡群优化(CSO)为配电网络中的充电站(CS)执行最佳操作。其目的是减少功率损耗、平均电压偏差指数(AVDI)、电压稳定指数(VSI)和谐波畸变的影响。模拟在 69 总线径向配电网络上进行。
{"title":"Heuristics for multi-objective operation of EV charging stations based on Chicken Swarm Optimization","authors":"Sulabh Sachan","doi":"10.1016/j.energy.2024.133749","DOIUrl":"10.1016/j.energy.2024.133749","url":null,"abstract":"<div><div>The emissions of greenhouse gasses and high vehicle operating cost are the widespread issues, majorly derived by the large number of conventional fossil-fuel based vehicles. This had led many automobile manufacturers to move towards electric vehicles (EVs). However, EVs significantly impact the power grid because of the energy needed to re-energize their batteries. This study introduces an effective multi-objective function that utilizes Chicken Swarm Optimization (CSO) to perform the optimal operation for the Charging Stations (CSs) within the distribution network. The aim here is to reduce the power losses, the average voltage deviation index (AVDI), voltage stability index (VSI), and the impact of harmonic distortion. The simulations are conducted on 69-bus radial distribution network.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133749"},"PeriodicalIF":9.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An IGDT-WDRCC based optimal bidding strategy of VPP aggregators in new energy market considering multiple uncertainties 基于 IGDT-WDRCC 的新能源市场 VPP 聚合体最优投标策略(考虑多重不确定性
IF 9 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-11-09 DOI: 10.1016/j.energy.2024.133712
Jun-Hyeok Kim, Jin Sol Hwang, Yun-Su Kim
This study addresses the volatility and uncertainty challenges in managing renewable energy within electricity markets, particularly focusing on the role of Virtual Power Plant (VPP) aggregators. Recognizing the risks these uncertainties pose to the revenue and stability of power systems, the paper presents a novel information gap decision theory (IGDT)-Wasserstein metric based distributionally robust chance constraint (WDRCC) approach to devise an optimal bidding strategy for VPP operators. It involves a data-driven distributionally robust optimization framework, leveraging the worst-case scenario from the distributed resource uncertainties, guided by an ambiguity set rooted in the Wasserstein metric. Furthermore, the distributionally robust chance constraint modeling is introduced ensuring that uncertainty constraints of distributed resources meet a predefined risk level. Although this method shows promising out-of-sample performance, it relies on forecasted energy prices, a notable limitation given the price volatility and information inadequacy in the newly-opened market. To address this, the risk-averse bidding strategy, grounded in IGDT, is proposed simulataneously to safeguard the operator’s expected returns against price uncertainties, implementing an advanced piecewise linear approximation technique, ”nf4l,” for linearizing the bi-linear term from IGDT. The effectiveness of this approach is empirically validated through a comprehensive case study and sensitivity analysis.
本研究探讨了在电力市场中管理可再生能源所面临的波动性和不确定性挑战,尤其关注虚拟电厂 (VPP) 聚合器的作用。认识到这些不确定性给电力系统的收入和稳定性带来的风险,本文提出了一种新颖的信息差距决策理论(IGDT)--基于瓦瑟斯坦度量的分布式稳健机会约束(WDRCC)方法,为 VPP 运营商设计最佳投标策略。该方法采用数据驱动的分布稳健优化框架,利用分布式资源不确定性的最坏情况,并以瓦瑟斯坦度量的模糊集为指导。此外,还引入了分布式稳健机会约束建模,确保分布式资源的不确定性约束满足预定义的风险水平。虽然这种方法显示出良好的样本外性能,但它依赖于预测的能源价格,考虑到新开放市场的价格波动性和信息不足,这是一个显著的局限性。为解决这一问题,我们提出了以 IGDT 为基础的风险规避投标策略,通过采用先进的片断线性近似技术 "nf4l "对 IGDT 中的双线性项进行线性化,从而在价格不确定的情况下保障运营商的预期收益。通过全面的案例研究和敏感性分析,对这种方法的有效性进行了经验验证。
{"title":"An IGDT-WDRCC based optimal bidding strategy of VPP aggregators in new energy market considering multiple uncertainties","authors":"Jun-Hyeok Kim,&nbsp;Jin Sol Hwang,&nbsp;Yun-Su Kim","doi":"10.1016/j.energy.2024.133712","DOIUrl":"10.1016/j.energy.2024.133712","url":null,"abstract":"<div><div>This study addresses the volatility and uncertainty challenges in managing renewable energy within electricity markets, particularly focusing on the role of Virtual Power Plant (VPP) aggregators. Recognizing the risks these uncertainties pose to the revenue and stability of power systems, the paper presents a novel information gap decision theory (IGDT)-Wasserstein metric based distributionally robust chance constraint (WDRCC) approach to devise an optimal bidding strategy for VPP operators. It involves a data-driven distributionally robust optimization framework, leveraging the worst-case scenario from the distributed resource uncertainties, guided by an ambiguity set rooted in the Wasserstein metric. Furthermore, the distributionally robust chance constraint modeling is introduced ensuring that uncertainty constraints of distributed resources meet a predefined risk level. Although this method shows promising out-of-sample performance, it relies on forecasted energy prices, a notable limitation given the price volatility and information inadequacy in the newly-opened market. To address this, the risk-averse bidding strategy, grounded in IGDT, is proposed simulataneously to safeguard the operator’s expected returns against price uncertainties, implementing an advanced piecewise linear approximation technique, ”nf4l,” for linearizing the bi-linear term from IGDT. The effectiveness of this approach is empirically validated through a comprehensive case study and sensitivity analysis.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133712"},"PeriodicalIF":9.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green hydrogen, power, and heat generation by polymer electrolyte membrane electrolyzer and fuel cell powered by a hydrokinetic turbine in low-velocity water canals, a 4E assessment 以低速水渠中的水动力涡轮机为动力的聚合物电解质膜电解槽和燃料电池的绿色制氢、发电和供热:4E 评估
IF 9 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-11-09 DOI: 10.1016/j.energy.2024.133781
Omid Rasooli, Masood Ebrahimi
Thousands of kilometers of man-made low-velocity water transfer canals around the world can be used as a source of renewable energy for electricity and green hydrogen production. These canals have not been well investigated as an energy source, according to the literature. In the present paper, three technologies of Hydrokinetic Turbine (HKT), Polymer Electrolyte Membrane Fuel Cell, and Electrolyzer (PEM-FC/EL) are utilized to produce electricity, green hydrogen, and heat using these canals. Thermodynamic, economic, and environmental models of the cycle are presented, coded in the Engineering Equation Solver software, and finally validated with published research and manufacturers’ data. Two scenarios were examined, first HKT, PEMEL, and PEMFC were used for electricity generation (power-to-hydrogen-to-power, P2X2P) and second only HKT and PEMEL were used for green hydrogen production (power-to-hydrogen, P2X). While both scenarios are economical, the P2X scenario has a smaller payback period (less than 2 years) and a higher net present value. Practical correlations are derived to determine the rate of hydrogen production, power generation, and emission reduction as a function of water velocity. The round-trip energy and exergy efficiency of the system is 46.17 % and 20.78 % and it reduces carbon dioxide by 0.874 tons/year when water velocity is 1.5 m/s.
世界各地数千公里长的人造低速输水运河可用作发电和绿色制氢的可再生能源。根据文献记载,这些运河作为一种能源还没有得到很好的研究。本文利用水动力涡轮机(HKT)、聚合物电解质膜燃料电池和电解槽(PEM-FC/EL)三种技术,利用这些运河生产电力、绿色氢气和热能。本文介绍了该循环的热力学、经济和环境模型,并在工程方程求解软件中进行了编码,最后根据已发表的研究成果和制造商的数据进行了验证。研究了两种方案:第一种方案是将 HKT、PEMEL 和 PEMFC 用于发电(电-氢-电,P2X2P);第二种方案是仅将 HKT 和 PEMEL 用于绿色制氢(电-氢,P2X)。虽然两种方案都很经济,但 P2X 方案的投资回收期较短(少于 2 年),净现值较高。根据水流速度的函数关系,得出了实际的相关性,以确定制氢率、发电量和减排量。当水流速度为 1.5 米/秒时,系统的往返能效和放能效分别为 46.17% 和 20.78%,二氧化碳减排量为 0.874 吨/年。
{"title":"Green hydrogen, power, and heat generation by polymer electrolyte membrane electrolyzer and fuel cell powered by a hydrokinetic turbine in low-velocity water canals, a 4E assessment","authors":"Omid Rasooli,&nbsp;Masood Ebrahimi","doi":"10.1016/j.energy.2024.133781","DOIUrl":"10.1016/j.energy.2024.133781","url":null,"abstract":"<div><div>Thousands of kilometers of man-made low-velocity water transfer canals around the world can be used as a source of renewable energy for electricity and green hydrogen production. These canals have not been well investigated as an energy source, according to the literature. In the present paper, three technologies of Hydrokinetic Turbine (HKT), Polymer Electrolyte Membrane Fuel Cell, and Electrolyzer (PEM-FC/EL) are utilized to produce electricity, green hydrogen, and heat using these canals. Thermodynamic, economic, and environmental models of the cycle are presented, coded in the Engineering Equation Solver software, and finally validated with published research and manufacturers’ data. Two scenarios were examined, first HKT, PEMEL, and PEMFC were used for electricity generation (power-to-hydrogen-to-power, P2X2P) and second only HKT and PEMEL were used for green hydrogen production (power-to-hydrogen, P2X). While both scenarios are economical, the P2X scenario has a smaller payback period (less than 2 years) and a higher net present value. Practical correlations are derived to determine the rate of hydrogen production, power generation, and emission reduction as a function of water velocity. The round-trip energy and exergy efficiency of the system is 46.17 % and 20.78 % and it reduces carbon dioxide by 0.874 tons/year when water velocity is 1.5 m/s.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133781"},"PeriodicalIF":9.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel hybrid low-temperature thermal catalysis and radiative sky cooling system for day and night air purification and cooling 用于昼夜空气净化和冷却的新型混合低温热催化和辐射天空冷却系统
IF 9 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-11-09 DOI: 10.1016/j.energy.2024.133795
Feiyang Xu , Lei Che , Guoyu Zhang , Xuhui Cao , Niansi Li , Ge Song , Kai Zhang , Jie Ji , Bendong Yu
Thermal catalytic oxidation is an air purification technology that can efficiently and stably degrade volatile organic compounds. However, using thermal catalysis to purify indoor air in the summer can cause problems of indoor overheating. Radiative sky cooling is a passive cooling method that dissipates heat through reflection and radiation, which can provide sub-ambient cooling during day and night. In this study, a novel hybrid low-temperature thermal catalysis and radiative sky cooling system for day and night air purification and cooling was proposed, which combined thermal catalysis with radiative sky cooling, and used low-temperature driven thermal catalysts to solve the problem of indoor overheating in summer. A numerical model of the hybrid system was established to simulate the formaldehyde degradation and cooling performance of the system under different operating conditions. The results show that under summer conditions with an average daily temperature of 35 °C and humidity levels between 70 % and 80 %, the system produced a total of 665.29 m³/m2 of clean air after running for an entire day. The average single-pass conversion rate of formaldehyde was 0.46, and the maximum temperature difference between indoor and outdoor air was 5 °C. This provides guidance for the integration of the hybrid system with buildings.
热催化氧化技术是一种能够高效、稳定地降解挥发性有机化合物的空气净化技术。然而,在夏季使用热催化技术净化室内空气会造成室内过热的问题。辐射天冷是一种通过反射和辐射散热的被动冷却方法,可在白天和夜间提供亚环境冷却。本研究提出了一种用于昼夜空气净化和冷却的新型低温热催化与辐射天冷混合系统,该系统将热催化与辐射天冷相结合,利用低温驱动热催化剂来解决夏季室内过热问题。建立了混合系统的数值模型,模拟了系统在不同运行条件下的甲醛降解和降温性能。结果表明,在日平均气温 35 ℃、湿度介于 70 % 至 80 % 之间的夏季条件下,该系统全天运行后总共产生了 665.29 立方米/平方米的洁净空气。甲醛的平均单次转化率为 0.46,室内外空气的最大温差为 5 °C。这为混合系统与建筑物的整合提供了指导。
{"title":"A novel hybrid low-temperature thermal catalysis and radiative sky cooling system for day and night air purification and cooling","authors":"Feiyang Xu ,&nbsp;Lei Che ,&nbsp;Guoyu Zhang ,&nbsp;Xuhui Cao ,&nbsp;Niansi Li ,&nbsp;Ge Song ,&nbsp;Kai Zhang ,&nbsp;Jie Ji ,&nbsp;Bendong Yu","doi":"10.1016/j.energy.2024.133795","DOIUrl":"10.1016/j.energy.2024.133795","url":null,"abstract":"<div><div>Thermal catalytic oxidation is an air purification technology that can efficiently and stably degrade volatile organic compounds. However, using thermal catalysis to purify indoor air in the summer can cause problems of indoor overheating. Radiative sky cooling is a passive cooling method that dissipates heat through reflection and radiation, which can provide sub-ambient cooling during day and night. In this study, a novel hybrid low-temperature thermal catalysis and radiative sky cooling system for day and night air purification and cooling was proposed, which combined thermal catalysis with radiative sky cooling, and used low-temperature driven thermal catalysts to solve the problem of indoor overheating in summer. A numerical model of the hybrid system was established to simulate the formaldehyde degradation and cooling performance of the system under different operating conditions. The results show that under summer conditions with an average daily temperature of 35 °C and humidity levels between 70 % and 80 %, the system produced a total of 665.29 m³/m<sup>2</sup> of clean air after running for an entire day. The average single-pass conversion rate of formaldehyde was 0.46, and the maximum temperature difference between indoor and outdoor air was 5 °C. This provides guidance for the integration of the hybrid system with buildings.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133795"},"PeriodicalIF":9.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1