Pub Date : 2024-03-01Epub Date: 2023-09-24DOI: 10.1080/14737159.2023.2260743
Jennifer L Rakeman-Cagno, David H Persing, Michael J Loeffelholz
Introduction: Testing at the point of care (we also refer to the 'point of need'), with rapid, actionable results reported to the patient and provider within hours can impact the individual as well as public health. Faster testing is good for patients and public health outcomes during 'peace time' (outside of the pandemic setting).
Areas covered: Testing at the point of need was important during the COVID-19 pandemic to meet testing capacity demands, providing actionable results, and for providing testing within communities to increase access for all populations. Resources were acquired and built up dramatically during the pandemic as part of the response. With the end of the COVID-19 public health emergency and transition back to 'peace time' some testing sites have successfully shifted to using this capacity for testing for other critical needs, like sexually transmitted infection (STI) testing, and response to other seasonal diseases and for outbreak response.
Expert opinion: The increased testing capacity added to handle unprecedented testing volume during the COVID-19 pandemic can be repurposed for other critical infectious diseases during 'peace time' (post-COVID-19 pandemic). This maintains testing capacity for the next pandemic.
{"title":"Maintaining point of care testing capacity and pandemic preparedness in the post-COVID-19 era.","authors":"Jennifer L Rakeman-Cagno, David H Persing, Michael J Loeffelholz","doi":"10.1080/14737159.2023.2260743","DOIUrl":"10.1080/14737159.2023.2260743","url":null,"abstract":"<p><strong>Introduction: </strong>Testing at the point of care (we also refer to the 'point of need'), with rapid, actionable results reported to the patient and provider within hours can impact the individual as well as public health. Faster testing is good for patients and public health outcomes during 'peace time' (outside of the pandemic setting).</p><p><strong>Areas covered: </strong>Testing at the point of need was important during the COVID-19 pandemic to meet testing capacity demands, providing actionable results, and for providing testing within communities to increase access for all populations. Resources were acquired and built up dramatically during the pandemic as part of the response. With the end of the COVID-19 public health emergency and transition back to 'peace time' some testing sites have successfully shifted to using this capacity for testing for other critical needs, like sexually transmitted infection (STI) testing, and response to other seasonal diseases and for outbreak response.</p><p><strong>Expert opinion: </strong>The increased testing capacity added to handle unprecedented testing volume during the COVID-19 pandemic can be repurposed for other critical infectious diseases during 'peace time' (post-COVID-19 pandemic). This maintains testing capacity for the next pandemic.</p>","PeriodicalId":12113,"journal":{"name":"Expert Review of Molecular Diagnostics","volume":" ","pages":"147-151"},"PeriodicalIF":5.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10363645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-19DOI: 10.1080/14737159.2024.2317414
James Milburn, Rachita Suresh, Ronan Doyle, Joseph N Jarvis
Introduction: Central nervous system infections (CNSI) disproportionately affect individuals in low-resource settings where diagnosis is challenging; large proportions of patients never receive a confirmed microbiological diagnosis resulting in inadequate management and high mortality. The epidemiology of CNSI varies globally and conventional diagnostics deployed in resource-limited settings have significant limitations, with an urgent need for improved diagnostic strategies.
Areas covered: This review describes molecular platforms and other novel diagnostics used in the diagnosis of CNSI that are applicable to resource-limited settings. An extensive literature search of Medline and PubMed was performed. The emphasis is on investigations targeting infections of relevance to resource-limited settings either due to variation in regional CNSI epidemiology or due to increased prevalence in patients with immunosuppression. This includes commercially available multiplex PCR platforms, mycobacterial PCR platforms, and rapid diagnostics tests. To offer a framework for the optimal implementation in clinical settings, existing evidence highlighting the advantages and limitations of available platforms is reviewed.
Expert opinion: The implementation of molecular platforms and other novel diagnostics has the potential to transform CNSI diagnosis in resource-limited settings, with several examples of successful rollout of novel diagnostics such as Xpert MTB/RIF Ultra and cryptococcal antigen testing.
{"title":"The diagnosis of central nervous system infections in resource-limited settings and the use of novel and molecular diagnostic platforms to improve diagnosis.","authors":"James Milburn, Rachita Suresh, Ronan Doyle, Joseph N Jarvis","doi":"10.1080/14737159.2024.2317414","DOIUrl":"10.1080/14737159.2024.2317414","url":null,"abstract":"<p><strong>Introduction: </strong>Central nervous system infections (CNSI) disproportionately affect individuals in low-resource settings where diagnosis is challenging; large proportions of patients never receive a confirmed microbiological diagnosis resulting in inadequate management and high mortality. The epidemiology of CNSI varies globally and conventional diagnostics deployed in resource-limited settings have significant limitations, with an urgent need for improved diagnostic strategies.</p><p><strong>Areas covered: </strong>This review describes molecular platforms and other novel diagnostics used in the diagnosis of CNSI that are applicable to resource-limited settings. An extensive literature search of Medline and PubMed was performed. The emphasis is on investigations targeting infections of relevance to resource-limited settings either due to variation in regional CNSI epidemiology or due to increased prevalence in patients with immunosuppression. This includes commercially available multiplex PCR platforms, mycobacterial PCR platforms, and rapid diagnostics tests. To offer a framework for the optimal implementation in clinical settings, existing evidence highlighting the advantages and limitations of available platforms is reviewed.</p><p><strong>Expert opinion: </strong>The implementation of molecular platforms and other novel diagnostics has the potential to transform CNSI diagnosis in resource-limited settings, with several examples of successful rollout of novel diagnostics such as Xpert MTB/RIF Ultra and cryptococcal antigen testing.</p>","PeriodicalId":12113,"journal":{"name":"Expert Review of Molecular Diagnostics","volume":" ","pages":"219-230"},"PeriodicalIF":5.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139899560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2023-09-21DOI: 10.1080/14737159.2023.2257597
Robina Aerts, Brice Autier, Maximilian Gornicec, Juergen Prattes, Katrien Lagrou, Jean-Pierre Gangneux, Martin Hoenigl
Introduction: Over the last years, severe respiratory viral infections, particularly those caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the influenza virus, have emerged as risk factor for viral-associated pulmonary aspergillosis (VAPA) among critically ill patients. Delays in diagnosis of VAPA are associated with increased mortality. Point-of-care-tests may play an important role in earlier diagnosis of VAPA and thus improve patient outcomes.
Areas covered: The following review will give an update on point-of-care tests for VAPA, analyzing performances in respiratory and blood specimens.
Expert opinion: Point-of-care tests have emerged, and particularly the IMMY Aspergillus galactomannan lateral flow assay (LFA) shows performances comparable to the galactomannan ELISA for diagnosis of VAPA. Notably, nearly all evaluations of POC tests for VAPA have been performed in COVID-19 patients, with very limited data in influenza patients. For early diagnosis of COVID associated pulmonary aspergillosis (CAPA), the LFA has shown promising performances in respiratory samples, particularly in bronchoalveolar lavage fluid, and may thereby help in improving patient outcomes. In contrast, serum LFA testing may not be useful for early diagnosis of disease, except in cases with invasive tracheobronchial aspergillosis.
{"title":"Point-of-care testing for viral-associated pulmonary aspergillosis.","authors":"Robina Aerts, Brice Autier, Maximilian Gornicec, Juergen Prattes, Katrien Lagrou, Jean-Pierre Gangneux, Martin Hoenigl","doi":"10.1080/14737159.2023.2257597","DOIUrl":"10.1080/14737159.2023.2257597","url":null,"abstract":"<p><strong>Introduction: </strong>Over the last years, severe respiratory viral infections, particularly those caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the influenza virus, have emerged as risk factor for viral-associated pulmonary aspergillosis (VAPA) among critically ill patients. Delays in diagnosis of VAPA are associated with increased mortality. Point-of-care-tests may play an important role in earlier diagnosis of VAPA and thus improve patient outcomes.</p><p><strong>Areas covered: </strong>The following review will give an update on point-of-care tests for VAPA, analyzing performances in respiratory and blood specimens.</p><p><strong>Expert opinion: </strong>Point-of-care tests have emerged, and particularly the IMMY Aspergillus galactomannan lateral flow assay (LFA) shows performances comparable to the galactomannan ELISA for diagnosis of VAPA. Notably, nearly all evaluations of POC tests for VAPA have been performed in COVID-19 patients, with very limited data in influenza patients. For early diagnosis of COVID associated pulmonary aspergillosis (CAPA), the LFA has shown promising performances in respiratory samples, particularly in bronchoalveolar lavage fluid, and may thereby help in improving patient outcomes. In contrast, serum LFA testing may not be useful for early diagnosis of disease, except in cases with invasive tracheobronchial aspergillosis.</p>","PeriodicalId":12113,"journal":{"name":"Expert Review of Molecular Diagnostics","volume":" ","pages":"231-243"},"PeriodicalIF":5.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10191532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-27DOI: 10.1080/14737159.2024.2322146
Alena Moerman, Jan J De Waele, Jerina Boelens
Introduction: Molecular diagnostic systems for point-of-care (POC) testing are nowadays routinely used and are part of many labs. Although often intended for bedside use outside of the microbiology lab, there is still room for expansion.
Areas covered: This review discusses the two techniques that are currently the most widespread, real-time polymerase-chain reaction (RT-PCR) and loop-mediated isothermal amplification (LAMP). An overview is provided of the various manufacturers and products as well as the evidence and current use in clinical practice. The article further sheds light on some newer techniques, such as CRISPR-based diagnostics and lab-on-a-chip, which are still in development.
Expert opinion: With many new platforms and techniques still in the pipeline and their potential currently not yet fully exploited, we expect the use of molecular POC testing to increase in the years to come. However, even when used in hospital - in lab, the main advantages of the tests being fast and easy to perform already provide significant benefits in terms of patient outcome.
{"title":"An overview of point-of-care testing for infections in critically ill patients.","authors":"Alena Moerman, Jan J De Waele, Jerina Boelens","doi":"10.1080/14737159.2024.2322146","DOIUrl":"10.1080/14737159.2024.2322146","url":null,"abstract":"<p><strong>Introduction: </strong>Molecular diagnostic systems for point-of-care (POC) testing are nowadays routinely used and are part of many labs. Although often intended for bedside use outside of the microbiology lab, there is still room for expansion.</p><p><strong>Areas covered: </strong>This review discusses the two techniques that are currently the most widespread, real-time polymerase-chain reaction (RT-PCR) and loop-mediated isothermal amplification (LAMP). An overview is provided of the various manufacturers and products as well as the evidence and current use in clinical practice. The article further sheds light on some newer techniques, such as CRISPR-based diagnostics and lab-on-a-chip, which are still in development.</p><p><strong>Expert opinion: </strong>With many new platforms and techniques still in the pipeline and their potential currently not yet fully exploited, we expect the use of molecular POC testing to increase in the years to come. However, even when used in hospital - in lab, the main advantages of the tests being fast and easy to perform already provide significant benefits in terms of patient outcome.</p>","PeriodicalId":12113,"journal":{"name":"Expert Review of Molecular Diagnostics","volume":" ","pages":"193-200"},"PeriodicalIF":5.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2023-11-29DOI: 10.1080/14737159.2023.2287504
Paul Trubin, Marwan M Azar
{"title":"A fast-track to fungal diagnosis: the potential of molecular diagnostics for fungi at the point of care.","authors":"Paul Trubin, Marwan M Azar","doi":"10.1080/14737159.2023.2287504","DOIUrl":"10.1080/14737159.2023.2287504","url":null,"abstract":"","PeriodicalId":12113,"journal":{"name":"Expert Review of Molecular Diagnostics","volume":" ","pages":"143-146"},"PeriodicalIF":5.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138290685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-13DOI: 10.1080/14737159.2024.2316756
Gratiela Gradisteanu Pircalabioru, Mina Raileanu, Mihai Viorel Dionisie, Irina-Oana Lixandru-Petre, Ciprian Iliescu
Introduction: Gut microbes pose challenges like colon inflammation, deadly diarrhea, antimicrobial resistance dissemination, and chronic disease onset. Development of early, rapid and specific diagnosis tools is essential for improving infection control. Point-of-care testing (POCT) systems offer rapid, sensitive, low-cost and sample-to-answer methods for microbe detection from various clinical and environmental samples, bringing the advantages of portability, automation, and simple operation.
Areas covered: Rapid detection of gut microbes can be done using a wide array of techniques including biosensors, immunological assays, electrochemical impedance spectroscopy, mass spectrometry and molecular biology. Inclusion of Internet of Things, machine learning, and smartphone-based point-of-care applications is an important aspect of POCT. In this review, the authors discuss various fast diagnostic platforms for gut pathogens and their main challenges.
Expert opinion: Developing effective assays for microbe detection can be complex. Assay design must consider factors like target selection, real-time and multiplex detection, sample type, reagent stability and storage, primer/probe design, and optimizing reaction conditions for accuracy and sensitivity. Mitigating these challenges requires interdisciplinary collaboration among scientists, clinicians, engineers, and industry partners. Future efforts are essential to enhance sensitivity, specificity, and versatility of POCT systems for gut microbe detection and quantification, advancing infectious disease diagnostics and management.
{"title":"Fast detection of bacterial gut pathogens on miniaturized devices: an overview.","authors":"Gratiela Gradisteanu Pircalabioru, Mina Raileanu, Mihai Viorel Dionisie, Irina-Oana Lixandru-Petre, Ciprian Iliescu","doi":"10.1080/14737159.2024.2316756","DOIUrl":"10.1080/14737159.2024.2316756","url":null,"abstract":"<p><strong>Introduction: </strong>Gut microbes pose challenges like colon inflammation, deadly diarrhea, antimicrobial resistance dissemination, and chronic disease onset. Development of early, rapid and specific diagnosis tools is essential for improving infection control. Point-of-care testing (POCT) systems offer rapid, sensitive, low-cost and sample-to-answer methods for microbe detection from various clinical and environmental samples, bringing the advantages of portability, automation, and simple operation.</p><p><strong>Areas covered: </strong>Rapid detection of gut microbes can be done using a wide array of techniques including biosensors, immunological assays, electrochemical impedance spectroscopy, mass spectrometry and molecular biology. Inclusion of Internet of Things, machine learning, and smartphone-based point-of-care applications is an important aspect of POCT. In this review, the authors discuss various fast diagnostic platforms for gut pathogens and their main challenges.</p><p><strong>Expert opinion: </strong>Developing effective assays for microbe detection can be complex. Assay design must consider factors like target selection, real-time and multiplex detection, sample type, reagent stability and storage, primer/probe design, and optimizing reaction conditions for accuracy and sensitivity. Mitigating these challenges requires interdisciplinary collaboration among scientists, clinicians, engineers, and industry partners. Future efforts are essential to enhance sensitivity, specificity, and versatility of POCT systems for gut microbe detection and quantification, advancing infectious disease diagnostics and management.</p>","PeriodicalId":12113,"journal":{"name":"Expert Review of Molecular Diagnostics","volume":" ","pages":"201-218"},"PeriodicalIF":5.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-03-19DOI: 10.1080/14737159.2024.2330774
Barbara Van Der Pol
{"title":"Opportunities and challenges of point of care testing paradigms in the post-COVID era.","authors":"Barbara Van Der Pol","doi":"10.1080/14737159.2024.2330774","DOIUrl":"10.1080/14737159.2024.2330774","url":null,"abstract":"","PeriodicalId":12113,"journal":{"name":"Expert Review of Molecular Diagnostics","volume":" ","pages":"135-137"},"PeriodicalIF":5.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-04DOI: 10.1080/14737159.2023.2292645
Jason Grebely, Susan Matthews, Louise M Causer, Jordan J Feld, Philip Cunningham, Gregory J Dore, Tanya L Applegate
Introduction: Progress toward hepatitis C virus (HCV) elimination is impeded by low testing and treatment due to the current diagnostic pathway requiring multiple visits leading to loss to follow-up. Point-of-care testing technologies capable of detecting current HCV infection in one hour are a 'game-changer.' These tests enable diagnosis and treatment in a single visit, overcoming the barrier of multiple visits that frequently leads to loss to follow-up. Combining point-of-care HCV antibody and RNA tests should improve cost-effectiveness, patient/provider acceptability, and testing efficiency. However, implementing HCV point-of-care testing programs at scale requires multiple considerations.
Areas covered: This commentary explores the need for point-of-care HCV tests, diagnostic strategies to improve HCV testing, key considerations for implementing point-of-care HCV testing programs, and remaining challenges for point-of-care testing (including operator training, quality management, connectivity and reporting systems, regulatory approval processes, and the need for more efficient tests).
Expert opinion: It is exciting that single-visit testing, diagnosis, and treatment for HCV infection have been achieved. Innovations afforded through COVID-19 should facilitate the accelerated development of low-cost, rapid, and accurate tests to improve HCV testing. The next challenge will be to address barriers and facilitators for implementing point-of-care testing to deliver them at scale.
{"title":"We have reached single-visit testing, diagnosis, and treatment for hepatitis C infection, now what?","authors":"Jason Grebely, Susan Matthews, Louise M Causer, Jordan J Feld, Philip Cunningham, Gregory J Dore, Tanya L Applegate","doi":"10.1080/14737159.2023.2292645","DOIUrl":"10.1080/14737159.2023.2292645","url":null,"abstract":"<p><strong>Introduction: </strong>Progress toward hepatitis C virus (HCV) elimination is impeded by low testing and treatment due to the current diagnostic pathway requiring multiple visits leading to loss to follow-up. Point-of-care testing technologies capable of detecting current HCV infection in one hour are a 'game-changer.' These tests enable diagnosis and treatment in a single visit, overcoming the barrier of multiple visits that frequently leads to loss to follow-up. Combining point-of-care HCV antibody and RNA tests should improve cost-effectiveness, patient/provider acceptability, and testing efficiency. However, implementing HCV point-of-care testing programs at scale requires multiple considerations.</p><p><strong>Areas covered: </strong>This commentary explores the need for point-of-care HCV tests, diagnostic strategies to improve HCV testing, key considerations for implementing point-of-care HCV testing programs, and remaining challenges for point-of-care testing (including operator training, quality management, connectivity and reporting systems, regulatory approval processes, and the need for more efficient tests).</p><p><strong>Expert opinion: </strong>It is exciting that single-visit testing, diagnosis, and treatment for HCV infection have been achieved. Innovations afforded through COVID-19 should facilitate the accelerated development of low-cost, rapid, and accurate tests to improve HCV testing. The next challenge will be to address barriers and facilitators for implementing point-of-care testing to deliver them at scale.</p>","PeriodicalId":12113,"journal":{"name":"Expert Review of Molecular Diagnostics","volume":" ","pages":"177-191"},"PeriodicalIF":5.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2023-11-09DOI: 10.1080/14737159.2023.2277368
Mamadu Baldeh, Flavia K Bawa, Faiza U Bawah, Martin Chamai, Francis Dzabeng, Waleed M A Jebreel, Jean-Bertin B Kabuya, Shola K Molemodile Dele-Olowu, Erick Odoyo, Dimbintsoa Rakotomalala Robinson, Aubrey J Cunnington
Introduction: Point-of-care molecular diagnostics offer solutions to the limited diagnostic availability and accessibility in resource-limited settings. During the COVID-19 pandemic, molecular diagnostics became essential tools for accurate detection and monitoring of SARS-CoV-2. The unprecedented demand for molecular diagnostics presented challenges and catalyzed innovations which may provide lessons for the future selection of point-of-care molecular diagnostics.
Areas covered: We searched PubMed from January 2020 to August 2023 to identify lessons learned from the COVID-19 pandemic which may impact the selection of point-of-care molecular diagnostics for future use in sub-Saharan Africa. We evaluated this in the context of REASSURED criteria (Real-time connectivity; Ease of specimen collection; Affordable; Sensitive; Specific; User-friendly; Rapid and robust; Equipment free; and Deliverable to users at the point of need) for point-of-care diagnostics for resource-limited settings.
Expert opinion: The diagnostic challenges and successes during the COVID-19 pandemic affirmed the importance of the REASSURED criteria but demonstrated that these are not sufficient to ensure new diagnostics will be appropriate for public health emergencies. Capacity for rapid scale-up of diagnostic testing and transferability of assays, data, and technology are also important, resulting in updated REST-ASSURED criteria. Few diagnostics will meet all criteria, and trade-offs between criteria will need to be context-specific.
{"title":"Lessons from the pandemic: new best practices in selecting molecular diagnostics for point-of-care testing of infectious diseases in sub-Saharan Africa.","authors":"Mamadu Baldeh, Flavia K Bawa, Faiza U Bawah, Martin Chamai, Francis Dzabeng, Waleed M A Jebreel, Jean-Bertin B Kabuya, Shola K Molemodile Dele-Olowu, Erick Odoyo, Dimbintsoa Rakotomalala Robinson, Aubrey J Cunnington","doi":"10.1080/14737159.2023.2277368","DOIUrl":"10.1080/14737159.2023.2277368","url":null,"abstract":"<p><strong>Introduction: </strong>Point-of-care molecular diagnostics offer solutions to the limited diagnostic availability and accessibility in resource-limited settings. During the COVID-19 pandemic, molecular diagnostics became essential tools for accurate detection and monitoring of SARS-CoV-2. The unprecedented demand for molecular diagnostics presented challenges and catalyzed innovations which may provide lessons for the future selection of point-of-care molecular diagnostics.</p><p><strong>Areas covered: </strong>We searched PubMed from January 2020 to August 2023 to identify lessons learned from the COVID-19 pandemic which may impact the selection of point-of-care molecular diagnostics for future use in sub-Saharan Africa. We evaluated this in the context of REASSURED criteria (Real-time connectivity; Ease of specimen collection; Affordable; Sensitive; Specific; User-friendly; Rapid and robust; Equipment free; and Deliverable to users at the point of need) for point-of-care diagnostics for resource-limited settings.</p><p><strong>Expert opinion: </strong>The diagnostic challenges and successes during the COVID-19 pandemic affirmed the importance of the REASSURED criteria but demonstrated that these are not sufficient to ensure new diagnostics will be appropriate for public health emergencies. Capacity for rapid scale-up of diagnostic testing and transferability of assays, data, and technology are also important, resulting in updated REST-ASSURED criteria. Few diagnostics will meet all criteria, and trade-offs between criteria will need to be context-specific.</p>","PeriodicalId":12113,"journal":{"name":"Expert Review of Molecular Diagnostics","volume":" ","pages":"153-159"},"PeriodicalIF":5.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71422008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2023-07-07DOI: 10.1080/14737159.2023.2233906
Christopher R Thornton
Introduction: Mucormycosis is a highly aggressive angio-invasive disease of humans caused by Mucorales fungi. Prior to the COVID-19 pandemic, mucormycosis was a rare mycosis typically seen in immunocompromised patients with hematological malignancies or in transplant recipients. During the second wave of the pandemic, there was a dramatic increase in the disease, especially in India where a unique set of circumstances led to large numbers of life-threatening and disfiguring rhino-orbital-cerebral mucormycosis (ROCM) infections.
Areas covered: The review examines mucormycosis as a super-infection of COVID-19 patients, and the risk factors for COVID-19-associated mucormycosis (CAM) that drove the ROCM epidemic in India. The limitations of current diagnostic procedures are identified, and the measures needed to improve the speed and accuracy of detection discussed.
Expert opinion: Despite increased awareness, global healthcare systems remain unprepared for further outbreaks of ROCM. Current diagnosis of the disease is slow and inaccurate, negatively impacting on patient survival. This is most evident in low- to middle-income countries which lack suitably equipped diagnostic facilities for rapid identification of the infecting pathogens. Rapid antigen testing using point-of-care lateral-flow assays could potentially have aided in the quick and accurate diagnosis of the disease, allowing earlier intervention with surgery and Mucorales-active antifungal drugs.
{"title":"The potential for rapid antigen testing for mucormycosis in the context of COVID-19.","authors":"Christopher R Thornton","doi":"10.1080/14737159.2023.2233906","DOIUrl":"10.1080/14737159.2023.2233906","url":null,"abstract":"<p><strong>Introduction: </strong>Mucormycosis is a highly aggressive angio-invasive disease of humans caused by Mucorales fungi. Prior to the COVID-19 pandemic, mucormycosis was a rare mycosis typically seen in immunocompromised patients with hematological malignancies or in transplant recipients. During the second wave of the pandemic, there was a dramatic increase in the disease, especially in India where a unique set of circumstances led to large numbers of life-threatening and disfiguring rhino-orbital-cerebral mucormycosis (ROCM) infections.</p><p><strong>Areas covered: </strong>The review examines mucormycosis as a super-infection of COVID-19 patients, and the risk factors for COVID-19-associated mucormycosis (CAM) that drove the ROCM epidemic in India. The limitations of current diagnostic procedures are identified, and the measures needed to improve the speed and accuracy of detection discussed.</p><p><strong>Expert opinion: </strong>Despite increased awareness, global healthcare systems remain unprepared for further outbreaks of ROCM. Current diagnosis of the disease is slow and inaccurate, negatively impacting on patient survival. This is most evident in low- to middle-income countries which lack suitably equipped diagnostic facilities for rapid identification of the infecting pathogens. Rapid antigen testing using point-of-care lateral-flow assays could potentially have aided in the quick and accurate diagnosis of the disease, allowing earlier intervention with surgery and Mucorales-active antifungal drugs.</p>","PeriodicalId":12113,"journal":{"name":"Expert Review of Molecular Diagnostics","volume":" ","pages":"161-167"},"PeriodicalIF":5.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9769747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}