首页 > 最新文献

Environmental microbiology最新文献

英文 中文
Unveiling the culturable and non-culturable actinobacterial diversity in two macroalgae species from the northern Portuguese coast 揭示葡萄牙北部海岸两种大型藻类中可培养和不可培养放线菌的多样性
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-04-16 DOI: 10.1111/1462-2920.16620
Mariana Girão, Diogo A. M. Alexandrino, Weiwei Cao, Isabel Costa, Zhongjun Jia, Maria F. Carvalho

Actinomycetota, associated with macroalgae, remains one of the least explored marine niches. The secondary metabolism of Actinomycetota, the primary microbial source of compounds relevant to biotechnology, continues to drive research into the distribution, dynamics, and metabolome of these microorganisms. In this study, we employed a combination of traditional cultivation and metagenomic analysis to investigate the diversity of Actinomycetota in two native macroalgae species from the Portuguese coast. We obtained and taxonomically identified a collection of 380 strains, which were distributed across 12 orders, 15 families, and 25 genera affiliated with the Actinomycetia class, with Streptomyces making up approximately 60% of the composition. Metagenomic results revealed the presence of Actinomycetota in both Chondrus crispus and Codium tomentosum datasets, with relative abundances of 11% and 2%, respectively. This approach identified 12 orders, 16 families, and 17 genera affiliated with Actinomycetota, with minimal overlap with the cultivation results. Acidimicrobiales emerged as the dominant actinobacterial order in both macroalgae, although no strain affiliated with this taxonomic group was successfully isolated. Our findings suggest that macroalgae represent a hotspot for Actinomycetota. The synergistic use of both culture-dependent and independent approaches proved beneficial, enabling the identification and recovery of not only abundant but also rare taxonomic members.

与大型藻类相关的放线菌群(Actinomycetota)仍然是探索最少的海洋生态位之一。放线菌群是生物技术相关化合物的主要微生物来源,其二次代谢继续推动着对这些微生物的分布、动态和代谢组的研究。在这项研究中,我们采用了传统培养和元基因组分析相结合的方法,研究葡萄牙海岸两种本地大型藻类中放线菌的多样性。我们获得了 380 株菌株,并对其进行了分类鉴定,这些菌株分布于放线菌属的 12 目、15 科和 25 属,其中链霉菌约占 60%。元基因组结果表明,在脆软骨属(Chondrus crispus)和茄属(Codium tomentosum)数据集中都存在放线菌,相对丰度分别为 11% 和 2%。这种方法确定了与放线菌有关的 12 目、16 科和 17 属,与栽培结果的重叠极少。尽管没有成功分离出隶属于该分类群的菌株,但酸性微生物纲(Acidimicrobiales)成为两种大型藻类中最主要的放线菌纲。我们的研究结果表明,大型藻类是放线菌的热点。依赖培养和独立培养两种方法的协同使用证明是有益的,不仅能鉴定和恢复丰富的分类成员,还能鉴定和恢复稀有的分类成员。
{"title":"Unveiling the culturable and non-culturable actinobacterial diversity in two macroalgae species from the northern Portuguese coast","authors":"Mariana Girão,&nbsp;Diogo A. M. Alexandrino,&nbsp;Weiwei Cao,&nbsp;Isabel Costa,&nbsp;Zhongjun Jia,&nbsp;Maria F. Carvalho","doi":"10.1111/1462-2920.16620","DOIUrl":"https://doi.org/10.1111/1462-2920.16620","url":null,"abstract":"<p>Actinomycetota, associated with macroalgae, remains one of the least explored marine niches. The secondary metabolism of Actinomycetota, the primary microbial source of compounds relevant to biotechnology, continues to drive research into the distribution, dynamics, and metabolome of these microorganisms. In this study, we employed a combination of traditional cultivation and metagenomic analysis to investigate the diversity of Actinomycetota in two native macroalgae species from the Portuguese coast. We obtained and taxonomically identified a collection of 380 strains, which were distributed across 12 orders, 15 families, and 25 genera affiliated with the Actinomycetia class, with Streptomyces making up approximately 60% of the composition. Metagenomic results revealed the presence of Actinomycetota in both <i>Chondrus crispus</i> and <i>Codium tomentosum</i> datasets, with relative abundances of 11% and 2%, respectively. This approach identified 12 orders, 16 families, and 17 genera affiliated with Actinomycetota, with minimal overlap with the cultivation results. Acidimicrobiales emerged as the dominant actinobacterial order in both macroalgae, although no strain affiliated with this taxonomic group was successfully isolated. Our findings suggest that macroalgae represent a hotspot for Actinomycetota. The synergistic use of both culture-dependent and independent approaches proved beneficial, enabling the identification and recovery of not only abundant but also rare taxonomic members.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16620","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140559534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clonal genomic population structure of Beauveria brongniartii and Beauveria pseudobassiana: Pathogens of the common European cockchafer (Melolontha melolontha L.) Beauveria brongniartii 和 Beauveria pseudobassiana 的克隆基因组种群结构:欧洲普通鸡毛虫(Melolontha melolontha L.)的病原体
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-04-15 DOI: 10.1111/1462-2920.16612
Chiara Pedrazzini, Stephen A. Rehner, Hermann Strasser, Niklaus Zemp, Rolf Holderegger, Franco Widmer, Jürg Enkerli

Beauveria brongniartii is a fungal pathogen that infects the beetle Melolontha melolontha, a significant agricultural pest in Europe. While research has primarily focused on the use of B. brongniartii for controlling M. melolontha, the genomic structure of the B. brongniartii population remains unknown. This includes whether its structure is influenced by its interaction with M. melolontha, the timing of beetle-swarming flights, geographical factors, or reproductive mode. To address this, we analysed genome-wide SNPs to infer the population genomics of Beauveria spp., which were isolated from infected M. melolontha adults in an Alpine region. Surprisingly, only one-third of the isolates were identified as B. brongniartii, while two-thirds were distributed among cryptic taxa within B. pseudobassiana, a fungal species not previously recognized as a pathogen of M. melolontha. Given the prevalence of B. pseudobassiana, we conducted analyses on both species. We found no spatial or temporal genomic patterns within either species and no correlation with the population structure of M. melolontha, suggesting that the dispersal of the fungi is independent of the beetle. Both species exhibited clonal population structures, with B. brongniartii fixed for one mating type and B. pseudobassiana displaying both mating types. This implies that factors other than mating compatibility limit sexual reproduction. We conclude that the population genomic structure of Beauveria spp. is primarily influenced by predominant asexual reproduction and dispersal.

布鲁氏菌(Beauveria brongniartii)是一种真菌病原体,可感染甲虫 Melolontha melolontha,它是欧洲的一种重要农业害虫。虽然研究主要集中在利用布氏菌(B. brongniartii)来控制 Melolontha 甲虫,但布氏菌种群的基因组结构仍然未知。这包括其结构是否受其与瓜龙虫的相互作用、甲虫变暖飞行的时间、地理因素或繁殖模式的影响。为了解决这个问题,我们分析了全基因组 SNPs,以推断从阿尔卑斯山地区受感染的瓜龙沙虫成虫中分离出来的 Beauveria 菌属的种群基因组学。令人惊讶的是,只有三分之一的分离物被鉴定为B. brongniartii,而三分之二的分离物分布在B. pseudobassiana的隐性类群中,这是一种以前未被确认为瓜龙虱病原体的真菌物种。鉴于 B. pseudobassiana 的普遍存在,我们对这两个物种都进行了分析。我们发现这两种真菌都没有空间或时间上的基因组模式,与瓜龙虫的种群结构也没有相关性,这表明真菌的传播与甲虫无关。两个物种都表现出克隆种群结构,B. brongniartii固定为一种交配类型,而B. pseudobassiana则表现出两种交配类型。这意味着交配兼容性以外的因素限制了有性繁殖。我们的结论是,Beauveria 属的种群基因组结构主要受无性繁殖和扩散的影响。
{"title":"Clonal genomic population structure of Beauveria brongniartii and Beauveria pseudobassiana: Pathogens of the common European cockchafer (Melolontha melolontha L.)","authors":"Chiara Pedrazzini,&nbsp;Stephen A. Rehner,&nbsp;Hermann Strasser,&nbsp;Niklaus Zemp,&nbsp;Rolf Holderegger,&nbsp;Franco Widmer,&nbsp;Jürg Enkerli","doi":"10.1111/1462-2920.16612","DOIUrl":"https://doi.org/10.1111/1462-2920.16612","url":null,"abstract":"<p><i>Beauveria brongniartii</i> is a fungal pathogen that infects the beetle <i>Melolontha melolontha</i>, a significant agricultural pest in Europe. While research has primarily focused on the use of <i>B. brongniartii</i> for controlling <i>M. melolontha</i>, the genomic structure of the <i>B. brongniartii</i> population remains unknown. This includes whether its structure is influenced by its interaction with <i>M. melolontha</i>, the timing of beetle-swarming flights, geographical factors, or reproductive mode. To address this, we analysed genome-wide SNPs to infer the population genomics of <i>Beauveria</i> spp., which were isolated from infected <i>M. melolontha</i> adults in an Alpine region. Surprisingly, only one-third of the isolates were identified as <i>B. brongniartii</i>, while two-thirds were distributed among cryptic taxa within <i>B. pseudobassiana</i>, a fungal species not previously recognized as a pathogen of <i>M. melolontha</i>. Given the prevalence of <i>B. pseudobassiana</i>, we conducted analyses on both species. We found no spatial or temporal genomic patterns within either species and no correlation with the population structure of <i>M. melolontha</i>, suggesting that the dispersal of the fungi is independent of the beetle. Both species exhibited clonal population structures, with <i>B. brongniartii</i> fixed for one mating type and <i>B. pseudobassiana</i> displaying both mating types. This implies that factors other than mating compatibility limit sexual reproduction. We conclude that the population genomic structure of <i>Beauveria</i> spp. is primarily influenced by predominant asexual reproduction and dispersal.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16612","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microorganisms uniquely capture and predict stony coral tissue loss disease and hurricane disturbance impacts on US Virgin Island reefs 微生物独特捕捉和预测美属维尔京群岛珊瑚礁石珊瑚组织损失疾病和飓风干扰的影响
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-04-04 DOI: 10.1111/1462-2920.16610
Cynthia C. Becker, Laura Weber, Joel K. Llopiz, T. Aran Mooney, Amy Apprill

Coral reef ecosystems are now commonly affected by major climate and disease disturbances. Disturbance impacts are typically recorded using reef benthic cover, but this may be less reflective of other ecosystem processes. To explore the potential for reef water-based disturbance indicators, we conducted a 7-year time series on US Virgin Island reefs where we examined benthic cover and reef water nutrients and microorganisms from 2016 to 2022, which included two major disturbances: hurricanes Irma and Maria in 2017 and the stony coral tissue loss disease outbreak starting in 2020. The disease outbreak coincided with the largest changes in the benthic habitat, with increases in the percent cover of turf algae and Ramicrusta, an invasive alga. While sampling timepoint contributed most to changes in reef water nutrient composition and microbial community beta diversity, both disturbances led to increases in ammonium concentration, a mechanism likely contributing to observed microbial community shifts. We identified 10 microbial taxa that were sensitive and predictive of increasing ammonium concentration. This included the decline of the oligotrophic and photoautotrophic Prochlorococcus and the enrichment of heterotrophic taxa. As disturbances impact reefs, the changing nutrient and microbial regimes may foster a type of microbialization, a process that hastens reef degradation.

珊瑚礁生态系统目前普遍受到重大气候和疾病干扰的影响。通常使用珊瑚礁底栖生物覆盖率来记录干扰影响,但这可能不太能反映其他生态系统过程。为了探索基于珊瑚礁水体的干扰指标的潜力,我们在美属维尔京群岛的珊瑚礁上进行了为期 7 年的时间序列研究,考察了 2016 年至 2022 年期间的底栖生物覆盖率以及珊瑚礁水体的营养物质和微生物,其中包括两次重大干扰:2017 年的飓风 "艾尔玛 "和 "玛丽亚",以及 2020 年开始的石珊瑚组织损失疾病爆发。疾病爆发时,底栖生物栖息地的变化最大,草皮藻和入侵藻类 Ramicrusta 的覆盖率增加。虽然取样时间点对珊瑚礁水体营养成分和微生物群落β多样性的变化影响最大,但这两种干扰都导致了铵浓度的增加,而铵浓度的增加很可能是导致观察到的微生物群落变化的一个机制。我们发现有 10 个微生物类群对氨浓度的增加具有敏感性和预测性。这包括低营养型和光自养型原绿球藻的减少以及异营养类群的富集。随着干扰对珊瑚礁的影响,不断变化的营养和微生物机制可能会促进一种微生物化,这一过程会加速珊瑚礁的退化。
{"title":"Microorganisms uniquely capture and predict stony coral tissue loss disease and hurricane disturbance impacts on US Virgin Island reefs","authors":"Cynthia C. Becker,&nbsp;Laura Weber,&nbsp;Joel K. Llopiz,&nbsp;T. Aran Mooney,&nbsp;Amy Apprill","doi":"10.1111/1462-2920.16610","DOIUrl":"https://doi.org/10.1111/1462-2920.16610","url":null,"abstract":"<p>Coral reef ecosystems are now commonly affected by major climate and disease disturbances. Disturbance impacts are typically recorded using reef benthic cover, but this may be less reflective of other ecosystem processes. To explore the potential for reef water-based disturbance indicators, we conducted a 7-year time series on US Virgin Island reefs where we examined benthic cover and reef water nutrients and microorganisms from 2016 to 2022, which included two major disturbances: hurricanes Irma and Maria in 2017 and the stony coral tissue loss disease outbreak starting in 2020. The disease outbreak coincided with the largest changes in the benthic habitat, with increases in the percent cover of turf algae and <i>Ramicrusta</i>, an invasive alga. While sampling timepoint contributed most to changes in reef water nutrient composition and microbial community beta diversity, both disturbances led to increases in ammonium concentration, a mechanism likely contributing to observed microbial community shifts. We identified 10 microbial taxa that were sensitive and predictive of increasing ammonium concentration. This included the decline of the oligotrophic and photoautotrophic <i>Prochlorococcus</i> and the enrichment of heterotrophic taxa. As disturbances impact reefs, the changing nutrient and microbial regimes may foster a type of microbialization, a process that hastens reef degradation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16610","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140348564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preventing multi-resistance: New insights for managing fungal adaptation 预防多重抗药性:管理真菌适应性的新见解
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-04-03 DOI: 10.1111/1462-2920.16614
Agathe Ballu, Claire Ugazio, Clémentine Duplaix, Alicia Noly, Juerg Wullschleger, Stefano F. F. Torriani, Anne Dérédec, Florence Carpentier, Anne-Sophie Walker

Sustainable crop protection is vital for food security, yet it is under threat due to the adaptation of a diverse and evolving pathogen population. Resistance can be managed by maximising the diversity of selection pressure through dose variation and the spatial and temporal combination of active ingredients. This study explores the interplay between operational drivers for maximising the sustainability of management strategies in relation to the resistance status of fungal populations. We applied an experimental evolution approach to three artificial populations of Zymoseptoria tritici, an economically significant wheat pathogen, each differing in initial resistance status. Our findings reveal that diversified selection pressure curtails the selection of resistance in naïve populations and those with low frequencies of single resistance. Increasing the number of modes of action most effectively delays resistance development, surpassing the increase in the number of fungicides, fungicide choice based on resistance risk, and temporal variation in fungicide exposure. However, this approach favours generalism in the evolved populations. The prior presence of multiple resistant isolates and their subsequent selection in populations override the effects of diversity in management strategies, thereby invalidating any universal ranking. Therefore, the initial resistance composition must be specifically considered in sustainable resistance management to address real-world field situations.

可持续的作物保护对粮食安全至关重要,但由于病原体种群的多样性和不断演变的适应性,这种保护正受到威胁。可以通过剂量变化和活性成分的时空组合最大限度地提高选择压力的多样性来管理抗药性。本研究探讨了与真菌种群抗药性状况相关的操作驱动因素之间的相互作用,以最大限度地提高管理策略的可持续性。我们将实验进化方法应用于三尖杉属真菌(一种具有重要经济价值的小麦病原体)的三个人工种群,每个种群的初始抗性状态都不同。我们的研究结果表明,多样化的选择压力抑制了原始种群和单一抗性频率低的种群的抗性选择。增加作用方式的数量能最有效地延缓抗性的产生,超过杀菌剂数量的增加、基于抗性风险的杀菌剂选择以及杀菌剂接触的时间变化。不过,这种方法有利于进化种群的普遍性。先前存在的多种抗性分离物及其随后在种群中的选择,会推翻管理策略多样性的影响,从而使任何通用排名失效。因此,在可持续抗性管理中,必须特别考虑最初的抗性组成,以应对实际的田间情况。
{"title":"Preventing multi-resistance: New insights for managing fungal adaptation","authors":"Agathe Ballu,&nbsp;Claire Ugazio,&nbsp;Clémentine Duplaix,&nbsp;Alicia Noly,&nbsp;Juerg Wullschleger,&nbsp;Stefano F. F. Torriani,&nbsp;Anne Dérédec,&nbsp;Florence Carpentier,&nbsp;Anne-Sophie Walker","doi":"10.1111/1462-2920.16614","DOIUrl":"https://doi.org/10.1111/1462-2920.16614","url":null,"abstract":"<p>Sustainable crop protection is vital for food security, yet it is under threat due to the adaptation of a diverse and evolving pathogen population. Resistance can be managed by maximising the diversity of selection pressure through dose variation and the spatial and temporal combination of active ingredients. This study explores the interplay between operational drivers for maximising the sustainability of management strategies in relation to the resistance status of fungal populations. We applied an experimental evolution approach to three artificial populations of <i>Zymoseptoria tritici</i>, an economically significant wheat pathogen, each differing in initial resistance status. Our findings reveal that diversified selection pressure curtails the selection of resistance in naïve populations and those with low frequencies of single resistance. Increasing the number of modes of action most effectively delays resistance development, surpassing the increase in the number of fungicides, fungicide choice based on resistance risk, and temporal variation in fungicide exposure. However, this approach favours generalism in the evolved populations. The prior presence of multiple resistant isolates and their subsequent selection in populations override the effects of diversity in management strategies, thereby invalidating any universal ranking. Therefore, the initial resistance composition must be specifically considered in sustainable resistance management to address real-world field situations.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16614","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental evidence of d-glutamate racemase activity in the uncultivated bacterium Candidatus Saccharimonas aalborgensis 实验证明未培养的奥尔堡酵母菌具有 d-谷氨酸消旋酶活性
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-04-01 DOI: 10.1111/1462-2920.16621
Marcos Peñalver, Alberto Paradela, César Palacios-Cuéllar, M. Graciela Pucciarelli, Francisco García-del Portillo

The Candidate Phyla Radiation (CPR) encompasses widespread uncultivated bacteria with reduced genomes and limited metabolic capacities. Most CPR bacteria lack the minimal set of enzymes required for peptidoglycan (PG) synthesis, leaving it unclear how these bacteria produce this essential envelope component. In this study, we analysed the distribution of d-amino acid racemases that produce the universal PG components d-glutamate (d-Glu) or d-alanine (d-Ala). We also examined moonlighting enzymes that synthesize d-Glu or d-Ala. Unlike other phyla in the domain Bacteria, CPR bacteria do not exhibit these moonlighting activities and have, at most, one gene encoding either a Glu or Ala racemase. One of these ‘orphan’ racemases is a predicted Glu racemase (MurICPR) from the CPR bacterium Candidatus Saccharimonas aalborgenesis. The expression of MurICPR restores the growth of a Salmonella d-Glu auxotroph lacking its endogenous racemase and results in the substitution of l-Ala by serine as the first residue in a fraction of the PG stem peptides. In vitro, MurICPR exclusively racemizes Glu as a substrate. Therefore, Ca. Saccharimonas aalborgensis may couple Glu racemization to serine and d-Glu incorporation into the stem peptide. Our findings provide the first insights into the synthesis of PG by an uncultivated environmental bacterium and illustrate how to experimentally test enzymatic activities from CPR bacteria related to PG metabolism.

候选菌属辐射(CPR)包括大量未培养的细菌,它们的基因组缩小,代谢能力有限。大多数 CPR 细菌缺乏肽聚糖(PG)合成所需的最基本的酶,因此尚不清楚这些细菌如何生产这种重要的包膜成分。在这项研究中,我们分析了产生通用 PG 成分 d-谷氨酸(d-Glu)或 d-丙氨酸(d-Ala)的 d-氨基酸消旋酶的分布情况。与细菌领域的其他门类不同,CPR 细菌不表现出这些月光活性,最多只有一个编码 Glu 或 Ala 消旋酶的基因。这些 "孤儿 "消旋酶之一是来自 CPR 杆菌 Saccharimonas aalborgenesis 的一种预测的 Glu 消旋酶(MurICPR)。MurICPR 的表达可恢复缺乏内源消旋酶的沙门氏菌 d-Glu 辅助营养体的生长,并导致部分 PG 茎肽的第一个残基由丝氨酸取代 l-Ala。在体外,MurICPR 只将 Glu 作为底物进行消旋化。因此,Ca.因此,Ca. Saccharimonas aalborgensis 可能将 Glu 消旋化与丝氨酸和 d-Glu 结合到干肽中。我们的研究结果首次揭示了一种未培养的环境细菌合成 PG 的过程,并说明了如何通过实验检测与 PG 代谢有关的 CPR 细菌的酶活性。
{"title":"Experimental evidence of d-glutamate racemase activity in the uncultivated bacterium Candidatus Saccharimonas aalborgensis","authors":"Marcos Peñalver,&nbsp;Alberto Paradela,&nbsp;César Palacios-Cuéllar,&nbsp;M. Graciela Pucciarelli,&nbsp;Francisco García-del Portillo","doi":"10.1111/1462-2920.16621","DOIUrl":"https://doi.org/10.1111/1462-2920.16621","url":null,"abstract":"<p>The Candidate Phyla Radiation (CPR) encompasses widespread uncultivated bacteria with reduced genomes and limited metabolic capacities. Most CPR bacteria lack the minimal set of enzymes required for peptidoglycan (PG) synthesis, leaving it unclear how these bacteria produce this essential envelope component. In this study, we analysed the distribution of <span>d</span>-amino acid racemases that produce the universal PG components <span>d</span>-glutamate (<span>d</span>-Glu) or <span>d</span>-alanine (<span>d</span>-Ala). We also examined moonlighting enzymes that synthesize <span>d</span>-Glu or <span>d</span>-Ala. Unlike other phyla in the domain Bacteria, CPR bacteria do not exhibit these moonlighting activities and have, at most, one gene encoding either a Glu or Ala racemase. One of these ‘orphan’ racemases is a predicted Glu racemase (MurI<sub>CPR</sub>) from the CPR bacterium <i>Candidatus Saccharimonas aalborgenesis</i>. The expression of MurI<sub>CPR</sub> restores the growth of a <i>Salmonella</i> <span>d</span>-Glu auxotroph lacking its endogenous racemase and results in the substitution of <span>l</span>-Ala by serine as the first residue in a fraction of the PG stem peptides. In vitro, MurI<sub>CPR</sub> exclusively racemizes Glu as a substrate. Therefore, <i>Ca. Saccharimonas aalborgensis</i> may couple Glu racemization to serine and <span>d</span>-Glu incorporation into the stem peptide. Our findings provide the first insights into the synthesis of PG by an uncultivated environmental bacterium and illustrate how to experimentally test enzymatic activities from CPR bacteria related to PG metabolism.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16621","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The distinctive weathering crust habitat of a High Arctic glacier comprises discrete microbial micro-habitats 北极高纬度冰川独特的风化壳生境由离散的微生物微生境组成
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-04-01 DOI: 10.1111/1462-2920.16617
Sara M. E. Rassner, Joseph M. Cook, Andrew C. Mitchell, Ian T. Stevens, Tristram D. L. Irvine-Fynn, Andrew J. Hodson, Arwyn Edwards

Sunlight penetrates the ice surfaces of glaciers and ice sheets, forming a water-bearing porous ice matrix known as the weathering crust. This crust is home to a significant microbial community. Despite the potential implications of microbial processes in the weathering crust for glacial melting, biogeochemical cycles, and downstream ecosystems, there have been few explorations of its microbial communities. In our study, we used 16S rRNA gene sequencing and shotgun metagenomics of a Svalbard glacier surface catchment to characterise the microbial communities within the weathering crust, their origins and destinies, and the functional potential of the weathering crust metagenome. Our findings reveal that the bacterial community in the weathering crust is distinct from those in upstream and downstream habitats. However, it comprises two separate micro-habitats, each with different taxa and functional categories. The interstitial porewater is dominated by Polaromonas, influenced by the transfer of snowmelt, and exported via meltwater channels. In contrast, the ice matrix is dominated by Hymenobacter, and its metagenome exhibits a diverse range of functional adaptations. Given that the global weathering crust area and the subsequent release of microbes from it are strongly responsive to climate projections for the rest of the century, our results underscore the pressing need to integrate the microbiome of the weathering crust with other communities and processes in glacial ecosystems.

阳光穿透冰川和冰原的冰面,形成含水的多孔冰基质,即风化壳。风化壳是大量微生物群落的家园。尽管风化壳中的微生物过程对冰川融化、生物地球化学循环和下游生态系统有潜在影响,但对其微生物群落的探索却很少。在我们的研究中,我们利用斯瓦尔巴冰川表面集水区的 16S rRNA 基因测序和霰弹枪元基因组学来描述风化壳内微生物群落的特征、它们的起源和命运,以及风化壳元基因组的功能潜力。我们的研究结果表明,风化壳中的细菌群落与上游和下游栖息地的细菌群落截然不同。不过,它由两个独立的微生境组成,每个微生境都有不同的类群和功能类别。间隙孔隙水以北极单胞菌为主,受融雪转移的影响,并通过融水通道输出。相比之下,冰基质中主要是海门菌,其元基因组表现出多种多样的功能适应性。鉴于全球风化壳面积及其随后释放的微生物对本世纪余下时间的气候预测反应强烈,我们的研究结果强调了将风化壳微生物组与冰川生态系统中其他群落和过程相结合的迫切需要。
{"title":"The distinctive weathering crust habitat of a High Arctic glacier comprises discrete microbial micro-habitats","authors":"Sara M. E. Rassner,&nbsp;Joseph M. Cook,&nbsp;Andrew C. Mitchell,&nbsp;Ian T. Stevens,&nbsp;Tristram D. L. Irvine-Fynn,&nbsp;Andrew J. Hodson,&nbsp;Arwyn Edwards","doi":"10.1111/1462-2920.16617","DOIUrl":"https://doi.org/10.1111/1462-2920.16617","url":null,"abstract":"<p>Sunlight penetrates the ice surfaces of glaciers and ice sheets, forming a water-bearing porous ice matrix known as the weathering crust. This crust is home to a significant microbial community. Despite the potential implications of microbial processes in the weathering crust for glacial melting, biogeochemical cycles, and downstream ecosystems, there have been few explorations of its microbial communities. In our study, we used 16S rRNA gene sequencing and shotgun metagenomics of a Svalbard glacier surface catchment to characterise the microbial communities within the weathering crust, their origins and destinies, and the functional potential of the weathering crust metagenome. Our findings reveal that the bacterial community in the weathering crust is distinct from those in upstream and downstream habitats. However, it comprises two separate micro-habitats, each with different taxa and functional categories. The interstitial porewater is dominated by <i>Polaromonas</i>, influenced by the transfer of snowmelt, and exported via meltwater channels. In contrast, the ice matrix is dominated by <i>Hymenobacter</i>, and its metagenome exhibits a diverse range of functional adaptations. Given that the global weathering crust area and the subsequent release of microbes from it are strongly responsive to climate projections for the rest of the century, our results underscore the pressing need to integrate the microbiome of the weathering crust with other communities and processes in glacial ecosystems.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16617","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wolbachia infection negatively impacts Drosophila simulans heat tolerance in a strain- and trait-specific manner 沃尔巴克氏体感染以品系和性状特异性的方式对果蝇的耐热性产生负面影响
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-04-01 DOI: 10.1111/1462-2920.16609
Liam F. Ferguson, Perran A. Ross, Belinda van Heerwaarden

The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.

昆虫对气温升高的敏感性主要是通过它们在极端温度下的生存能力来衡量的。然而,人们忽视了母系遗传的内共生体影响昆虫耐热性的能力。此外,虽然一些研究探讨了高温对繁殖力等性状的影响,这些性状在温度低于致死热极限时会下降,但没有一项研究考虑了内共生体的影响。在这里,我们评估了三种沃尔巴克氏体菌株(wRi、wAu 和 wNo)对在发育过程中或成年后暴露于热胁迫的果蝇的存活率和繁殖力的影响。沃尔巴克氏体感染对耐热性的影响一般较小,且具有性状/品系特异性。只有 wNo 感染才会显著降低热冲击后成年雄果蝇的存活率。在发育过程中暴露于波动的热应激时,wRi 和 wAu 株系降低了卵到成虫的存活率,但只有 wNo 感染降低了雄性的繁殖力。三种菌株的沃尔巴克氏体密度在发育期热胁迫下均有所下降,但在温度高于降低宿主繁殖力的温度时才出现下降。这些发现强调,在研究昆虫对热胁迫的反应时,必须考虑到内共生体及其对存活率和繁殖力的影响。
{"title":"Wolbachia infection negatively impacts Drosophila simulans heat tolerance in a strain- and trait-specific manner","authors":"Liam F. Ferguson,&nbsp;Perran A. Ross,&nbsp;Belinda van Heerwaarden","doi":"10.1111/1462-2920.16609","DOIUrl":"https://doi.org/10.1111/1462-2920.16609","url":null,"abstract":"<p>The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three <i>Wolbachia</i> strains (<i>w</i>Ri, <i>w</i>Au and <i>w</i>No) on the survival and fertility of <i>Drosophila simulans</i> exposed to heat stress during development or as adults. The effect of <i>Wolbachia</i> infection on heat tolerance was generally small and trait/strain specific. Only the <i>w</i>No infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the <i>w</i>Ri and <i>w</i>Au strains reduced egg-to-adult survival but only the <i>w</i>No infection reduced male fertility. <i>Wolbachia</i> densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16609","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial hitchhikers on microplastics: The exchange of aquatic microbes across distinct aquatic habitats 微塑料上的微生物搭便车:水生微生物在不同水生栖息地之间的交换。
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-04-01 DOI: 10.1111/1462-2920.16618
Máté Vass, Kesava Priyan Ramasamy, Agneta Andersson

Microplastics (MPs) have the potential to modify aquatic microbial communities and distribute microorganisms, including pathogens. This poses a potential risk to aquatic life and human health. Despite this, the fate of ‘hitchhiking’ microbes on MPs that traverse different aquatic habitats remains largely unknown. To address this, we conducted a 50-day microcosm experiment, manipulating estuarine conditions to study the exchange of bacteria and microeukaryotes between river, sea and plastisphere using a long-read metabarcoding approach. Our findings revealed a significant increase in bacteria on the plastisphere, including Pseudomonas, Sphingomonas, Hyphomonas, Brevundimonas, Aquabacterium and Thalassolituus, all of which are known for their pollutant degradation capabilities, specifically polycyclic aromatic hydrocarbons. We also observed a strong association of plastic-degrading fungi (i.e., Cladosporium and Plectosphaerella) and early-diverging fungi (Cryptomycota, also known as Rozellomycota) with the plastisphere. Sea MPs were primarily colonised by fungi (70%), with a small proportion of river-transported microbes (1%–4%). The mere presence of MPs in seawater increased the relative abundance of planktonic fungi from 2% to 25%, suggesting significant exchanges between planktonic and plastisphere communities. Using microbial source tracking, we discovered that MPs only dispersed 3.5% and 5.5% of river bacterial and microeukaryotic communities into the sea, respectively. Hence, although MPs select and facilitate the dispersal of ecologically significant microorganisms, drastic compositional changes across distinct aquatic habitats are unlikely.

微塑料(MPs)有可能改变水生微生物群落并传播微生物,包括病原体。这对水生生物和人类健康构成了潜在风险。尽管如此,"搭便车 "的微生物在穿越不同水生栖息地的 MPs 上的命运在很大程度上仍然未知。为了解决这个问题,我们进行了一项为期 50 天的微观世界实验,利用长读数代谢编码方法,操纵河口条件,研究细菌和微真核细胞在河流、海洋和质体之间的交换。我们的研究结果表明,质体上的细菌数量显著增加,包括假单胞菌、鞘氨醇单胞菌、水单胞菌、Brevundimonas、水杆菌和Thalassolituus,所有这些细菌都以其污染物降解能力而闻名,特别是多环芳烃。我们还观察到降解塑料的真菌(即 Cladosporium 和 Plectosphaerella)和早期分化真菌(隐霉菌群,也称 Rozellomycota)与质球的紧密联系。海洋 MPs 主要由真菌(70%)定殖,小部分由河流传播的微生物(1%-4%)定殖。海水中MPs的存在使浮游真菌的相对丰度从2%增加到25%,这表明浮游群落和质体群落之间存在着重要的交流。通过微生物源追踪,我们发现 MPs 只分别将 3.5% 和 5.5% 的河流细菌群落和微真核细胞群落扩散到海洋中。因此,尽管多孔介质选择并促进了具有重要生态意义的微生物的扩散,但不同水生栖息地的微生物组成不太可能发生剧烈变化。
{"title":"Microbial hitchhikers on microplastics: The exchange of aquatic microbes across distinct aquatic habitats","authors":"Máté Vass,&nbsp;Kesava Priyan Ramasamy,&nbsp;Agneta Andersson","doi":"10.1111/1462-2920.16618","DOIUrl":"10.1111/1462-2920.16618","url":null,"abstract":"<p>Microplastics (MPs) have the potential to modify aquatic microbial communities and distribute microorganisms, including pathogens. This poses a potential risk to aquatic life and human health. Despite this, the fate of ‘hitchhiking’ microbes on MPs that traverse different aquatic habitats remains largely unknown. To address this, we conducted a 50-day microcosm experiment, manipulating estuarine conditions to study the exchange of bacteria and microeukaryotes between river, sea and plastisphere using a long-read metabarcoding approach. Our findings revealed a significant increase in bacteria on the plastisphere, including <i>Pseudomonas</i>, <i>Sphingomonas</i>, <i>Hyphomonas</i>, <i>Brevundimonas</i>, <i>Aquabacterium</i> and <i>Thalassolituus</i>, all of which are known for their pollutant degradation capabilities, specifically polycyclic aromatic hydrocarbons. We also observed a strong association of plastic-degrading fungi (i.e., <i>Cladosporium</i> and <i>Plectosphaerella</i>) and early-diverging fungi (Cryptomycota, also known as Rozellomycota) with the plastisphere. Sea MPs were primarily colonised by fungi (70%), with a small proportion of river-transported microbes (1%–4%). The mere presence of MPs in seawater increased the relative abundance of planktonic fungi from 2% to 25%, suggesting significant exchanges between planktonic and plastisphere communities. Using microbial source tracking, we discovered that MPs only dispersed 3.5% and 5.5% of river bacterial and microeukaryotic communities into the sea, respectively. Hence, although MPs select and facilitate the dispersal of ecologically significant microorganisms, drastic compositional changes across distinct aquatic habitats are unlikely.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16618","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140335188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple toxins and a protease contribute to the aphid-killing ability of Pseudomonas fluorescens PpR24 多种毒素和一种蛋白酶增强了荧光假单胞菌 PpR24 杀死蚜虫的能力。
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-04-01 DOI: 10.1111/1462-2920.16604
Deepa Paliwal, Mojgan Rabiey, Tim H. Mauchline, Keywan Hassani-Pak, Ralf Nauen, Carol Wagstaff, Simon Andrews, Chris Bass, Robert W. Jackson

Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host–pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.

蚜虫是全球重要的害虫,对多种作物造成危害。由于杀虫剂的抗药性,迫切需要开发替代控制策略。在之前的研究中,我们发现荧光假单胞菌 PpR24 可以口服感染并杀死具有抗药性的绿桃蚜(Myzus persicae)。然而,PpR24 杀虫能力的遗传基础仍不清楚。PpR24 的基因组测序证实了各种杀虫毒素的存在,如 Tc(毒素复合物)、Rhs(重排热点)元件和其他杀虫蛋白酶。蚜虫感染 PpR24 后,RNA-Seq 分析显示有 193 个蚜虫基因发生了差异表达,其中 16 个解毒基因下调。此外,1325 个 PpR24 基因(542 个上调,783 个下调)也有差异表达,其中包括负责次生代谢物生物合成、铁限制反应、氧化应激抗性和毒力因子的基因。对编码一种分泌蛋白酶(AprX)和四种毒素成分(两种 TcA 样;一种 TcB 样;一种 TcC 样杀虫毒素)的候选毒力基因进行单缺失和双缺失后发现,这五种基因都对杀死蚜虫有显著作用,尤其是 AprX。这种全面的宿主-病原体转录组分析为了解细菌介导的蚜虫死亡的分子基础以及 PpR24 作为有效生物控制剂的潜力提供了新的视角。
{"title":"Multiple toxins and a protease contribute to the aphid-killing ability of Pseudomonas fluorescens PpR24","authors":"Deepa Paliwal,&nbsp;Mojgan Rabiey,&nbsp;Tim H. Mauchline,&nbsp;Keywan Hassani-Pak,&nbsp;Ralf Nauen,&nbsp;Carol Wagstaff,&nbsp;Simon Andrews,&nbsp;Chris Bass,&nbsp;Robert W. Jackson","doi":"10.1111/1462-2920.16604","DOIUrl":"10.1111/1462-2920.16604","url":null,"abstract":"<p>Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found <i>Pseudomonas fluorescens</i> PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (<i>Myzus persicae</i>). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host–pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 4","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140335189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Out of sight, but not out of season: Nitrifier distributions and population dynamics in a large oligotrophic lake 视线之外,但并非季节之外:一个大型寡营养湖中的硝化细菌分布和种群动态
IF 5.1 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-03-22 DOI: 10.1111/1462-2920.16616
Logan M. Peoples, Miranda H. Seixas, Kate A. Evans, Evan M. Bilbrey, John R. Ranieri, Tyler H. Tappenbeck, John E. Dore, Adam Baumann, Matthew J. Church

Nitrification is an important control on the form and distribution of nitrogen in freshwater ecosystems. However, the seasonality of nitrogen pools and the diversity of organisms catalyzing this process have not been well documented in oligotrophic lakes. Here, we show that nitrogen pools and nitrifying organisms in Flathead Lake are temporally and vertically dynamic, with nitrifiers displaying specific preferences depending on the season. While the ammonia-oxidizing bacteria (AOB) Nitrosomonadaceae and nitrite-oxidizing bacteria (NOB) Nitrotoga dominate at depth in the summer, the ammonia-oxidizing archaea (AOA) Nitrososphaerota and NOB Nitrospirota become abundant in the winter. Given clear seasonality in ammonium, with higher concentrations during the summer, we hypothesize that the succession between these two nitrifying groups may be due to nitrogen affinity, with AOB more competitive when ammonia concentrations are higher and AOA when they are lower. Nitrifiers in Flathead Lake share more than 99% average nucleotide identity with those reported in other North American lakes but are distinct from those in Europe and Asia, indicating a role for geographic isolation as a factor controlling speciation among nitrifiers. Our study shows there are seasonal shifts in nitrogen pools and nitrifying populations, highlighting the dynamic spatial and temporal nature of nitrogen cycling in freshwater ecosystems.

硝化作用对淡水生态系统中氮的形式和分布具有重要的控制作用。然而,在寡营养湖泊中,氮库的季节性和催化这一过程的生物多样性还没有得到很好的记录。在这里,我们展示了平头湖中的氮库和硝化生物在时间和垂直方向上的动态变化,硝化生物根据季节的不同表现出特定的偏好。夏季,氨氧化细菌(AOB)Nitrosomonadaceae 和亚硝酸盐氧化细菌(NOB)Nitrotoga 在深度占主导地位,而氨氧化古细菌(AOA)Nitrososphaerota 和 NOB Nitrospirota 则在冬季大量出现。鉴于氨的季节性很明显,夏季氨的浓度较高,我们推测这两个硝化类群之间的演替可能是由于氮的亲和性造成的,当氨浓度较高时,AOB 的竞争力较强,而当氨浓度较低时,AOA 的竞争力较弱。平头湖中的硝化细菌与其他北美湖泊中的硝化细菌的平均核苷酸相同度超过 99%,但与欧洲和亚洲的硝化细菌不同,这表明地理隔离是控制硝化细菌物种分化的一个因素。我们的研究表明,氮库和硝化种群存在季节性变化,凸显了淡水生态系统氮循环的时空动态性质。
{"title":"Out of sight, but not out of season: Nitrifier distributions and population dynamics in a large oligotrophic lake","authors":"Logan M. Peoples,&nbsp;Miranda H. Seixas,&nbsp;Kate A. Evans,&nbsp;Evan M. Bilbrey,&nbsp;John R. Ranieri,&nbsp;Tyler H. Tappenbeck,&nbsp;John E. Dore,&nbsp;Adam Baumann,&nbsp;Matthew J. Church","doi":"10.1111/1462-2920.16616","DOIUrl":"10.1111/1462-2920.16616","url":null,"abstract":"<p>Nitrification is an important control on the form and distribution of nitrogen in freshwater ecosystems. However, the seasonality of nitrogen pools and the diversity of organisms catalyzing this process have not been well documented in oligotrophic lakes. Here, we show that nitrogen pools and nitrifying organisms in Flathead Lake are temporally and vertically dynamic, with nitrifiers displaying specific preferences depending on the season. While the ammonia-oxidizing bacteria (AOB) Nitrosomonadaceae and nitrite-oxidizing bacteria (NOB) <i>Nitrotoga</i> dominate at depth in the summer, the ammonia-oxidizing archaea (AOA) Nitrososphaerota and NOB Nitrospirota become abundant in the winter. Given clear seasonality in ammonium, with higher concentrations during the summer, we hypothesize that the succession between these two nitrifying groups may be due to nitrogen affinity, with AOB more competitive when ammonia concentrations are higher and AOA when they are lower. Nitrifiers in Flathead Lake share more than 99% average nucleotide identity with those reported in other North American lakes but are distinct from those in Europe and Asia, indicating a role for geographic isolation as a factor controlling speciation among nitrifiers. Our study shows there are seasonal shifts in nitrogen pools and nitrifying populations, highlighting the dynamic spatial and temporal nature of nitrogen cycling in freshwater ecosystems.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16616","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140189103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1