首页 > 最新文献

Field Crops Research最新文献

英文 中文
Environmental conditions outweigh seeding rates for cover crop mixture performance across the Northeast US 在美国东北部,环境条件比播种率更影响覆盖作物混合物的性能
IF 5.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-07 DOI: 10.1016/j.fcr.2024.109564

Context or problem

Cover crop mixtures that include complementary species can increase resource use efficiency, total cover crop biomass, and agroecosystem benefits. In the northeastern US, farmers need information on how climatic, environmental and management factors influence the performance of various cover crop mixtures. The development of site-specific seeding rates may be necessary to optimize cover crop mixture services and increase farmer adoption.

Objective or research question

The aim of this study was to characterize how site conditions influence mixture performance across the northeastern US, with total shoot biomass, species evenness (yield distribution of constituent species), and seed cost used as metrics of performance.

Methods

A field experiment was implemented at seven research farms across a latitudinal gradient in the northeast US, spanning from Maryland to Maine. Monocultures and 12 bicultures were established at 0 %, 25 %, 50 %, 100 %, and 150 % of the recommended rate of that species in monoculture. Winter cover crops from three plant families were planted: cereal rye (grass; Secale cereale L.), hairy vetch (legume; Vicia villosa Roth), and forage rape (brassica; Brassica napus L.), which were selected for their differing functional traits and popularity among northeastern growers.

Results

Classification and regression tree analysis showed that climate variables (spring growing degree days, hardiness zone) and soil conditions (soil nitrogen, pH, organic matter) were more influential on cover crop mixture performance than seeding rates of the constituent species. As soil inorganic nitrogen stocks increased, hairy vetch competitiveness and overall shoot biomass decreased compared to cereal rye or forage rape. Cereal rye dominated at sites with colder winters due to its winter hardiness compared to the other species. Forage rape shoot biomass was highly dependent on climate and performed poorly at colder sites.

Conclusions

In order to maximize mixture performance, it is important to understand initial soil nitrogen levels if including legumes. Sites with milder winters had more flexibility in species selection and could use lower seeding rates compared to colder sites to produce high yielding, multi-functional mixtures at lower overall seed costs. In colder climates, it is important to include cereal rye to ensure productive mixtures that establish early and are winter hardy.

Implications or significance

Understanding anticipated growing degree days in the cover crop season and baseline soil fertility is key when selecting species and seeding rates to ensure high performance of multi-functional mixtures.

背景或问题包含互补物种的覆盖作物混合物可提高资源利用效率、覆盖作物总生物量和农业生态系统效益。在美国东北部,农民需要了解气候、环境和管理因素如何影响各种覆盖作物混合物的性能。本研究的目的是描述地点条件如何影响美国东北部的混合物性能,并将总芽生物量、物种均匀度(组成物种的产量分布)和种子成本作为性能指标。方法在美国东北部从马里兰州到缅因州的纬度梯度上的七个研究农场进行了田间试验。单作和 12 种双作的种植比例分别为单作中该物种推荐种植比例的 0%、25%、50%、100% 和 150%。种植了三个植物家族的冬季覆盖作物:黑麦(禾本科;Secale cereale L.)、毛茸茸的薇菜(豆科;Vicia villosa Roth)和饲用油菜(黄铜;Brassica napus L.),这些作物因其不同的功能特性和在东北部种植者中的受欢迎程度而被选中。结果分类和回归树分析表明,气候变量(春季生长度日、耐寒区)和土壤条件(土壤氮、pH 值、有机质)比组成物种的播种率更能影响覆盖作物混合物的性能。随着土壤中无机氮储量的增加,与谷物黑麦或饲用油菜相比,毛绒草的竞争力和整体嫩枝生物量都有所下降。与其他物种相比,禾本科黑麦因其冬季耐寒性而在冬季较冷的地点占据优势。结论 为了最大限度地提高混合物的性能,如果包括豆科植物,了解初始土壤氮水平非常重要。与寒冷地区相比,冬季较温和的地区在物种选择方面有更大的灵活性,可以使用较低的播种率,以较低的种子总成本生产出高产、多功能的混合物。在较寒冷的气候条件下,必须加入黑麦,以确保混合物产量高、成活早且耐寒。影响或意义在选择物种和播种率以确保多功能混合物的高性能时,了解覆盖作物季节的预期生长度日和土壤肥力基线是关键。
{"title":"Environmental conditions outweigh seeding rates for cover crop mixture performance across the Northeast US","authors":"","doi":"10.1016/j.fcr.2024.109564","DOIUrl":"10.1016/j.fcr.2024.109564","url":null,"abstract":"<div><h3>Context or problem</h3><p>Cover crop mixtures that include complementary species can increase resource use efficiency, total cover crop biomass, and agroecosystem benefits. In the northeastern US, farmers need information on how climatic, environmental and management factors influence the performance of various cover crop mixtures. The development of site-specific seeding rates may be necessary to optimize cover crop mixture services and increase farmer adoption.</p></div><div><h3>Objective or research question</h3><p>The aim of this study was to characterize how site conditions influence mixture performance across the northeastern US, with total shoot biomass, species evenness (yield distribution of constituent species), and seed cost used as metrics of performance.</p></div><div><h3>Methods</h3><p>A field experiment was implemented at seven research farms across a latitudinal gradient in the northeast US, spanning from Maryland to Maine. Monocultures and 12 bicultures were established at 0 %, 25 %, 50 %, 100 %, and 150 % of the recommended rate of that species in monoculture. Winter cover crops from three plant families were planted: cereal rye (grass; <em>Secale cereale</em> L.), hairy vetch (legume; <em>Vicia villosa</em> Roth), and forage rape (brassica; <em>Brassica napus</em> L.), which were selected for their differing functional traits and popularity among northeastern growers.</p></div><div><h3>Results</h3><p>Classification and regression tree analysis showed that climate variables (spring growing degree days, hardiness zone) and soil conditions (soil nitrogen, pH, organic matter) were more influential on cover crop mixture performance than seeding rates of the constituent species. As soil inorganic nitrogen stocks increased, hairy vetch competitiveness and overall shoot biomass decreased compared to cereal rye or forage rape. Cereal rye dominated at sites with colder winters due to its winter hardiness compared to the other species. Forage rape shoot biomass was highly dependent on climate and performed poorly at colder sites.</p></div><div><h3>Conclusions</h3><p>In order to maximize mixture performance, it is important to understand initial soil nitrogen levels if including legumes. Sites with milder winters had more flexibility in species selection and could use lower seeding rates compared to colder sites to produce high yielding, multi-functional mixtures at lower overall seed costs. In colder climates, it is important to include cereal rye to ensure productive mixtures that establish early and are winter hardy.</p></div><div><h3>Implications or significance</h3><p>Understanding anticipated growing degree days in the cover crop season and baseline soil fertility is key when selecting species and seeding rates to ensure high performance of multi-functional mixtures.</p></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sheep grazing increases the forage yield and reduces the yield-scaled soil CO2 emissions of sown pastures in an inland arid region 在内陆干旱地区放牧绵羊可提高牧草产量,减少产量标定的土壤二氧化碳排放量
IF 5.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-07 DOI: 10.1016/j.fcr.2024.109573

Context

Forage species are widely planted in arid and semi-arid agro-pastoral regions to increase livestock carrying capacity and thereby relieve excessive grazing pressure. The effect of grazing on forage yield and relevant soil CO2 emissions in sown pastures converted from cropland remains unclear.

Objective

The main objective of the study was to investigate the effect of utilization methods (grazing vs. haying) on annual and perennial forage yields and soil CO2 emissions during the growing seasons in saline cropland soils and to derive the optimum number of continuous utilization years based on the combined consideration of forage productivity and soil CO2 emission.

Methods

Stands of annual and perennial forage species were established in a saline cropland area of northwest China in a 4-year experiment to investigate the effect of sheep grazing and haying on soil CO2 emissions during the growing seasons. The relationships between soil CO2 fluxes and soil properties were fitted. In addition, yield-scaled soil CO2 emissions were used as an index to evaluate forage productivity.

Results

Grazing significantly increased the mean forage yield by 44 % and 14 % over that of haying, and significantly decreased the mean yield-scaled soil CO2 emissions (CO2 emission intensity, CO2EI, kg of CO2 kg−1 of dry forage yield) by 36 % and 23 % over that of haying in the annual and perennial stands, respectively, from 2014 to 2017. Grazing did not differ from haying for cumulative soil CO2 flux during the growing seasons in the annual forages but had 17 % lesser (P < 0.05) cumulative CO2 flux in the perennial forages in 2015. A negative correlation (r = –0.55, P < 0.05) between soil CO2 flux and soil water content was found in the perennial forages but not in the annual forages. Multiple linear regression results indicated that soil temperature accounted for ≥ 72 % of the variation in soil CO2 flux. Results of the structural equation model indicated, whether annual or perennial sown pastures, that grazing had the greatest positive effect on forage yield and the greatest negative effect on soil CO2EI.

Conclusion

Grazing mainly reduced the soil CO2EI by increasing forage yield in annual sown pastures and by reducing soil respiration in perennial pastures. Grazing is the optimal approach to improving forage production while mitigating soil CO2 emissions in sown pasture in continental arid regions.

背景干旱和半干旱农牧区广泛种植贮草物种,以提高载畜量,从而缓解过度放牧的压力。本研究的主要目的是调查在盐碱耕地土壤的生长季节,利用方法(放牧与干草放牧)对一年生和多年生牧草产量和土壤二氧化碳排放量的影响,并在综合考虑牧草产量和土壤二氧化碳排放量的基础上,推导出最佳连续利用年数。方法 在中国西北盐碱耕地地区建立了一年生和多年生牧草种群,进行了为期 4 年的试验,以研究绵羊放牧和干草覆盖对生长季节土壤二氧化碳排放的影响。拟合了土壤二氧化碳通量与土壤特性之间的关系。结果从2014年到2017年,在一年生和多年生草地上,放牧比干草产量分别显著增加了44%和14%,平均产量标定的土壤二氧化碳排放量(二氧化碳排放强度,CO2EI,干草产量的二氧化碳千克/千克-1)比干草产量分别显著减少了36%和23%。在一年生牧草的生长季节,放牧与干草放牧的土壤二氧化碳累积通量没有差异,但在 2015 年,多年生牧草的土壤二氧化碳累积通量比干草放牧低 17%(P <0.05)。在多年生牧草中,土壤二氧化碳通量与土壤含水量之间呈负相关(r = -0.55,P <0.05),而在一年生牧草中则没有。多元线性回归结果表明,土壤温度占土壤二氧化碳通量变化的 ≥ 72%。结构方程模型的结果表明,无论是一年生还是多年生牧草,放牧对牧草产量的积极影响最大,而对土壤 CO2EI 的消极影响最大。在大陆干旱地区,放牧是提高牧草产量、减少播种牧草土壤二氧化碳排放的最佳方法。
{"title":"Sheep grazing increases the forage yield and reduces the yield-scaled soil CO2 emissions of sown pastures in an inland arid region","authors":"","doi":"10.1016/j.fcr.2024.109573","DOIUrl":"10.1016/j.fcr.2024.109573","url":null,"abstract":"<div><h3>Context</h3><p>Forage species are widely planted in arid and semi-arid agro-pastoral regions to increase livestock carrying capacity and thereby relieve excessive grazing pressure. The effect of grazing on forage yield and relevant soil CO<sub>2</sub> emissions in sown pastures converted from cropland remains unclear.</p></div><div><h3>Objective</h3><p>The main objective of the study was to investigate the effect of utilization methods (grazing vs. haying) on annual and perennial forage yields and soil CO<sub>2</sub> emissions during the growing seasons in saline cropland soils and to derive the optimum number of continuous utilization years based on the combined consideration of forage productivity and soil CO<sub>2</sub> emission.</p></div><div><h3>Methods</h3><p>Stands of annual and perennial forage species were established in a saline cropland area of northwest China in a 4-year experiment to investigate the effect of sheep grazing and haying on soil CO<sub>2</sub> emissions during the growing seasons. The relationships between soil CO<sub>2</sub> fluxes and soil properties were fitted. In addition, yield-scaled soil CO<sub>2</sub> emissions were used as an index to evaluate forage productivity.</p></div><div><h3>Results</h3><p>Grazing significantly increased the mean forage yield by 44 % and 14 % over that of haying, and significantly decreased the mean yield-scaled soil CO<sub>2</sub> emissions (CO<sub>2</sub> emission intensity, CO<sub>2</sub>EI, kg of CO<sub>2</sub> kg<sup>−1</sup> of dry forage yield) by 36 % and 23 % over that of haying in the annual and perennial stands, respectively, from 2014 to 2017. Grazing did not differ from haying for cumulative soil CO<sub>2</sub> flux during the growing seasons in the annual forages but had 17 % lesser (<em>P</em> &lt; 0.05) cumulative CO<sub>2</sub> flux in the perennial forages in 2015. A negative correlation (<em>r</em> = –0.55, <em>P</em> &lt; 0.05) between soil CO<sub>2</sub> flux and soil water content was found in the perennial forages but not in the annual forages. Multiple linear regression results indicated that soil temperature accounted for ≥ 72 % of the variation in soil CO<sub>2</sub> flux. Results of the structural equation model indicated, whether annual or perennial sown pastures, that grazing had the greatest positive effect on forage yield and the greatest negative effect on soil CO<sub>2</sub>EI.</p></div><div><h3>Conclusion</h3><p>Grazing mainly reduced the soil CO<sub>2</sub>EI by increasing forage yield in annual sown pastures and by reducing soil respiration in perennial pastures. Grazing is the optimal approach to improving forage production while mitigating soil CO<sub>2</sub> emissions in sown pasture in continental arid regions.</p></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MP3, a quantitative trait locus for increased panicle number, improves rice yield potential in Japan by connecting with high source and translocation traits MP3 是一个增加圆锥花序数的数量性状基因座,它通过与高源性状和易位性状连接,提高了日本水稻的产量潜力
IF 5.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-07 DOI: 10.1016/j.fcr.2024.109566

Context: I

ncreasing rice yield potential is an important strategy for meeting rising food demand and achieving global food security. MP3 was recently identified as a quantitative trait locus (QTL) in rice that increases panicle number and thereby sink size (the total number of spikelets per square meter). Under current climatic conditions, MP3 did not increase grain yield in a high-yielding cultivar in the absence of improved source traits.

Objective:

This study aimed to determine whether MP3 increases grain yield in a rice cultivar background with improved biomass production and to analyze the key variables linked to yield improvement.

Methods

Two-year experiments were carried out on a paddy field with nitrogen (N) applications in Tsukuba, Japan. Near-isogenic MP3 lines, Hokuriku 193-MP3 and IR64-MP3, were used in conjunction with their parental cultivars. Hokuriku 193 is a high-yielding cultivar in Japan with high biomass production, and IR64 is a high-yielding mega-cultivar in the tropics.

Results

Both Hokuriku 193-MP3 and IR64-MP3 increased panicle quantity and sink size when compared to the parental cultivars, regardless of N treatment. Hokuriku 193-MP3 had a 7 % higher grain yield than Hokuriku 193; however, IR64-MP3 did not yield more than IR64. Hokuriku 193 and Hokuriku 193-MP3 had larger leaf areas, higher biomass, and accumulated more non-structural carbohydrate (NSC) in the culms and leaf sheaths at heading than IR64 and IR64-MP3. Hokuriku 193-MP3 significantly reduced the NSC level in the culm and leaf sheaths at 16 d after heading and had a higher harvest index than Hokuriku 193; however, IR64-MP3 did not differ from IR64 with regard to these variables.

Conclusion

Hokuriku 193 has surplus source and translocation abilities that can fill the MP3-enlarged sink, resulting in a higher grain yield. In comparison, IR64 lacks these abilities. These findings imply that MP3 has boosted the yield potential of rice cultivars in Japan, with Hokuriku 193 having the highest yield in Japan.

Significance

This study shows that balanced improvements in sink, source, and translocation are essential for increasing rice yield potential. MP3 and the high source and translocation traits of Hokuriku 193 could benefit future high yield breeding initiatives around the world.

背景:提高水稻产量潜力是满足不断增长的粮食需求和实现全球粮食安全的一项重要战略。MP3 最近被鉴定为水稻的一个数量性状基因座(QTL),它能增加圆锥花序数,进而增加穗沉(每平方米的小穗总数)。在当前气候条件下,如果没有改良的源性状,MP3并不能提高高产栽培品种的谷物产量。研究目的:本研究旨在确定MP3是否能提高水稻栽培品种背景下的谷物产量,并分析与产量提高相关的关键变量。近等基因 MP3 品系 Hokuriku 193-MP3 和 IR64-MP3 与它们的亲本栽培品种结合使用。北陆 193 是日本的一个高产栽培品种,生物量产量高,而 IR64 是热带地区的一个高产巨型栽培品种。Hokuriku 193-MP3 的谷物产量比 Hokuriku 193 高 7%;但 IR64-MP3 的产量并不比 IR64 高。与 IR64 和 IR64-MP3 相比,北陆 193 和北陆 193-MP3 的叶面积更大,生物量更高,茎秆和叶鞘中积累的非结构性碳水化合物(NSC)也更多。Hokuriku 193-MP3 在打顶后 16 d 显著降低了茎秆和叶鞘中的 NSC 含量,收获指数也高于 Hokuriku 193;但 IR64-MP3 在这些变量上与 IR64 没有差异。相比之下,IR64 缺乏这些能力。这些研究结果表明,MP3 提高了日本水稻栽培品种的产量潜力,其中北陆 193 的产量在日本最高。MP3 以及 Hokuriku 193 的高源性状和易位性状可为世界各地未来的高产育种计划带来益处。
{"title":"MP3, a quantitative trait locus for increased panicle number, improves rice yield potential in Japan by connecting with high source and translocation traits","authors":"","doi":"10.1016/j.fcr.2024.109566","DOIUrl":"10.1016/j.fcr.2024.109566","url":null,"abstract":"<div><h3><em>Context:</em> I</h3><p>ncreasing rice yield potential is an important strategy for meeting rising food demand and achieving global food security. <em>MP3</em> was recently identified as a quantitative trait locus (QTL) in rice that increases panicle number and thereby sink size (the total number of spikelets per square meter). Under current climatic conditions, <em>MP3</em> did not increase grain yield in a high-yielding cultivar in the absence of improved source traits.</p></div><div><h3><em>Objective:</em></h3><p>This study aimed to determine whether <em>MP3</em> increases grain yield in a rice cultivar background with improved biomass production and to analyze the key variables linked to yield improvement.</p></div><div><h3>Methods</h3><p>Two-year experiments were carried out on a paddy field with nitrogen (N) applications in Tsukuba, Japan. Near-isogenic <em>MP3</em> lines, Hokuriku 193-<em>MP3</em> and IR64-<em>MP3</em>, were used in conjunction with their parental cultivars. Hokuriku 193 is a high-yielding cultivar in Japan with high biomass production, and IR64 is a high-yielding mega-cultivar in the tropics.</p></div><div><h3>Results</h3><p>Both Hokuriku 193-<em>MP3</em> and IR64-<em>MP3</em> increased panicle quantity and sink size when compared to the parental cultivars, regardless of N treatment. Hokuriku 193-<em>MP3</em> had a 7 % higher grain yield than Hokuriku 193; however, IR64-<em>MP3</em> did not yield more than IR64. Hokuriku 193 and Hokuriku 193-<em>MP3</em> had larger leaf areas, higher biomass, and accumulated more non-structural carbohydrate (NSC) in the culms and leaf sheaths at heading than IR64 and IR64-<em>MP3</em>. Hokuriku 193-<em>MP3</em> significantly reduced the NSC level in the culm and leaf sheaths at 16 d after heading and had a higher harvest index than Hokuriku 193; however, IR64-<em>MP3</em> did not differ from IR64 with regard to these variables.</p></div><div><h3>Conclusion</h3><p>Hokuriku 193 has surplus source and translocation abilities that can fill the <em>MP3-</em>enlarged sink, resulting in a higher grain yield. In comparison, IR64 lacks these abilities. These findings imply that <em>MP3</em> has boosted the yield potential of rice cultivars in Japan, with Hokuriku 193 having the highest yield in Japan.</p></div><div><h3>Significance</h3><p>This study shows that balanced improvements in sink, source, and translocation are essential for increasing rice yield potential. <em>MP3</em> and the high source and translocation traits of Hokuriku 193 could benefit future high yield breeding initiatives around the world.</p></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled irrigation can mitigate the greenhouse effects of rice paddy fields with long-term straw return and stimulate microbial necromass carbon accumulation 控制灌溉可减轻稻田长期秸秆还田的温室效应,促进微生物坏死碳积累
IF 5.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-06 DOI: 10.1016/j.fcr.2024.109571

Context and problem

The overall greenhouse effects of rice paddy fields are influenced by the balance between greenhouse gas (GHG) emissions and soil organic carbon sequestration (SOCS). Studies on how straw return impacts GHG emissions and SOCS under different water regimes—specifically, conventional irrigation (CI) and alternate wetting and moderate drying (AWMD)—are crucial for developing strategies to mitigate the greenhouse effect in rice paddy fields.

Objective

This study aimed to develop a strategy for decreasing GHG emissions, improving SOCS, and increasing grain yield of rice paddy fields under long-term straw return.

Methods

Different water regimes were introduced after six years of straw return in the rice paddy field, and there were four treatments: straw removal and CI (N-CI), straw removal and AWMD (N-AWMD), straw return and CI (R-CI), and straw return and AWMD (R-AWMD). We studied various traits related to soil organic carbon sequestration capacity and GHG emissions over three years to investigate the effects of combination of AWMD and straw return on the GHG emission from paddy field.

Results

Straw return significantly increased net greenhouse gas emissions (NGHGE) and seasonal soil total organic carbon sequestration rate (TOCSR) due to substantial quantity of straw inputs. On average, straw return increased NGHGE by 2.125 t CO2 ha–1 and TOCSR by 393.2 kg C ha–1, respectively. AWMD could mitigate the greenhouse effects caused by straw return by decreasing NGHGE by 28.0 %, primarily attributed to the reduction in CH4 emissions (-27.0 %), which outweighed the effects of increased N2O and CO2 emissions. Although AWMD did not increase the overall soil organic carbon (SOC) content, it optimized the composition of SOC by increasing the percentage of microbial-derived C, including fungal necromass C (FNC) and bacterial necromass C (BNC), which are more stable than plant-derived C. The aerobic environment in AWMD combined with straw return enhanced the activities of microbes, which promoted the conversion of plant residue C to FNC and BNC and improved soil carbon sequestration.

Conclusions

The combination of straw return with AWMD can reduce GHG emission, and optimize soil carbon sequestration by stimulating microbial necromass carbon accumulation.

Implication

This study offers valuable insights into mitigating GHG emissions and enhancing soil organic carbon sequestration in high-yielding rice system through the combined adoption of AWMD and straw return.

背景与问题水稻田的总体温室效应受温室气体(GHG)排放和土壤有机碳固存(SOCS)之间平衡的影响。研究秸秆还田如何影响不同水制度下的温室气体排放和土壤有机碳固存(SOCS),特别是常规灌溉(CI)和交替湿润与适度干燥(AWMD)制度下的温室气体排放和土壤有机碳固存(SOCS),对于制定减轻稻田温室效应的战略至关重要。方法在稻田进行六年秸秆还田后引入不同的水制度,共分为四种处理:秸秆去除和 CI(N-CI)、秸秆去除和 AWMD(N-AWMD)、秸秆还田和 CI(R-CI)以及秸秆还田和 AWMD(R-AWMD)。我们研究了三年中与土壤有机碳固存能力和温室气体排放相关的各种性状,以探讨 AWMD 与秸秆还田相结合对水稻田温室气体排放的影响。结果由于秸秆的大量投入,秸秆还田显著增加了温室气体净排放量(NGHGE)和季节性土壤总有机碳固存率(TOCSR)。平均而言,秸秆还田分别增加了 2.125 吨二氧化碳(公顷-1)和 393.2 千克碳(公顷-1)。AWMD 可减轻秸秆还田造成的温室效应,使 NGHGE 降低 28.0%,这主要归功于 CH4 排放量的减少(-27.0%),其影响超过了 N2O 和 CO2 排放量的增加。虽然 AWMD 没有增加土壤有机碳 (SOC) 的总体含量,但它通过增加微生物衍生碳的比例优化了 SOC 的组成,包括真菌坏死物质 C (FNC) 和细菌坏死物质 C (BNC),这些物质比植物衍生碳更稳定。AWMD 中的有氧环境与秸秆还田相结合,增强了微生物的活动,促进了植物残留碳向 FNC 和 BNC 的转化,提高了土壤固碳能力。结论 将秸秆还田与 AWMD 结合使用可减少温室气体排放,并通过刺激微生物坏死碳积累优化土壤固碳。
{"title":"Controlled irrigation can mitigate the greenhouse effects of rice paddy fields with long-term straw return and stimulate microbial necromass carbon accumulation","authors":"","doi":"10.1016/j.fcr.2024.109571","DOIUrl":"10.1016/j.fcr.2024.109571","url":null,"abstract":"<div><h3>Context and problem</h3><p>The overall greenhouse effects of rice paddy fields are influenced by the balance between greenhouse gas (GHG) emissions and soil organic carbon sequestration (SOCS). Studies on how straw return impacts GHG emissions and SOCS under different water regimes—specifically, conventional irrigation (CI) and alternate wetting and moderate drying (AWMD)—are crucial for developing strategies to mitigate the greenhouse effect in rice paddy fields.</p></div><div><h3>Objective</h3><p>This study aimed to develop a strategy for decreasing GHG emissions, improving SOCS, and increasing grain yield of rice paddy fields under long-term straw return.</p></div><div><h3>Methods</h3><p>Different water regimes were introduced after six years of straw return in the rice paddy field, and there were four treatments: straw removal and CI (N-CI), straw removal and AWMD (N-AWMD), straw return and CI (R-CI), and straw return and AWMD (R-AWMD). We studied various traits related to soil organic carbon sequestration capacity and GHG emissions over three years to investigate the effects of combination of AWMD and straw return on the GHG emission from paddy field.</p></div><div><h3>Results</h3><p>Straw return significantly increased net greenhouse gas emissions (NGHGE) and seasonal soil total organic carbon sequestration rate (TOCSR) due to substantial quantity of straw inputs. On average, straw return increased NGHGE by 2.125 t CO<sub>2</sub> ha<sup>–1</sup> and TOCSR by 393.2 kg C ha<sup>–1</sup>, respectively. AWMD could mitigate the greenhouse effects caused by straw return by decreasing NGHGE by 28.0 %, primarily attributed to the reduction in CH<sub>4</sub> emissions (-27.0 %), which outweighed the effects of increased N<sub>2</sub>O and CO<sub>2</sub> emissions. Although AWMD did not increase the overall soil organic carbon (SOC) content, it optimized the composition of SOC by increasing the percentage of microbial-derived C, including fungal necromass C (FNC) and bacterial necromass C (BNC), which are more stable than plant-derived C. The aerobic environment in AWMD combined with straw return enhanced the activities of microbes, which promoted the conversion of plant residue C to FNC and BNC and improved soil carbon sequestration.</p></div><div><h3>Conclusions</h3><p>The combination of straw return with AWMD can reduce GHG emission, and optimize soil carbon sequestration by stimulating microbial necromass carbon accumulation.</p></div><div><h3>Implication</h3><p>This study offers valuable insights into mitigating GHG emissions and enhancing soil organic carbon sequestration in high-yielding rice system through the combined adoption of AWMD and straw return.</p></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized controlled-release nitrogen strategy achieves high yield and nitrogen use efficiency of wheat following rice in the lower reaches of Yangtze River of China 优化控释氮策略实现中国长江下游稻后小麦的高产和氮素利用效率
IF 5.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-06 DOI: 10.1016/j.fcr.2024.109567

Context and problem

Wheat following rice manly distributed in the lower reaches of Yangtze River of China, its major challenge is to cope with simultaneous improvement in yield and nitrogen use efficiency (NUE) without increasing the input of fertilizer.

Objective

Controlled-release urea (CRU) offer several advantages in agricultural practices. However, the effectiveness of CRU was strongly affected by the application strategy, types and region environmental conditions. This study investigated if and how the controlled-release nitrogen strategy could achieve high yield and high NUE.

Methods

Field experiments across two years using two spring wheat varieties were conducted with five nitrogen application treatments, including no nitrogen (T1), conventional urea (T2, CK), controlled-release urea (T3), CRU combined with one-time basal CU (T4) and CRU combined with split CU (T5).

Results

The results showed that yield and NUE were significantly increased in optimized controlled-release nitrogen strategy (T4 and T5) compared to T2, especially for T4. T4 significantly improved biomass accumulation after anthesis, non-structural carbohydrates remobilization and harvest index (HI), increased nitrogen absorption and nitrogen harvest index (NHI), enhanced leaf photosynthetic capacity (leaf area index, photosynthetic rate, chlorophyll content) and leaf nitrogen metabolism enzyme activities. The diversity of nitrogen-fixing microorganisms and relative abundance of Bradyrhizobium in rhizosphere after anthesis were significantly increased in T4. Correlation analysis showed that the above morpho-physiological indexes were positively and significantly correlated with grain yield and NUE.

Conclusions

This study indicates that the appropriate combined application strategy (CRU combined with one-time basal CU) could hold great promise to increase yield and NUE of wheat via facilitating carbon-nitrogen allocation and optimizing rhizosphere environment in the lower reaches of Yangtze River of China.

Implication

This study would offer theoretical basis for achieving high yield and nitrogen use efficiency through combined application strategy of controlled-release and convention urea, and provide practical guidance in high efficiency production in wheat-rice rotation system.

背景与问题控释尿素(CRU)在农业实践中具有多种优势。然而,控释尿素的效果受施用策略、类型和地区环境条件的影响很大。本研究调查了控释氮策略是否以及如何实现高产和高氮利用效率。方法使用两个春小麦品种进行了为期两年的田间试验,共采用了五种施氮处理,包括不施氮(T1)、常规尿素(T2、CK)、控释尿素(T3)、控释尿素与一次性基施CU相结合(T4)以及控释尿素与分施CU相结合(T5)。结果结果表明,与 T2 相比,优化的控释氮策略(T4 和 T5)显著提高了产量和氮利用效率,尤其是 T4。T4 显著提高了花后生物量积累、非结构性碳水化合物再动员和收获指数(HI),增加了氮吸收和氮收获指数(NHI),提高了叶片光合能力(叶面积指数、光合速率、叶绿素含量)和叶片氮代谢酶活性。花后根圈中固氮微生物的多样性和根瘤菌的相对丰度在 T4 中显著增加。结论本研究表明,在中国长江下游地区,适当的联合施肥策略(CRU 结合一次性基肥 CU)可通过促进碳氮分配和优化根圈环境来提高小麦产量和氮利用效率。意义 本研究为通过控释尿素与常规尿素联合施用策略实现高产和氮利用效率提供了理论依据,并为小麦-水稻轮作系统的高效生产提供了实践指导。
{"title":"Optimized controlled-release nitrogen strategy achieves high yield and nitrogen use efficiency of wheat following rice in the lower reaches of Yangtze River of China","authors":"","doi":"10.1016/j.fcr.2024.109567","DOIUrl":"10.1016/j.fcr.2024.109567","url":null,"abstract":"<div><h3>Context and problem</h3><p>Wheat following rice manly distributed in the lower reaches of Yangtze River of China, its major challenge is to cope with simultaneous improvement in yield and nitrogen use efficiency (NUE) without increasing the input of fertilizer.</p></div><div><h3>Objective</h3><p>Controlled-release urea (CRU) offer several advantages in agricultural practices. However, the effectiveness of CRU was strongly affected by the application strategy, types and region environmental conditions. This study investigated if and how the controlled-release nitrogen strategy could achieve high yield and high NUE.</p></div><div><h3>Methods</h3><p>Field experiments across two years using two spring wheat varieties were conducted with five nitrogen application treatments, including no nitrogen (T1), conventional urea (T2, CK), controlled-release urea (T3), CRU combined with one-time basal CU (T4) and CRU combined with split CU (T5).</p></div><div><h3>Results</h3><p>The results showed that yield and NUE were significantly increased in optimized controlled-release nitrogen strategy (T4 and T5) compared to T2, especially for T4. T4 significantly improved biomass accumulation after anthesis, non-structural carbohydrates remobilization and harvest index (HI), increased nitrogen absorption and nitrogen harvest index (NHI), enhanced leaf photosynthetic capacity (leaf area index, photosynthetic rate, chlorophyll content) and leaf nitrogen metabolism enzyme activities. The diversity of nitrogen-fixing microorganisms and relative abundance of Bradyrhizobium in rhizosphere after anthesis were significantly increased in T4. Correlation analysis showed that the above morpho-physiological indexes were positively and significantly correlated with grain yield and NUE.</p></div><div><h3>Conclusions</h3><p>This study indicates that the appropriate combined application strategy (CRU combined with one-time basal CU) could hold great promise to increase yield and NUE of wheat via facilitating carbon-nitrogen allocation and optimizing rhizosphere environment in the lower reaches of Yangtze River of China.</p></div><div><h3>Implication</h3><p>This study would offer theoretical basis for achieving high yield and nitrogen use efficiency through combined application strategy of controlled-release and convention urea, and provide practical guidance in high efficiency production in wheat-rice rotation system.</p></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate change induced heat and drought stress hamper climate change mitigation in German cereal production 气候变化诱发的高温和干旱胁迫阻碍了德国谷物生产中的气候变化减缓工作
IF 5.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-04 DOI: 10.1016/j.fcr.2024.109551

Context

Agricultural production and climate change strongly influence each other and there are significant efforts to minimize negative impacts in both directions. In particular, breeding progress has succeeded in reducing the carbon footprint (CFP) of cereals over time. However, there is widespread certainty that climate change-related weather extremes have led to stagnation of cereal yields in many global production regions.

Research question

We assume that climate change-related yield stagnation is also evident in variety trials in Germany, which has to date only been shown for on-farm yields. Furthermore, we expect that the stagnation in yields also leads to a stagnation in the downward trend of CFP, and that heat and drought stress in particular increase the CFP of cereals. In addition, we hypothesize that the site-specific soil quality largely determines stress induced increases in CFP.

Methods

We conduct a partial life cycle assessment (LCA) with German variety trial data from 1993 to 2021 and determine the greenhouse gas emissions per unit of land (GHGL), as well as the CFP of winter wheat, winter rye, and winter barley. Further, we evaluate the time trends of yield, GHGL, and CFP using linear and quadratic plateau models. In addition, we calculate spatio-dynamic weather indices (WIs) for moderate, severe and extreme heat and drought stress. Using mixed models, we estimate the explanatory power and effect size of heat and drought WIs on the CFP. Finally, we present the spatial differences of heat and drought on the CFP at different soil qualities.

Results

We show yield plateaus in all crops and stagnating GHGL trends, resulting in a stagnation of the downward trend of CFP, especially for rye and barley. We highlight that heat and drought increase the CFP of all crops. However, the impact of heat and drought on the CFP varies greatly with soil quality across all crops.

Conclusions

We conclude that climate change-induced weather extremes are major challenges not only for cereal production and food security but also for climate change mitigation in the agricultural sector, highlighting the importance of high-yield locations, alongside variety selection and resource-efficient management, for climate change mitigation.

Significance

This study is the first that proves significant yield stagnation in German variety trials. Moreover, this study is the first to analyze the impact of heat and drought stress on cereal CFP, with novel results that proof that climate adaptation will become a crucial aspect of climate change mitigation in field crops.

背景农业生产与气候变化相互影响,为最大限度地减少这两方面的负面影响,人们做出了巨大努力。特别是,随着时间的推移,育种进展成功地减少了谷物的碳足迹(CFP)。然而,人们普遍确信,与气候变化相关的极端天气已导致全球许多产区的谷物产量停滞不前。研究问题我们假定,与气候变化相关的产量停滞不前现象在德国的品种试验中也很明显,而迄今为止这只在农场产量方面有所体现。此外,我们预计产量的停滞也会导致CFP下降趋势的停滞,尤其是高温和干旱胁迫会增加谷物的CFP。此外,我们还假设,特定地点的土壤质量在很大程度上决定了胁迫引起的 CFP 的增加。方法我们利用 1993 年至 2021 年的德国品种试验数据进行了部分生命周期评估(LCA),并确定了单位土地的温室气体排放量(GHGL)以及冬小麦、冬黑麦和冬大麦的 CFP。此外,我们还使用线性和二次高原模型评估了产量、GHGL 和 CFP 的时间趋势。此外,我们还计算了中度、重度和极端高温干旱胁迫的空间动态天气指数(WIs)。利用混合模型,我们估算了高温和干旱 WIs 对 CFP 的解释力和效应大小。最后,我们介绍了不同土壤质量下高温和干旱对 CFP 的空间差异。结果我们发现所有作物的产量都出现了高原现象,GHGL 趋势停滞不前,导致 CFP 下降趋势停滞不前,尤其是黑麦和大麦。我们强调,高温和干旱会增加所有作物的CFP。结论我们得出结论,气候变化引起的极端天气不仅是谷物生产和粮食安全的主要挑战,也是农业部门减缓气候变化的主要挑战,这凸显了高产地区以及品种选择和资源节约型管理对减缓气候变化的重要性。此外,该研究还首次分析了高温和干旱胁迫对谷物CFP的影响,其新颖的结果证明气候适应将成为大田作物减缓气候变化的一个重要方面。
{"title":"Climate change induced heat and drought stress hamper climate change mitigation in German cereal production","authors":"","doi":"10.1016/j.fcr.2024.109551","DOIUrl":"10.1016/j.fcr.2024.109551","url":null,"abstract":"<div><h3>Context</h3><p>Agricultural production and climate change strongly influence each other and there are significant efforts to minimize negative impacts in both directions. In particular, breeding progress has succeeded in reducing the carbon footprint (CFP) of cereals over time. However, there is widespread certainty that climate change-related weather extremes have led to stagnation of cereal yields in many global production regions.</p></div><div><h3>Research question</h3><p>We assume that climate change-related yield stagnation is also evident in variety trials in Germany, which has to date only been shown for on-farm yields. Furthermore, we expect that the stagnation in yields also leads to a stagnation in the downward trend of CFP, and that heat and drought stress in particular increase the CFP of cereals. In addition, we hypothesize that the site-specific soil quality largely determines stress induced increases in CFP.</p></div><div><h3>Methods</h3><p>We conduct a partial life cycle assessment (LCA) with German variety trial data from 1993 to 2021 and determine the greenhouse gas emissions per unit of land (GHGL), as well as the CFP of winter wheat, winter rye, and winter barley. Further, we evaluate the time trends of yield, GHGL, and CFP using linear and quadratic plateau models. In addition, we calculate spatio-dynamic weather indices (WIs) for moderate, severe and extreme heat and drought stress. Using mixed models, we estimate the explanatory power and effect size of heat and drought WIs on the CFP. Finally, we present the spatial differences of heat and drought on the CFP at different soil qualities.</p></div><div><h3>Results</h3><p>We show yield plateaus in all crops and stagnating GHGL trends, resulting in a stagnation of the downward trend of CFP, especially for rye and barley. We highlight that heat and drought increase the CFP of all crops. However, the impact of heat and drought on the CFP varies greatly with soil quality across all crops.</p></div><div><h3>Conclusions</h3><p>We conclude that climate change-induced weather extremes are major challenges not only for cereal production and food security but also for climate change mitigation in the agricultural sector, highlighting the importance of high-yield locations, alongside variety selection and resource-efficient management, for climate change mitigation.</p></div><div><h3>Significance</h3><p>This study is the first that proves significant yield stagnation in German variety trials. Moreover, this study is the first to analyze the impact of heat and drought stress on cereal CFP, with novel results that proof that climate adaptation will become a crucial aspect of climate change mitigation in field crops.</p></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378429024003046/pdfft?md5=c2cd79bbb01ae91271f47731e425093d&pid=1-s2.0-S0378429024003046-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Key factors influencing wheat grain zinc and manganese concentration in areas with different soil available phosphorus 影响不同土壤可利用磷地区小麦籽粒锌和锰浓度的关键因素
IF 5.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-04 DOI: 10.1016/j.fcr.2024.109558

Context or problem

Zinc (Zn) deficiency and manganese (Mn) excess in wheat grains caused by high soil phosphorus (P) (>15 mg kg−1) in alkaline soil have been widely reported. How to identify the key factors influencing wheat grain Zn and Mn concentration in the areas with different soil available P (SAP) levels and meanwhile achieve high-Zn and low-Mn in grains needs to be resolved.

Objectives

In the present research, we collected soil and plant samples from 273 fields of alkaline soils (pH 7.5–9.4) in northern China for two years to analyze the comprehensive influences of soil P (4.6–58.1 mg kg−1) and other soil physico-chemical properties on the content of Zn and Mn in wheat grains.

Results

Results and the structural equation model demonstrated that low soil available phosphorus (SAP), high soil NO3--N (SNN), and DTPA-Zn were beneficial for improving the grain Zn concentration; low SAP, high SNN, and lower DTPA-Mn were beneficial for decreasing grain Mn concentration. Samples of wheat grain Zn concentration > 40 mg kg−1 were found in the fields with SAP < 15 mg kg−1. The increase of SNN could significantly increase grain Zn when SAP < 15 mg kg−1 or > 30 mg kg−1; when SAP at 15–30 mg kg−1, only regulating SNN content did not increase grain Zn, grain Zn was significantly and positively correlated with soil DTPA-Zn. To decrease wheat grain Mn to lower than 48.7 mg kg−1 (the recommended safe threshold), SAP should be lower than 30 mg kg−1.

Conclusion

In conclusion, this research clarified the key soil factors influencing wheat grain Zn and Mn concentration in areas with different SAP levels, and by optimizing the application of N and P fertilizer and improving exogenous Zn application, high grain Zn while maintaining low Mn levels can be achieved with different SAP levels.

Implications

The findings of this study provide theoretical and technical support for guiding wheat production with high yield and high quality.

背景或问题碱性土壤高磷(15 mg kg-1)导致的小麦籽粒锌(Zn)缺乏和锰(Mn)过量的问题已被广泛报道。本研究历时两年,采集了中国北方碱性土壤(pH7.5-9.4)273 块田的土壤和植物样品,分析了土壤磷(4.结果结果和结构方程模型表明,低土壤可利用磷(SAP)、高土壤NO3-N(SNN)和DTPA-Zn有利于提高籽粒锌浓度;低SAP、高SNN和低DTPA-Mn有利于降低籽粒锰浓度。在 SAP 为 15 毫克/千克的田块中,小麦籽粒锌浓度为 40 毫克/千克。当 SAP 为 15 毫克/千克或 30 毫克/千克时,SNN 的增加可显著提高籽粒锌含量;当 SAP 为 15-30 毫克/千克时,仅调节 SNN 的含量并不能提高籽粒锌含量,籽粒锌含量与土壤 DTPA-Zn 呈显著正相关。总之,本研究阐明了不同SAP水平地区影响小麦籽粒锌和锰浓度的关键土壤因子,通过优化氮肥和磷肥的施用以及改善外源锌的施用,可以在不同SAP水平下实现高籽粒锌,同时保持低锰水平。
{"title":"Key factors influencing wheat grain zinc and manganese concentration in areas with different soil available phosphorus","authors":"","doi":"10.1016/j.fcr.2024.109558","DOIUrl":"10.1016/j.fcr.2024.109558","url":null,"abstract":"<div><h3>Context or problem</h3><p>Zinc (Zn) deficiency and manganese (Mn) excess in wheat grains caused by high soil phosphorus (P) (&gt;15 mg kg<sup>−1</sup>) in alkaline soil have been widely reported. How to identify the key factors influencing wheat grain Zn and Mn concentration in the areas with different soil available P (SAP) levels and meanwhile achieve high-Zn and low-Mn in grains needs to be resolved.</p></div><div><h3>Objectives</h3><p>In the present research, we collected soil and plant samples from 273 fields of alkaline soils (pH 7.5–9.4) in northern China for two years to analyze the comprehensive influences of soil P (4.6–58.1 mg kg<sup>−1</sup>) and other soil physico-chemical properties on the content of Zn and Mn in wheat grains.</p></div><div><h3>Results</h3><p>Results and the structural equation model demonstrated that low soil available phosphorus (SAP), high soil NO<sub>3</sub><sup>-</sup>-N (SNN), and DTPA-Zn were beneficial for improving the grain Zn concentration; low SAP, high SNN, and lower DTPA-Mn were beneficial for decreasing grain Mn concentration. Samples of wheat grain Zn concentration &gt; 40 mg kg<sup>−1</sup> were found in the fields with SAP &lt; 15 mg kg<sup>−1</sup>. The increase of SNN could significantly increase grain Zn when SAP &lt; 15 mg kg<sup>−1</sup> or &gt; 30 mg kg<sup>−1</sup>; when SAP at 15–30 mg kg<sup>−1</sup>, only regulating SNN content did not increase grain Zn, grain Zn was significantly and positively correlated with soil DTPA-Zn. To decrease wheat grain Mn to lower than 48.7 mg kg<sup>−1</sup> (the recommended safe threshold), SAP should be lower than 30 mg kg<sup>−1</sup>.</p></div><div><h3>Conclusion</h3><p>In conclusion, this research clarified the key soil factors influencing wheat grain Zn and Mn concentration in areas with different SAP levels, and by optimizing the application of N and P fertilizer and improving exogenous Zn application, high grain Zn while maintaining low Mn levels can be achieved with different SAP levels.</p></div><div><h3>Implications</h3><p>The findings of this study provide theoretical and technical support for guiding wheat production with high yield and high quality.</p></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The long-term nitrogen fertilizer management strategy based on straw return can improve the productivity of wheat-maize rotation system and reduce carbon emissions by increasing soil carbon and nitrogen sequestration 基于秸秆还田的长期氮肥管理策略可提高小麦-玉米轮作系统的生产力,并通过增加土壤碳氮固存减少碳排放
IF 5.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-02 DOI: 10.1016/j.fcr.2024.109561

Problem

Facing the multiple objectives of increasing production, carbon sequestration, and nitrogen reduction in farmland, optimizing straw and nitrogen fertilizer management to achieve a balance between grain production and ecological safety in the wheat-maize rotation system has become increasingly critical and urgent.

Methods

This study conducted a five-year field experiment in the Guanzhong Plain of China from 2017 to 2021 to investigate the effects and synergistic regulatory mechanisms of straw disposal methods (straw return, no-straw return) and nitrogen application rates (0, 150, 225, 300 kg ha−1) during the maize season on soil greenhouse gas (GHG) emissions, crop yield, and soil organic carbon (SOC) and soil toatl nitrogen (STN) content.

Results

The results showed that under the scenario of no-straw return, fertilization increased soil nitrous oxide (N2O) emissions by 35.9–64.0 %, and annual total crop yield by 16.4–22.8 %; however, under the straw return scenario, the increase in soil N2O emissions due to fertilization decreased to 26.7–62.0 %, while the yield increase rose to 19.5–25.9 %. The interaction effect between straw return and nitrogen application was significant, with straw return boosting the contribution rate of nitrogen application to yield (2.2–4.4 %) and simultaneously reducing the contribution rate of nitrogen application to N2O emissions (3.0–27.5 %). The study also indicated that the yield-increasing effect of straw return continued to increase with the duration of straw return, with the contribution rate to yield reaching 9.9 % after three years of continuous straw return, while the contribution rate of nitrogen application to yield increased by an average of 3.0 % per year. This suggests that there is significant potential for coupling straw return with reduced nitrogen application. Straw return combined with nitrogen fertilizer increased SOC content by 7.9–40.1 % and 3.7–12.5 %, STN content by 1.0–22.8 % and 6.1–13.9 %, respectively, compared to sole nitrogen application and sole straw return. Pathway analysis indicated that straw return combined with nitrogen fertilizer mainly enhanced soil carbon-nitrogen sequestration, improved fertilizer utilization efficiency and crop nutrition levels, reduced net global warming potential (GWP) and greenhouse gas intensity (GHGI), and synergistically regulated to increase yield while reducing GHG emissions.

Conclusion

The study highlights that straw return lowers the threshold for nitrogen application levels, suggesting that regulating nitrogen application levels between 224 and 256 kg ha−1 during the maize season, and maintaining a nitrogen application level of 195 kg ha−1 during the wheat season, is beneficial for long-term stable production and emission reduction in the wheat-maize rotation system farmland.

问题面对农田增产、固碳和降氮的多重目标,优化秸秆和氮肥管理以实现小麦玉米轮作体系中粮食生产和生态安全的平衡变得日益关键和迫切。方法本研究于2017-2021年在中国关中平原开展了为期5年的田间试验,研究玉米季秸秆处理方式(秸秆还田、不还田)和氮肥施用量(0、150、225、300千克/公顷-1)对土壤温室气体(GHG)排放、作物产量、土壤有机碳(SOC)和土壤氮素(STN)含量的影响及协同调控机制。结果结果表明,在不秸秆还田的情况下,施肥使土壤一氧化二氮(N2O)排放量增加了35.9-64.0%,作物年总产量增加了16.4-22.8%;然而,在秸秆还田的情况下,施肥导致的土壤一氧化二氮排放量增幅降至26.7-62.0%,而产量增幅则升至19.5-25.9%。秸秆还田与施氮之间的交互效应显著,秸秆还田提高了施氮对产量的贡献率(2.2%-4.4%),同时降低了施氮对 N2O 排放的贡献率(3.0%-27.5%)。研究还表明,秸秆还田的增产效果随着秸秆还田时间的延长而不断增强,连续还田三年后,秸秆还田对产量的贡献率达到 9.9%,而施氮对产量的贡献率平均每年增加 3.0%。这表明,将秸秆还田与减少氮肥施用量结合起来有很大的潜力。与单独施氮和单独秸秆还田相比,秸秆还田与氮肥结合可使 SOC 含量分别增加 7.9-40.1 % 和 3.7-12.5 %,STN 含量分别增加 1.0-22.8 % 和 6.1-13.9 %。途径分析表明,秸秆还田与氮肥结合主要增强了土壤碳氮固存,提高了肥料利用效率和作物营养水平,降低了净全球升温潜能值(GWP)和温室气体强度(GHGI),协同调节增产的同时减少了温室气体排放。结论该研究强调,秸秆还田降低了氮肥施用量的临界值,表明在玉米种植季将氮肥施用量控制在每公顷 224 至 256 千克之间,并在小麦种植季保持每公顷 195 千克的氮肥施用量,有利于小麦-玉米轮作系统农田的长期稳产和减排。
{"title":"The long-term nitrogen fertilizer management strategy based on straw return can improve the productivity of wheat-maize rotation system and reduce carbon emissions by increasing soil carbon and nitrogen sequestration","authors":"","doi":"10.1016/j.fcr.2024.109561","DOIUrl":"10.1016/j.fcr.2024.109561","url":null,"abstract":"<div><h3>Problem</h3><p>Facing the multiple objectives of increasing production, carbon sequestration, and nitrogen reduction in farmland, optimizing straw and nitrogen fertilizer management to achieve a balance between grain production and ecological safety in the wheat-maize rotation system has become increasingly critical and urgent.</p></div><div><h3>Methods</h3><p>This study conducted a five-year field experiment in the Guanzhong Plain of China from 2017 to 2021 to investigate the effects and synergistic regulatory mechanisms of straw disposal methods (straw return, no-straw return) and nitrogen application rates (0, 150, 225, 300 kg ha<sup>−1</sup>) during the maize season on soil greenhouse gas (GHG) emissions, crop yield, and soil organic carbon (SOC) and soil toatl nitrogen (STN) content.</p></div><div><h3>Results</h3><p>The results showed that under the scenario of no-straw return, fertilization increased soil nitrous oxide (N<sub>2</sub>O) emissions by 35.9–64.0 %, and annual total crop yield by 16.4–22.8 %; however, under the straw return scenario, the increase in soil N<sub>2</sub>O emissions due to fertilization decreased to 26.7–62.0 %, while the yield increase rose to 19.5–25.9 %. The interaction effect between straw return and nitrogen application was significant, with straw return boosting the contribution rate of nitrogen application to yield (2.2–4.4 %) and simultaneously reducing the contribution rate of nitrogen application to N<sub>2</sub>O emissions (3.0–27.5 %). The study also indicated that the yield-increasing effect of straw return continued to increase with the duration of straw return, with the contribution rate to yield reaching 9.9 % after three years of continuous straw return, while the contribution rate of nitrogen application to yield increased by an average of 3.0 % per year. This suggests that there is significant potential for coupling straw return with reduced nitrogen application. Straw return combined with nitrogen fertilizer increased SOC content by 7.9–40.1 % and 3.7–12.5 %, STN content by 1.0–22.8 % and 6.1–13.9 %, respectively, compared to sole nitrogen application and sole straw return. Pathway analysis indicated that straw return combined with nitrogen fertilizer mainly enhanced soil carbon-nitrogen sequestration, improved fertilizer utilization efficiency and crop nutrition levels, reduced net global warming potential (GWP) and greenhouse gas intensity (GHGI), and synergistically regulated to increase yield while reducing GHG emissions.</p></div><div><h3>Conclusion</h3><p>The study highlights that straw return lowers the threshold for nitrogen application levels, suggesting that regulating nitrogen application levels between 224 and 256 kg ha<sup>−1</sup> during the maize season, and maintaining a nitrogen application level of 195 kg ha<sup>−1</sup> during the wheat season, is beneficial for long-term stable production and emission reduction in the wheat-maize rotation system farmland.</p></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Greenhouse gas emissions during the rice season are reduced by a low soil C:N ratio using different upland-paddy rotation systems 采用不同的高地-水稻轮作系统,低土壤碳氮比可减少水稻季节的温室气体排放
IF 5.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-09-01 DOI: 10.1016/j.fcr.2024.109562

Context

Upland-paddy rotation can improve multiple-cropping index and crop yields; however, the mechanisms underlying the effects of dry-season crop diversification on rice yields and greenhouse gas (GHG) emissions under multiple rotation systems remain unclear.

Objective

Here, we aimed to clarify the intrinsic mechanisms whereby rice yields and GHG emissions respond to the diversification of dry-season crops and lay a theoretical foundation for developing agronomic measures that can stabilize yields and reduce GHG emissions.

Methods

Using a positioning experimental site for upland-paddy rotation, we measured rice-season CH4 and N2O emissions, crop yields, GHG-emission intensity (GHGI) levels, soil physical and chemical properties in garlic–rice (GR), wheat–rice (WR) systems for 3 years (2019–2020, and 2022), and in a rapeseed–rice (RR) system for 1 year (2022). The soil microbial dynamics of the three systems were only tested in 2022.

Results

The WR system had the highest CO2 emission equivalent (CO2-eq), with a 3-year interval value of 1898.24–16794.30 kg·ha−1, the lowest yield (8490.10–9773.46 kg·ha−1), and the highest GHGI (0.22–1.83). The GR system had the highest rice yield (9718.91–10769.75 kg ha−1), a lower CO2-eq (1588.55–12567.51 kg·ha−1), and therefore a lower GHGI (0.16–1.24). The RR system had the lowest GHGI in 2022 (benefiting from the lowest CO2-eq) and a slightly higher yield than that of the WR system. CH4 contributed to >88 % of the CO2-eq under the three systems in 2020 and 2022. The higher soil C:N ratio of the WR system stimulated methanogenic microorganisms, coupled with higher microbial biomass C levels, and ultimately increased CH4 emissions substantially. The soil C:N ratios of the GR and RR systems were significantly lower than that of the WR system because the soil total nitrogen (TN) of both systems was higher and increased CH4 emissions were avoided. The higher levels of N nutrients (TN, NO3--N, and NH4+-N) in the GR and RR systems also enhanced rice yields, with respective increases of 10.37 % and 1.22 %, compared with that of the WR system.

Conclusions

The diversified cultivation of dry-season crops in upland-paddy rotation systems affected rice yields and GHG emissions by changing the ratios of C and N.

Implications

Our findings highlight the importance of future research involving comprehensive agronomic measures to help reduce emissions, including fertilizer management, straw management, and tillage methods.

背景高地-水稻轮作可以提高多种作物指数和作物产量;然而,在多种轮作体系下,旱季作物多样化对水稻产量和温室气体(GHG)排放的影响机制仍不清楚。目的在此,我们旨在阐明水稻产量和 GHG 排放对旱季作物多样化的内在响应机制,为制定能够稳定产量和减少 GHG 排放的农艺措施奠定理论基础。方法利用高地-水稻轮作的定位实验场地,测量了大蒜-水稻(GR)、小麦-水稻(WR)系统3年(2019-2020年和2022年)以及油菜籽-水稻(RR)系统1年(2022年)的稻季CH4和N2O排放量、作物产量、温室气体排放强度(GHGI)水平、土壤理化性质。结果WR系统的二氧化碳排放当量(CO2-eq)最高,3年间隔值为1898.24-16794.30 kg-ha-1,产量最低(8490.10-9773.46 kg-ha-1),温室气体总指数(GHGI)最高(0.22-1.83)。GR 系统的水稻产量最高(9718.91-10769.75 千克/公顷-1),二氧化碳当量较低(1588.55-12567.51 千克/公顷-1),因此温室气体指数较低(0.16-1.24)。RR 系统在 2022 年的温室气体总指数最低(受益于最低的二氧化碳当量),产量略高于 WR 系统。2020 年和 2022 年,三种系统的二氧化碳当量中,CH4 占 88%。WR 系统较高的土壤 C:N 比率刺激了产甲烷微生物,加上较高的微生物生物量 C 水平,最终大幅增加了 CH4 排放。GR 和 RR 系统的土壤碳氮比明显低于 WR 系统,因为这两个系统的土壤全氮(TN)较高,避免了增加 CH4 排放。结论高地-水稻轮作系统中旱季作物的多样化种植通过改变碳和氮的比例影响了水稻产量和温室气体排放。
{"title":"Greenhouse gas emissions during the rice season are reduced by a low soil C:N ratio using different upland-paddy rotation systems","authors":"","doi":"10.1016/j.fcr.2024.109562","DOIUrl":"10.1016/j.fcr.2024.109562","url":null,"abstract":"<div><h3>Context</h3><p>Upland<strong>-</strong>paddy rotation can improve multiple-cropping index and crop yields; however, the mechanisms underlying the effects of dry-season crop diversification on rice yields and greenhouse gas (GHG) emissions under multiple rotation systems remain unclear.</p></div><div><h3>Objective</h3><p>Here, we aimed to clarify the intrinsic mechanisms whereby rice yields and GHG emissions respond to the diversification of dry-season crops and lay a theoretical foundation for developing agronomic measures that can stabilize yields and reduce GHG emissions.</p></div><div><h3>Methods</h3><p>Using a positioning experimental site for upland-paddy rotation, we measured rice-season CH<sub>4</sub> and N<sub>2</sub>O emissions, crop yields, GHG-emission intensity (GHGI) levels, soil physical and chemical properties in garlic–rice (GR), wheat–rice (W<em>R</em>) systems for 3 years (2019–2020, and 2022), and in a rapeseed–rice (RR) system for 1 year (2022). The soil microbial dynamics of the three systems were only tested in 2022.</p></div><div><h3>Results</h3><p>The W<em>R</em> system had the highest CO<sub>2</sub> emission equivalent (CO<sub>2</sub>-eq), with a 3-year interval value of 1898.24–16794.30 kg·ha<sup>−1</sup>, the lowest yield (8490.10–9773.46 kg·ha<sup>−1</sup>), and the highest GHGI (0.22–1.83). The GR system had the highest rice yield (9718.91–10769.75 kg ha<sup>−1</sup>), a lower CO<sub>2</sub>-eq (1588.55–12567.51 kg·ha<sup>−1</sup>), and therefore a lower GHGI (0.16–1.24). The RR system had the lowest GHGI in 2022 (benefiting from the lowest CO<sub>2</sub>-eq) and a slightly higher yield than that of the W<em>R</em> system. CH<sub>4</sub> contributed to &gt;88 % of the CO<sub>2</sub>-eq under the three systems in 2020 and 2022. The higher soil C:N ratio of the W<em>R</em> system stimulated methanogenic microorganisms, coupled with higher microbial biomass C levels, and ultimately increased CH<sub>4</sub> emissions substantially. The soil C:N ratios of the GR and RR systems were significantly lower than that of the W<em>R</em> system because the soil total nitrogen (TN) of both systems was higher and increased CH<sub>4</sub> emissions were avoided. The higher levels of N nutrients (TN, NO<sub>3</sub><sup>-</sup>-N, and NH<sub>4</sub><sup>+</sup>-N) in the GR and RR systems also enhanced rice yields, with respective increases of 10.37 % and 1.22 %, compared with that of the W<em>R</em> system.</p></div><div><h3>Conclusions</h3><p>The diversified cultivation of dry-season crops in upland-paddy rotation systems affected rice yields and GHG emissions by changing the ratios of C and N.</p></div><div><h3>Implications</h3><p>Our findings highlight the importance of future research involving comprehensive agronomic measures to help reduce emissions, including fertilizer management, straw management, and tillage methods.</p></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Straw return under deep tillage increases grain yield in the rice-rotated wheat cropping system 深耕下的秸秆还田可提高稻麦轮作系统的粮食产量
IF 5.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-08-31 DOI: 10.1016/j.fcr.2024.109559

Context

Straw return under rotary tillage has been used for two decades in the rice-rotated wheat cropping system in the lower Yangtze region of China, but it has become prone to reduce wheat emergence and yield in recent years, and alternative tillage methods are required to ensure the high wheat yields.

Aims

To determine whether straw return under deep tillage can improve wheat yield and under what mechanisms. We hypothesize that straw return under deep tillage can increase wheat seedling number by reducing rice stubble and straw coverage, and expand the nutrient pool and root system of the plow soil profile to keep post-anthesis viability for increasing wheat yield.

Methods

A field study was conducted during two consecutive years and included four treatments: rotary tillage after straw removal (RT); rotary tillage after straw return (RTS); shallow rotary tillage followed by straw mulch (STS) and deep tillage after straw return (DTS). Wheat seedling number, yield, aboveground nutrient uptake, growth period, root characteristics, and soil nutrients were measured.

Results

Compared to RT, seedling number under RTS and STS decreased by 8.3 % and 13.4 %, respectively, while DTS increased by 14.7 %. Wheat yield under RTS and STS decreased by 3.0 % and 7.3 %, respectively, while DTS increased by 8.2 %. The reduction in seedling number under RTS and STS would be partially offset in wheat yield by an increase in effective tiller number per plant and grain weight. Consequently, the variation in wheat yield among treatments was less than the variation in seedling number. Aboveground N and P accumulation in wheat under DTS were higher than the other treatments. Among four treatments, DTS had the highest root distribution and soil N and P contents in the middle and deep soil layers, thus prolonged grain filling duration. Wheat nutrient uptake at maturity and yield were significantly correlated with root weight density and root length density in both middle and deep soil layers.

Conclusions

Straw return under deep tillage can increase nutrient supply capacity and root distribution in deep soil while ensuring wheat emergence, enabling better filling of post-anthesis wheat and yield. It is therefore an effective alternative tillage method suitable for the rice-rotated wheat cropping system.

背景旋耕下秸秆还田在中国长江下游地区稻麦轮作体系中应用了二十年,但近年来容易造成小麦出苗率和产量的降低,需要替代耕作方法来确保小麦的高产。我们假设深耕下的秸秆还田可以通过减少稻茬和秸秆覆盖来增加小麦苗数,并扩大犁地土壤剖面的养分库和根系,以保持小麦的花后活力,从而提高小麦产量。方法连续两年进行了田间研究,包括四个处理:去除秸秆后旋耕(RT);秸秆还田后旋耕(RTS);秸秆覆盖后浅旋耕(STS)和秸秆还田后深耕(DTS)。结果与 RT 相比,RTS 和 STS 的苗数分别减少了 8.3 % 和 13.4 %,而 DTS 增加了 14.7 %。RTS和STS下的小麦产量分别减少了3.0%和7.3%,而DTS则增加了8.2%。每株有效分蘖数和粒重的增加部分抵消了 RTS 和 STS 导致的苗数减少。因此,不同处理间小麦产量的差异小于苗数的差异。在 DTS 处理下,小麦地上部氮和磷的积累高于其他处理。在四个处理中,DTS 的根系分布最广,土壤中层和深层的氮和磷含量最高,因此延长了籽粒灌浆期。小麦成熟期的养分吸收率和产量与中层和深层土壤的根重密度和根长密度显著相关。因此,这是一种适合稻麦轮作系统的有效替代耕作方法。
{"title":"Straw return under deep tillage increases grain yield in the rice-rotated wheat cropping system","authors":"","doi":"10.1016/j.fcr.2024.109559","DOIUrl":"10.1016/j.fcr.2024.109559","url":null,"abstract":"<div><h3>Context</h3><p>Straw return under rotary tillage has been used for two decades in the rice-rotated wheat cropping system in the lower Yangtze region of China, but it has become prone to reduce wheat emergence and yield in recent years, and alternative tillage methods are required to ensure the high wheat yields.</p></div><div><h3>Aims</h3><p>To determine whether straw return under deep tillage can improve wheat yield and under what mechanisms. We hypothesize that straw return under deep tillage can increase wheat seedling number by reducing rice stubble and straw coverage, and expand the nutrient pool and root system of the plow soil profile to keep post-anthesis viability for increasing wheat yield.</p></div><div><h3>Methods</h3><p>A field study was conducted during two consecutive years and included four treatments: rotary tillage after straw removal (RT); rotary tillage after straw return (RTS); shallow rotary tillage followed by straw mulch (STS) and deep tillage after straw return (DTS). Wheat seedling number, yield, aboveground nutrient uptake, growth period, root characteristics, and soil nutrients were measured.</p></div><div><h3>Results</h3><p>Compared to RT, seedling number under RTS and STS decreased by 8.3 % and 13.4 %, respectively, while DTS increased by 14.7 %. Wheat yield under RTS and STS decreased by 3.0 % and 7.3 %, respectively, while DTS increased by 8.2 %. The reduction in seedling number under RTS and STS would be partially offset in wheat yield by an increase in effective tiller number per plant and grain weight. Consequently, the variation in wheat yield among treatments was less than the variation in seedling number. Aboveground N and P accumulation in wheat under DTS were higher than the other treatments. Among four treatments, DTS had the highest root distribution and soil N and P contents in the middle and deep soil layers, thus prolonged grain filling duration. Wheat nutrient uptake at maturity and yield were significantly correlated with root weight density and root length density in both middle and deep soil layers.</p></div><div><h3>Conclusions</h3><p>Straw return under deep tillage can increase nutrient supply capacity and root distribution in deep soil while ensuring wheat emergence, enabling better filling of post-anthesis wheat and yield. It is therefore an effective alternative tillage method suitable for the rice-rotated wheat cropping system.</p></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Field Crops Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1