H. Shimizu, T. Hoshi, Kenji Nakamura, Jai-Eok Park
{"title":"Development of a Non-contact Ultrasonic Pollination Device","authors":"H. Shimizu, T. Hoshi, Kenji Nakamura, Jai-Eok Park","doi":"10.2525/ECB.53.85","DOIUrl":"https://doi.org/10.2525/ECB.53.85","url":null,"abstract":"","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":"37 1","pages":"85-88"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90220736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryosuke Nomiyama, D. Yasutake, Y. Sago, M. Mori, K. Tagawa, H. Cho, Yueru Wu, Weizhen Wang, M. Kitano
Soil salinization occurs in crop fields of arid and semiarid regions under desertification (Dregne, 2002). Soil salinity reduces the crop’s ion absorbing power, which quickly reduces growth rate (Munns, 2002), and presents a serious problem for sustainable agriculture (Food and Agriculture Organization, 2002). Generally, salts are introduced through poor irrigation water and accumulated in the root zone soil (Oster, 1994; Rengasamy, 2006). This salt accumulation results from the following processes: 1) the transport of water and ions from groundwater to the root zone soil is mainly driven by crop transpiration (i.e., root water absorption), 2) these ions are selectively absorbed by crop roots, and 3) ions mainly responsible for soil salinization (such as Na and Cl ) accumulate in the root zone soil (Kitano et al., 2006; Yasutake et al., 2006; 2007; 2009a; Araki et al., 2011). Therefore, it is important to understand active and selective ion absorption by crop roots in the soil salinization process. Active and selective ion absorption by crop roots is regulated through ion-specific transport proteins on root cell membranes (Taiz and Zeiger, 2006). Focusing on this function of membrane transport proteins, Epstain and Hagen (1952) expressed the characteristics of ion absorption with the Michaelis-Menten equation, which was proposed based on the dependence of ion absorption on ion concentration in the root zone. Sago et al. (2011a; 2011b) investigated the effect of environmental factors on root ion absorption and observed that ion absorption depended on not only ion concentration in the root zone but also on ion mass flow to the root surface, which was defined as ion concentration in the root zone multiplied by water flow driven by crop transpiration (Barber, 1962). Therefore, Sago et al. (2011c) modified the Michaelis-Menten equation and newly proposed the transpiration-integrated model, which represents ion absorption affected by ion mass flow. Nomiyama et al. (2012b) applied the transpirationintegrated model to the data of Yasutake et al. (2009b), to analyze ion absorption by maize and sunflower plants in soil-less culture under salinized conditions. The results indicated that the dynamics of salt accumulation in the simplified condition of root zone in soil-less culture can be explained reliably by the transpiration-integrated model. On the other hand, in soil-based culture, both soil evaporation and transpiration induce a complicated process of water transport accompanied by ion transport in the root zone soil. To investigate this complicated process, Kitano et al. (2009) developed a large-sized soil column system for analyzing the dynamics of water and ion transport in soilplant systems. Ebihara et al. (2010) examined salt accumu-
干旱和半干旱地区的农田在沙漠化条件下发生土壤盐渍化(Dregne, 2002)。土壤盐分降低了作物的离子吸收能力,从而迅速降低了生长速度(Munns, 2002),并对可持续农业提出了严重的问题(联合国粮农组织,2002)。一般来说,盐是通过不良灌溉水引入并在根区土壤中积累的(Oster, 1994;Rengasamy, 2006)。这种盐分积累是由以下过程造成的:1)地下水向根区土壤输送水分和离子主要由作物蒸腾作用驱动(即根系吸水),2)这些离子被作物根系选择性吸收,3)主要负责土壤盐碱化的离子(如Na和Cl)在根区土壤中积累(Kitano et al., 2006;Yasutake等,2006;2007;2009年;Araki et al., 2011)。因此,了解作物根系在土壤盐渍化过程中的主动和选择性离子吸收具有重要意义。作物根系的主动和选择性离子吸收是通过根细胞膜上的离子特异性转运蛋白来调节的(Taiz和Zeiger, 2006)。Epstain和Hagen(1952)针对膜转运蛋白的这一功能,基于根区离子吸收与离子浓度的依赖性,提出了Michaelis-Menten方程来表达离子吸收的特性。Sago et al. (2011a;2011b)研究了环境因素对根系离子吸收的影响,发现离子吸收不仅取决于根区离子浓度,还取决于流向根表面的离子质量流量,其定义为根区离子浓度乘以作物蒸腾驱动的水流量(Barber, 1962)。因此,Sago et al. (2011c)对Michaelis-Menten方程进行了修正,重新提出了蒸腾积分模型,该模型表示离子吸收受离子质量流的影响。Nomiyama et al. (2012b)将蒸腾综合模型应用于Yasutake et al. (2009b)的数据,分析了盐碱化条件下玉米和向日葵无土栽培的离子吸收。结果表明,在简化的无土栽培根区条件下,蒸腾积分模型可以可靠地解释土壤盐分积累的动态。另一方面,在土基栽培中,土壤蒸发和蒸腾在根区土壤中诱发了一个复杂的水分输送过程,同时伴有离子输送。为了研究这一复杂的过程,Kitano等人(2009)开发了一种大型土壤柱系统,用于分析土壤植物系统中水和离子运输的动力学。Ebihara等人(2010)研究了盐的蓄积
{"title":"Evapotranspiration Integrated Model for Analysis of Soil Salinization Affected by Root Selective Absorption","authors":"Ryosuke Nomiyama, D. Yasutake, Y. Sago, M. Mori, K. Tagawa, H. Cho, Yueru Wu, Weizhen Wang, M. Kitano","doi":"10.2525/ECB.53.199","DOIUrl":"https://doi.org/10.2525/ECB.53.199","url":null,"abstract":"Soil salinization occurs in crop fields of arid and semiarid regions under desertification (Dregne, 2002). Soil salinity reduces the crop’s ion absorbing power, which quickly reduces growth rate (Munns, 2002), and presents a serious problem for sustainable agriculture (Food and Agriculture Organization, 2002). Generally, salts are introduced through poor irrigation water and accumulated in the root zone soil (Oster, 1994; Rengasamy, 2006). This salt accumulation results from the following processes: 1) the transport of water and ions from groundwater to the root zone soil is mainly driven by crop transpiration (i.e., root water absorption), 2) these ions are selectively absorbed by crop roots, and 3) ions mainly responsible for soil salinization (such as Na and Cl ) accumulate in the root zone soil (Kitano et al., 2006; Yasutake et al., 2006; 2007; 2009a; Araki et al., 2011). Therefore, it is important to understand active and selective ion absorption by crop roots in the soil salinization process. Active and selective ion absorption by crop roots is regulated through ion-specific transport proteins on root cell membranes (Taiz and Zeiger, 2006). Focusing on this function of membrane transport proteins, Epstain and Hagen (1952) expressed the characteristics of ion absorption with the Michaelis-Menten equation, which was proposed based on the dependence of ion absorption on ion concentration in the root zone. Sago et al. (2011a; 2011b) investigated the effect of environmental factors on root ion absorption and observed that ion absorption depended on not only ion concentration in the root zone but also on ion mass flow to the root surface, which was defined as ion concentration in the root zone multiplied by water flow driven by crop transpiration (Barber, 1962). Therefore, Sago et al. (2011c) modified the Michaelis-Menten equation and newly proposed the transpiration-integrated model, which represents ion absorption affected by ion mass flow. Nomiyama et al. (2012b) applied the transpirationintegrated model to the data of Yasutake et al. (2009b), to analyze ion absorption by maize and sunflower plants in soil-less culture under salinized conditions. The results indicated that the dynamics of salt accumulation in the simplified condition of root zone in soil-less culture can be explained reliably by the transpiration-integrated model. On the other hand, in soil-based culture, both soil evaporation and transpiration induce a complicated process of water transport accompanied by ion transport in the root zone soil. To investigate this complicated process, Kitano et al. (2009) developed a large-sized soil column system for analyzing the dynamics of water and ion transport in soilplant systems. Ebihara et al. (2010) examined salt accumu-","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":"70 1","pages":"199-204"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75352609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Controlling weeds through allelopathy is one strategy to reduce dependency on synthetic herbicides. We investigated possible allelopathic effects of rattail fescue ( Vulpia myuros (L.) C.C. Gmel.). Water extract of rattail fescue inhibited root and shoot growth of cress ( Lepidium sativum L.). Powder of rattail fescue also inhibited the root and shoot growth of cress in a concentration dependent manner. The effectiveness of the water extract and powder of rattail fescue on the cress root and shoot growth was not significantly different. Allelopathic active substances may be leached from the powder into bioassay medium and those substances may inhibit the cress roots and shoots. In addition, the powder inhibited root and shoot growth of lettuce ( Lactuca sativa L.), alfalfa ( Medicago sativa L.), Phleum pratense L., Digitaria sanguinalis L., Lolium multiflorum Lam. Lolium rigidum Gaund., Echinochloa crus-galli (L.) Beauv. and Echinochloa colonum L. in a concentration dependent manner. Therefore, rattail fescue could be useful for a weed suppressive residue or soil additive materials in the variety of agricultural settings to reduce dependency on synthetic herbicides, which should be investigated further in the field.
{"title":"Potential of Rattail Fescue Powder for Weed Management","authors":"Madoka Yamamoto, H. Kato‐Noguchi","doi":"10.2525/ECB.53.43","DOIUrl":"https://doi.org/10.2525/ECB.53.43","url":null,"abstract":"Controlling weeds through allelopathy is one strategy to reduce dependency on synthetic herbicides. We investigated possible allelopathic effects of rattail fescue ( Vulpia myuros (L.) C.C. Gmel.). Water extract of rattail fescue inhibited root and shoot growth of cress ( Lepidium sativum L.). Powder of rattail fescue also inhibited the root and shoot growth of cress in a concentration dependent manner. The effectiveness of the water extract and powder of rattail fescue on the cress root and shoot growth was not significantly different. Allelopathic active substances may be leached from the powder into bioassay medium and those substances may inhibit the cress roots and shoots. In addition, the powder inhibited root and shoot growth of lettuce ( Lactuca sativa L.), alfalfa ( Medicago sativa L.), Phleum pratense L., Digitaria sanguinalis L., Lolium multiflorum Lam. Lolium rigidum Gaund., Echinochloa crus-galli (L.) Beauv. and Echinochloa colonum L. in a concentration dependent manner. Therefore, rattail fescue could be useful for a weed suppressive residue or soil additive materials in the variety of agricultural settings to reduce dependency on synthetic herbicides, which should be investigated further in the field.","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":"84 ","pages":"43-46"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2525/ECB.53.43","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72543404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayana Ito, H. Shimizu, Ryosuke Hiroki, H. Nakashima, J. Miyasaka, K. Ohdoi
{"title":"Quantitative Relationship of the Nutritional Quality of Spinach with Temperature and Duration in Root Area Chilling Treatment","authors":"Ayana Ito, H. Shimizu, Ryosuke Hiroki, H. Nakashima, J. Miyasaka, K. Ohdoi","doi":"10.2525/ECB.53.35","DOIUrl":"https://doi.org/10.2525/ECB.53.35","url":null,"abstract":"","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":"85 1","pages":"35-42"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90012452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant factory basics and facts were reported by Takatsuji (1996). The majority of current cultivation methods in plant factories are floating system where the cultivation panels float on water in a container. The panels are removed from the harvesting side by hand, while the new panels are pushed on by hand from the planting side. At the moment, the work is basically done by workers inside the cultivation room. Therefore, it is necessary to solve hygiene issues such as bacteria prevention, and safety considerations for work on the upper shelves. Also, it is important to solve the problem as to how to reduce labor running costs (Now, 5 workers / 1,000 plants, 5,000 yen / day). Low cost artificial type plant factories with total system control were discussed by Takayanagi (2000). As one way to solve these problem areas such as hygiene, employee safety, and labor cost management, the automatic culture bed transportation system was fabricated and examined. The automation of plant factory operations was discussed by Ogura (2011). The automated cultivation transport system reported in this paper utilizes the transportation technology as a labor saving structure, intended to innovative and revolutionary closed plant factory systems. To achieve labor saving employee reduction and safety for nutrient film technique (NFT) multistage cultivation, the system requires automated culture bed loading from the planting side, automated unloading from the harvesting side, and automated transportation for moving forward to erase the unused spaces. When the system is in use, the only employees work is to set the culture beds on the warehouse entrance plate for planting. Thus, this system was designed to keep employees safe from working in high-places and to reduce the labor cost of transportation from the planting entrance to the harvest room. Also, hygiene management can be improved and maintained because employee entrance into the cultivation room is limited. The adopted conveyor equipment in this system has the latest network and control system that can communicate the cultivation shelves operation conditions in real time. Operation instructions and status confirmations such as continuous automated delivery, and trouble detection can be remotely controlled from a centralized location, because the position of the cultivation shelves can be managed. These methods combined are considered to offer labor savings benefits. From the above items, significant running cost reductions can be achieved, and operating a mass production plant factory becomes feasible.
{"title":"Automation in Plant Factory with Labor-saving Conveyance System","authors":"Minoru Tokimasa, Y. Nishiura","doi":"10.2525/ECB.53.101","DOIUrl":"https://doi.org/10.2525/ECB.53.101","url":null,"abstract":"Plant factory basics and facts were reported by Takatsuji (1996). The majority of current cultivation methods in plant factories are floating system where the cultivation panels float on water in a container. The panels are removed from the harvesting side by hand, while the new panels are pushed on by hand from the planting side. At the moment, the work is basically done by workers inside the cultivation room. Therefore, it is necessary to solve hygiene issues such as bacteria prevention, and safety considerations for work on the upper shelves. Also, it is important to solve the problem as to how to reduce labor running costs (Now, 5 workers / 1,000 plants, 5,000 yen / day). Low cost artificial type plant factories with total system control were discussed by Takayanagi (2000). As one way to solve these problem areas such as hygiene, employee safety, and labor cost management, the automatic culture bed transportation system was fabricated and examined. The automation of plant factory operations was discussed by Ogura (2011). The automated cultivation transport system reported in this paper utilizes the transportation technology as a labor saving structure, intended to innovative and revolutionary closed plant factory systems. To achieve labor saving employee reduction and safety for nutrient film technique (NFT) multistage cultivation, the system requires automated culture bed loading from the planting side, automated unloading from the harvesting side, and automated transportation for moving forward to erase the unused spaces. When the system is in use, the only employees work is to set the culture beds on the warehouse entrance plate for planting. Thus, this system was designed to keep employees safe from working in high-places and to reduce the labor cost of transportation from the planting entrance to the harvest room. Also, hygiene management can be improved and maintained because employee entrance into the cultivation room is limited. The adopted conveyor equipment in this system has the latest network and control system that can communicate the cultivation shelves operation conditions in real time. Operation instructions and status confirmations such as continuous automated delivery, and trouble detection can be remotely controlled from a centralized location, because the position of the cultivation shelves can be managed. These methods combined are considered to offer labor savings benefits. From the above items, significant running cost reductions can be achieved, and operating a mass production plant factory becomes feasible.","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":"4 1","pages":"101-105"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73194919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. H. Rahman, S. Sabreen, M. Hara, M. Deurer, K. R. Islam
Compaction strongly influences soil physical properties such as bulk density, pore size and continuity, aeration, permeability, penetration resistance and soil water and temperature regime (Panayiotopoulos et al., 1994). Adverse effects of compaction on plant root growth and concomitant poor plant growth and yields have been well recognized (Barraclough and Weir, 1988), especially in fine textured soils (Gomez et al., 2002). Soil layers compacted due to machine traffic which is highly resistant to penetrate plant roots are one of the most common problems in agriculture. (Camargo and Alleoni, 1997). In addition to preventing root growth in the soil, high bulk density interferes with the movement and distribution of water in the profile, increasing the risk of erosion and low availability of water and nutrients to the plant. Uptake of nutrients by crops is of great importance to the farmer as well as to society as a whole since it has a major impact on the economic outcome of crop production. Furthermore, nutrient uptake has implication for environmental health by way of nutrient leaching and run-off into water bodies. Compaction affects nutrient availability and uptake through a number of mechanisms. Aeration negatively affects the availability of nitrogen, manganese and sulphur which are involved in redox reactions, and the growth and function of roots (Lipiec and Stepniewski, 1995). Transport of nutrients in the soil is decreased as compaction normally increases mass flow transport (Kemper et al., 1971) and the diffusion coefficient at a given gravimetric water content. Compaction increases root-to-soil contact, which may facilitate nutrient uptake (Veen et al., 1992), but generally reduces root growth through its effect on aeration and mechanical resistance. Considering that the mechanical methods used to eliminate compacted soil layers are expensive and energy consuming, an attractive alternative could be to use plants with vigorous roots to modify the compacted subsoil (Dexter, 1991). The use of plants with vigorous roots as a strategy in compacted soil management provides more uniform rupture of compacted layers than the common mechanical methods (Camargo and Alleoni, 1997). Compaction of the soil below the depth of tillage is referred to as subsoil compaction (Jorajuria et al., 1997).
压实会强烈影响土壤的物理特性,如体积密度、孔隙大小和连续性、通气性、渗透性、渗透阻力和土壤水分和温度状态(Panayiotopoulos等,1994)。压实对植物根系生长的不利影响以及随之而来的植物生长和产量下降已经得到充分认识(Barraclough和Weir, 1988),特别是在细质土壤中(Gomez等,2002)。由于机器交通而压实的土层对植物根系的渗透具有很强的抵抗力,是农业中最常见的问题之一。(Camargo和Alleoni, 1997)。除了阻止根系在土壤中的生长外,高堆积密度还会干扰水分在剖面中的运动和分布,增加侵蚀的风险,降低植物获得水分和养分的机会。作物对养分的吸收对农民和整个社会都非常重要,因为它对作物生产的经济成果有重大影响。此外,养分吸收通过养分淋滤和径流进入水体对环境健康有影响。压实通过许多机制影响养分的有效性和吸收。曝气对参与氧化还原反应的氮、锰和硫的有效性以及根系的生长和功能产生负面影响(Lipiec和Stepniewski, 1995)。土壤中养分的输送减少,因为压实通常会增加质量流输送(Kemper et al., 1971)和给定重量含水量下的扩散系数。压实增加了根与土壤的接触,这可能促进养分的吸收(Veen等人,1992),但通常通过其对通气性和机械阻力的影响而减少根的生长。考虑到用于消除压实土层的机械方法既昂贵又耗能,一种有吸引力的替代方法可能是使用具有旺盛根系的植物来修饰压实的底土(Dexter, 1991)。在夯实土壤管理中,使用根系强健的植物作为策略,比常见的机械方法提供了更均匀的夯实层破裂(Camargo和Alleoni, 1997)。耕作深度以下土壤的压实称为底土压实(Jorajuria et al., 1997)。
{"title":"Forage Legume Response to Subsoil Compaction","authors":"M. H. Rahman, S. Sabreen, M. Hara, M. Deurer, K. R. Islam","doi":"10.2525/ECB.53.107","DOIUrl":"https://doi.org/10.2525/ECB.53.107","url":null,"abstract":"Compaction strongly influences soil physical properties such as bulk density, pore size and continuity, aeration, permeability, penetration resistance and soil water and temperature regime (Panayiotopoulos et al., 1994). Adverse effects of compaction on plant root growth and concomitant poor plant growth and yields have been well recognized (Barraclough and Weir, 1988), especially in fine textured soils (Gomez et al., 2002). Soil layers compacted due to machine traffic which is highly resistant to penetrate plant roots are one of the most common problems in agriculture. (Camargo and Alleoni, 1997). In addition to preventing root growth in the soil, high bulk density interferes with the movement and distribution of water in the profile, increasing the risk of erosion and low availability of water and nutrients to the plant. Uptake of nutrients by crops is of great importance to the farmer as well as to society as a whole since it has a major impact on the economic outcome of crop production. Furthermore, nutrient uptake has implication for environmental health by way of nutrient leaching and run-off into water bodies. Compaction affects nutrient availability and uptake through a number of mechanisms. Aeration negatively affects the availability of nitrogen, manganese and sulphur which are involved in redox reactions, and the growth and function of roots (Lipiec and Stepniewski, 1995). Transport of nutrients in the soil is decreased as compaction normally increases mass flow transport (Kemper et al., 1971) and the diffusion coefficient at a given gravimetric water content. Compaction increases root-to-soil contact, which may facilitate nutrient uptake (Veen et al., 1992), but generally reduces root growth through its effect on aeration and mechanical resistance. Considering that the mechanical methods used to eliminate compacted soil layers are expensive and energy consuming, an attractive alternative could be to use plants with vigorous roots to modify the compacted subsoil (Dexter, 1991). The use of plants with vigorous roots as a strategy in compacted soil management provides more uniform rupture of compacted layers than the common mechanical methods (Camargo and Alleoni, 1997). Compaction of the soil below the depth of tillage is referred to as subsoil compaction (Jorajuria et al., 1997).","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":"5 1","pages":"107-115"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83313697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yusuke Watanabe, Yukie Ochi, H. Sugimoto, H. Kato‐Noguchi
{"title":"Weed Inhibitory Activity of Nomura's Jellyfish","authors":"Yusuke Watanabe, Yukie Ochi, H. Sugimoto, H. Kato‐Noguchi","doi":"10.2525/ECB.53.165","DOIUrl":"https://doi.org/10.2525/ECB.53.165","url":null,"abstract":"","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":"12 1","pages":"165-167"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76131374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present a detailed study of differences in the fruit ripening stage on the vines and ethylene treatment in the red kiwifruit cultivar ‘Rainbow Red’ ( Actinidia chinensis ). We evaluated the fruit quality (core and flesh firmness, soluble solid content (SSC), and titratable acid (TA)); ethylene metabolism; and gene expression of ACS1 , ACO3 , EIL4 , ERF14 , and PGB at each stage. Fruits on the vines somewhat softened gradually. SSC increased, and core and flesh firmness as well as TA decreased gradually. However, rapid ethylene production was not observed, and gene expression of ACS1 , ACO3 , EIL4 , ERF14 , and PGB was at the basal level at each stage. While the fruit quality following ethylene conditioning, core and flesh firmness, and TA rapidly decreased, SSC and ethylene production rapidly increased. It was confirmed that gene expression of ACS1 , ACO3 , EIL4 , ERF14 , and PGB rapidly increased. These results suggested that the ripening of ‘Rainbow Red’ on the vines is not associated with ethylene.
{"title":"Fruit Ripening Process in Red Kiwifruit Cultivar ‘Rainbow Red’ (Actinidia chinensis) on Vines","authors":"S. Murakami, Y. Ikoma, M. Yano","doi":"10.2525/ECB.53.159","DOIUrl":"https://doi.org/10.2525/ECB.53.159","url":null,"abstract":"We present a detailed study of differences in the fruit ripening stage on the vines and ethylene treatment in the red kiwifruit cultivar ‘Rainbow Red’ ( Actinidia chinensis ). We evaluated the fruit quality (core and flesh firmness, soluble solid content (SSC), and titratable acid (TA)); ethylene metabolism; and gene expression of ACS1 , ACO3 , EIL4 , ERF14 , and PGB at each stage. Fruits on the vines somewhat softened gradually. SSC increased, and core and flesh firmness as well as TA decreased gradually. However, rapid ethylene production was not observed, and gene expression of ACS1 , ACO3 , EIL4 , ERF14 , and PGB was at the basal level at each stage. While the fruit quality following ethylene conditioning, core and flesh firmness, and TA rapidly decreased, SSC and ethylene production rapidly increased. It was confirmed that gene expression of ACS1 , ACO3 , EIL4 , ERF14 , and PGB rapidly increased. These results suggested that the ripening of ‘Rainbow Red’ on the vines is not associated with ethylene.","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":"146 1","pages":"159-163"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90995297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Falquet, A. Gfeller, Mickaël Pourcelot, F. Tschuy, J. Wirth
{"title":"Weed Suppression by Common Buckwheat: A Review","authors":"B. Falquet, A. Gfeller, Mickaël Pourcelot, F. Tschuy, J. Wirth","doi":"10.2525/ECB.53.1","DOIUrl":"https://doi.org/10.2525/ECB.53.1","url":null,"abstract":"","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":"2004 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86238070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monitoring plant health is an important technique to guarantee high quality and quantity of agricultural production. In case of greenhouse-grown strawberry plants, farmers generally measure the plants’ height, number of leaves, and area of a single leaf to obtain growth information and estimate the plant’s health. These indices have been used successfully for many years in traditional strawberrygrowing. However, this method of monitoring plant health in an industrial-scale greenhouse would take up a lot of time. Furthermore, traditional growth information is not usually obtained every day. Even when the information is obtained, it involves taking only a sample value, which does not accurately report the condition of every plant. A circulating-type movable bench system for strawberry cultivation has been studied in Japan (Yoshida et al., 2008; Hayashi et al., 2011; Saito et al., 2012). With this cultivation system, all plants pass daily through a single location, called the access point, to be watered. The access point is thus the ideal place for continually and precisely obtaining information on the growth of strawberry plants. Machine vision is a promising technique for effectively monitoring every plant at the access point, since it enables non-destructive measurement. For effective plant health monitoring, many imaging techniques such as digital color imaging, multi-spectral imaging, thermal imaging and fluorescence imaging have been investigated (Takayama and Nishina, 2009). On the other hand, the availability of low-cost depth sensors that generate depth images is on the rise because of the development of natural user interfaces (NUIs), as seen in Microsoft’s Kinect sensor, which is commonly used as a motion controller for TV games. The accuracy of the Kinect sensor has been reported as a percentage of measurement error: between 2 cm to 2 cm is 90.9%, 82.9% and 81.2% for data along the x, y and z axes of the camera coordinates, respectively, using an uncalibrated Kinect sensor (Khoshelham and Elberink, 2012). In the camera coordinates, x and y axes are included in the CMOS plane of the camera. Namely, x axis is horizontal direction in the plane, and y axis is vertical direction. Direction of z axis is equivalent to the normal vector of the plane. For the leaf segmentation in rosebushes and the measurement of the leaf angle of ornamental plants, the low-cost depth sensor has been applied (Chéné et al., 2012). The Kinect sensor of these researches was equipped with an active-stereo system to obtain depth information. In 2014, new Kinect sensor was released which measures the depth by way of timeof-flight method. It is easily predicted that more researches will be conducted using the new sensor in the foreseeable future. We have developed a plant growth measurement method for strawberries using the active-stereo type Kinect sensor and have investigated the measurement accuracies of plant height and width and the area of leaves using a potted st
植物健康监测是保证农业生产保质保量的重要技术手段。对于温室栽培的草莓植株,农民一般通过测量植株的高度、叶片数量和单叶面积来获取植株的生长信息和估计植株的健康状况。这些指标已在传统草莓种植中成功应用多年。然而,在工业规模的温室中,这种监测植物健康的方法将花费大量时间。此外,传统的增长信息通常不是每天都能获得的。即使获得了信息,它也只涉及一个样本值,这并不能准确地报告每个植物的状况。日本研究了一种用于草莓栽培的循环式移动工作台系统(Yoshida et al., 2008;Hayashi et al., 2011;Saito et al., 2012)。有了这个栽培系统,所有的植物每天都要经过一个叫做接入点的地方来浇水。因此,接入点是连续准确地获取草莓植物生长信息的理想场所。机器视觉是一种很有前途的技术,可以在接入点有效地监测每个工厂,因为它可以进行非破坏性测量。为了有效地监测植物健康,研究了许多成像技术,如数字彩色成像、多光谱成像、热成像和荧光成像(Takayama和Nishina, 2009)。另一方面,由于自然用户界面(NUIs)的发展,产生深度图像的低成本深度传感器的可用性正在上升,例如微软的Kinect传感器,它通常被用作电视游戏的运动控制器。Kinect传感器的精度被报告为测量误差的百分比:在2厘米到2厘米之间,使用未校准的Kinect传感器,沿着相机坐标的x、y和z轴的数据分别为90.9%、82.9%和81.2%。在相机坐标中,x轴和y轴包含在相机的CMOS平面中。即x轴为平面内水平方向,y轴为垂直方向。z轴的方向等于平面的法向量。对于玫瑰丛的叶片分割和观赏植物叶片角度的测量,采用了低成本的深度传感器(ch奈斯et al., 2012)。本研究的Kinect传感器配备了主动立体系统来获取深度信息。2014年,新的Kinect传感器发布,通过飞行时间法测量深度。很容易预测,在可预见的未来,将会有更多的研究使用这种新型传感器。我们开发了一种使用主动立体Kinect传感器的草莓植物生长测量方法,并使用盆栽草莓植物研究了植物高度、宽度和叶片面积的测量精度(Yamamoto et al., 2012)。在这项研究中,我们提出了一种算法,用于在1米长的长凳上对草莓植物群落进行三维测量。然后,我们报告了对植物群落为期三个月的观察结果。
{"title":"Growth Measurement of a Community of Strawberries Using Three-Dimensional Sensor","authors":"Satoshi Yamamoto, S. Hayashi, S. Tsubota","doi":"10.2525/ECB.53.49","DOIUrl":"https://doi.org/10.2525/ECB.53.49","url":null,"abstract":"Monitoring plant health is an important technique to guarantee high quality and quantity of agricultural production. In case of greenhouse-grown strawberry plants, farmers generally measure the plants’ height, number of leaves, and area of a single leaf to obtain growth information and estimate the plant’s health. These indices have been used successfully for many years in traditional strawberrygrowing. However, this method of monitoring plant health in an industrial-scale greenhouse would take up a lot of time. Furthermore, traditional growth information is not usually obtained every day. Even when the information is obtained, it involves taking only a sample value, which does not accurately report the condition of every plant. A circulating-type movable bench system for strawberry cultivation has been studied in Japan (Yoshida et al., 2008; Hayashi et al., 2011; Saito et al., 2012). With this cultivation system, all plants pass daily through a single location, called the access point, to be watered. The access point is thus the ideal place for continually and precisely obtaining information on the growth of strawberry plants. Machine vision is a promising technique for effectively monitoring every plant at the access point, since it enables non-destructive measurement. For effective plant health monitoring, many imaging techniques such as digital color imaging, multi-spectral imaging, thermal imaging and fluorescence imaging have been investigated (Takayama and Nishina, 2009). On the other hand, the availability of low-cost depth sensors that generate depth images is on the rise because of the development of natural user interfaces (NUIs), as seen in Microsoft’s Kinect sensor, which is commonly used as a motion controller for TV games. The accuracy of the Kinect sensor has been reported as a percentage of measurement error: between 2 cm to 2 cm is 90.9%, 82.9% and 81.2% for data along the x, y and z axes of the camera coordinates, respectively, using an uncalibrated Kinect sensor (Khoshelham and Elberink, 2012). In the camera coordinates, x and y axes are included in the CMOS plane of the camera. Namely, x axis is horizontal direction in the plane, and y axis is vertical direction. Direction of z axis is equivalent to the normal vector of the plane. For the leaf segmentation in rosebushes and the measurement of the leaf angle of ornamental plants, the low-cost depth sensor has been applied (Chéné et al., 2012). The Kinect sensor of these researches was equipped with an active-stereo system to obtain depth information. In 2014, new Kinect sensor was released which measures the depth by way of timeof-flight method. It is easily predicted that more researches will be conducted using the new sensor in the foreseeable future. We have developed a plant growth measurement method for strawberries using the active-stereo type Kinect sensor and have investigated the measurement accuracies of plant height and width and the area of leaves using a potted st","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":"1 1","pages":"49-53"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90293465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}