Pub Date : 2024-10-05DOI: 10.1016/j.fcr.2024.109604
Zheng He , Xuwei Dang , Gaifang gao , Xinyuan Lin , Fuyu Ma , Yang Liu
Context or problem
Traditionally, 100 % phosphorus (P) fertilizer application as a band at various depths before sowing significantly influenced crop root growth and yield by reducing P fixation and optimizing its spatial distribution. However, with the advent of drip fertigation in Xinjiang, China, P fertilization practices have shifted from 100 % basal to a combination of basal and fertigation for enhanced P nutrition in cotton. Despite this, the impact of pre-sowing P band application on cotton growth under drip fertigation remains unclear.
Objective or research question
This study aimed to determine the optimal P fertilizer banding depth for cotton under a drip fertigation system.
Methods
Field trials were conducted comparing different basal P fertilizer application depths (5 cm, 15 cm, and 25 cm, denoted as D5, D15, and D25, respectively) with 50 % of the P rate and the remaining 50 % applied as topdressing via drip fertilization. A control (CK) involving 50 % broadcasted P fertilizer and 50 % topdressed P was included. The study focused on the effects of P application depth on soil P availability, root growth patterns, P utilization, and cotton yield.
Results
At the boll opening stage, the D15 treatment exhibited a significant 18.69 %-49.76 % increase in available phosphorus in the 10–40 cm soil layer compared to the CK. During the peak boll to boll opening stage, the D15 treatment significantly outperformed the CK in terms of total root biomass density (11.62 %-17.54 %), total root length (16.75 %-24.81 %), total root surface area (23.07 %-37.59 %), and total root volume (20.69 %-26.23 %). Moreover, root activity and growth parameters were notably higher in the D15 treatment within the 10–40 cm soil layer.
Conclusions
Applying 50 % of the P fertilizer as a band at a 15 cm depth before planting drip-irrigated cotton is optimal. This practice enhances soil P availability, stimulates root growth and distribution, and ultimately improves P utilization and cotton yield.
Implications or significance
Banding P fertilizer at a 15 cm depth in combination with drip fertigation demonstrates superior yield benefits. This technology offers a novel approach to fertilizer application, enhancing nutrient use efficiency and crop productivity in drip-irrigated systems.
{"title":"Integrated deep banding and fertigation of phosphorus improves cotton yield by regulating root spatial distribution and growth","authors":"Zheng He , Xuwei Dang , Gaifang gao , Xinyuan Lin , Fuyu Ma , Yang Liu","doi":"10.1016/j.fcr.2024.109604","DOIUrl":"10.1016/j.fcr.2024.109604","url":null,"abstract":"<div><h3>Context or problem</h3><div>Traditionally, 100 % phosphorus (P) fertilizer application as a band at various depths before sowing significantly influenced crop root growth and yield by reducing P fixation and optimizing its spatial distribution. However, with the advent of drip fertigation in Xinjiang, China, P fertilization practices have shifted from 100 % basal to a combination of basal and fertigation for enhanced P nutrition in cotton. Despite this, the impact of pre-sowing P band application on cotton growth under drip fertigation remains unclear.</div></div><div><h3>Objective or research question</h3><div>This study aimed to determine the optimal P fertilizer banding depth for cotton under a drip fertigation system.</div></div><div><h3>Methods</h3><div>Field trials were conducted comparing different basal P fertilizer application depths (5 cm, 15 cm, and 25 cm, denoted as D5, D15, and D25, respectively) with 50 % of the P rate and the remaining 50 % applied as topdressing via drip fertilization. A control (CK) involving 50 % broadcasted P fertilizer and 50 % topdressed P was included. The study focused on the effects of P application depth on soil P availability, root growth patterns, P utilization, and cotton yield.</div></div><div><h3>Results</h3><div>At the boll opening stage, the D15 treatment exhibited a significant 18.69 %-49.76 % increase in available phosphorus in the 10–40 cm soil layer compared to the CK. During the peak boll to boll opening stage, the D15 treatment significantly outperformed the CK in terms of total root biomass density (11.62 %-17.54 %), total root length (16.75 %-24.81 %), total root surface area (23.07 %-37.59 %), and total root volume (20.69 %-26.23 %). Moreover, root activity and growth parameters were notably higher in the D15 treatment within the 10–40 cm soil layer.</div></div><div><h3>Conclusions</h3><div>Applying 50 % of the P fertilizer as a band at a 15 cm depth before planting drip-irrigated cotton is optimal. This practice enhances soil P availability, stimulates root growth and distribution, and ultimately improves P utilization and cotton yield.</div></div><div><h3>Implications or significance</h3><div>Banding P fertilizer at a 15 cm depth in combination with drip fertigation demonstrates superior yield benefits. This technology offers a novel approach to fertilizer application, enhancing nutrient use efficiency and crop productivity in drip-irrigated systems.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109604"},"PeriodicalIF":5.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rice yield is low at 2.1 t ha−1 in sub-Saharan Africa. Increased yield is a critical challenge to food security and environmental conservation in this region. However, smallholder farmers have limited access to irrigation, mineral fertilizers, and improved crop varieties. One approach that even resource-limited farmers can easily manipulate is to optimize planting densities. However, there is limited empirical evidence to provide technical recommendations under such low-yielding conditions.
Objective
This study aimed to identify the effect of dense transplanting on lowland rice yields under low-yielding conditions, with a target range below 5 t ha−1.
Methods
Multi-field trials were implemented with transplanting densities of a regular rate at 25–26.7 hills m−2, a doubled rate at 50–53.3 hills m−2, and a tripled rate at 88.9 hills m−2 in the central highlands of Madagascar, where rice yields are limited by nutrient deficiency and low temperature. Canopy coverage and cumulative intercepted radiation (CIR) were monitored from transplantation to maturity using digital imagery analysis. Field observations (n=306) and four-year household surveys (n=356) were combined to calculate the costs and benefits of changing transplanting densities.
Results
Doubling densities from 25.0–26.7 hills m−2 to 50.0–53.3 hills m−2 had a consistent yield advantage by approximately 0.4 t ha−1 across a yield range of 1.8 t ha−1–4.4 t ha−1. The yield was further increased by tripling the transplanting densities to 88.9 hills m−2 when the yield range was 1.9–2.3 t ha−1. The yield advantage of higher transplanting densities was attributed to a greater CIR at the initial growth stages and a significantly greater panicle number. Household surveys and field observations indicated that the benefit of yield gain was more than three times greater than the additional cost of doubling the seed amounts. No significant yield differences were observed by changing the transplanting densities when the yield level was higher than 5 t ha−1 or lower than 1.3 t ha−1 where substantial reductions in grain fertility occurred owing to low-temperature stress.
Conclusions
A relatively high transplanting density of 50–53.3 hills m−2 or even higher is recommended to ensure initial canopy development and panicle number in low-yielding conditions where individual plant growth is stagnant, except in fields with high risks of grain set failure.
Implications
This study provides an easy-to-use opportunity for smallholder farmers to increase their rice yield. Further studies are required to determine whether these findings apply to warmer climatic conditions.
{"title":"Optimizing transplanting densities for lowland rice production under low-yielding environments in the Madagascar highlands","authors":"Bruce Haja Andrianary , Yasuhiro Tsujimoto , Ryosuke Ozaki , Hobimiarantsoa Rakotonindrina , Nandrianina Ramifehiarivo","doi":"10.1016/j.fcr.2024.109601","DOIUrl":"10.1016/j.fcr.2024.109601","url":null,"abstract":"<div><h3>Context</h3><div>Rice yield is low at 2.1 t ha<sup>−1</sup> in sub-Saharan Africa. Increased yield is a critical challenge to food security and environmental conservation in this region. However, smallholder farmers have limited access to irrigation, mineral fertilizers, and improved crop varieties. One approach that even resource-limited farmers can easily manipulate is to optimize planting densities. However, there is limited empirical evidence to provide technical recommendations under such low-yielding conditions.</div></div><div><h3>Objective</h3><div>This study aimed to identify the effect of dense transplanting on lowland rice yields under low-yielding conditions, with a target range below 5 t ha<sup>−1</sup>.</div></div><div><h3>Methods</h3><div>Multi-field trials were implemented with transplanting densities of a regular rate at 25–26.7 hills m<sup>−2</sup>, a doubled rate at 50–53.3 hills m<sup>−2</sup>, and a tripled rate at 88.9 hills m<sup>−2</sup> in the central highlands of Madagascar, where rice yields are limited by nutrient deficiency and low temperature. Canopy coverage and cumulative intercepted radiation (CIR) were monitored from transplantation to maturity using digital imagery analysis. Field observations (n=306) and four-year household surveys (n=356) were combined to calculate the costs and benefits of changing transplanting densities.</div></div><div><h3>Results</h3><div>Doubling densities from 25.0–26.7 hills m<sup>−2</sup> to 50.0–53.3 hills m<sup>−2</sup> had a consistent yield advantage by approximately 0.4 t ha<sup>−1</sup> across a yield range of 1.8 t ha<sup>−1</sup>–4.4 t ha<sup>−1</sup>. The yield was further increased by tripling the transplanting densities to 88.9 hills m<sup>−2</sup> when the yield range was 1.9–2.3 t ha<sup>−1</sup>. The yield advantage of higher transplanting densities was attributed to a greater CIR at the initial growth stages and a significantly greater panicle number. Household surveys and field observations indicated that the benefit of yield gain was more than three times greater than the additional cost of doubling the seed amounts. No significant yield differences were observed by changing the transplanting densities when the yield level was higher than 5 t ha<sup>−1</sup> or lower than 1.3 t ha<sup>−1</sup> where substantial reductions in grain fertility occurred owing to low-temperature stress.</div></div><div><h3>Conclusions</h3><div>A relatively high transplanting density of 50–53.3 hills m<sup>−2</sup> or even higher is recommended to ensure initial canopy development and panicle number in low-yielding conditions where individual plant growth is stagnant, except in fields with high risks of grain set failure.</div></div><div><h3>Implications</h3><div>This study provides an easy-to-use opportunity for smallholder farmers to increase their rice yield. Further studies are required to determine whether these findings apply to warmer climatic conditions.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109601"},"PeriodicalIF":5.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1016/j.fcr.2024.109598
Xingyu Guo , Hao Wang , Naeem Ahmad , Rui Wang , Xiaoli Wang , Jun Li
Context
Cropping systems and tillage practices suitable for local environmental conditions to balance the demand for food production and environmental impacts are critical for achieving a low-carbon cycle and sustainability of agricultural production systems in arid and semiarid regions.
Objectives
This study aimed to evaluate the effect of three tillage practices under diversified cropping systems in terms of food production, farmers’ income, mitigation of greenhouse gas (GHG) emissions, and economic and environmental sustainability.
Methods
Therefore, we conducted a 12-year (2007–2019) field experiment involving three tillage practices (no-tillage, NT; subsoiling tillage, ST; conventional tillage, CT) and three cropping systems (continuous winter wheat, W-W; winter wheat-spring maize cropping, W-M; continuous spring maize, M-M) in the Loess Plateau of China to evaluate their impact on food production, farmers’ income, GHG emissions, and environmental sustainability.
Results
Results indicated that the equivalent yield and equivalent economic benefit were the highest for M-M (9412 kg ha−1and 2655 USD ha−1); W-M and M-M increased equivalent yield by 44.1 % and 102.4 %, equivalent economic benefit by 44.6 % and 164.6 %, soil C sequestration by 23.8 % and 52.9 %, and reduced net GHG emissions (NGHG) by 12.5 % and 7.3 %, respectively, compared with W-W. The equivalent yield and equivalent economic benefit were highest under ST (7200 kg ha−1 and 1767 USD ha−1); NT and ST increased equivalent yield by 3.7 % and 8.1 %, equivalent economic benefit by 10.2 % and 11.1 %, soil C sequestration by 23.5 % and 7.5 %, and carbon sustainability index (CSI) by 5.5 % and 3.1 %, respectively, compared with CT. In addition, NT resulted in 6.5 % lower NGHG emissions than CT, whereas ST resulted in 2.7 % higher NGHG emissions than CT. This study identified W-M and NT with a higher comprehensive evaluation index (CEI) based on entropy-TOPSIS considering 6 indicators (equivalent yield, equivalent economic benefit, soil C sequestration, carbon sustainability index, net greenhouse gases emissions and yield-scaled carbon footprint).
Conclusion
The adoption of W-M and NT in the Loess Plateau has the potential to enhance crop yield and farmers’ income while proving benefits to the environment.
Implications or significance
These findings provide a scientifically grounded basis for selecting effective agricultural management strategies that can maintain food security while minimizing environmental impacts amid climate warming.
{"title":"Effects of 12-year cropping systems and tillage practices on crop yield and carbon trade-off in dryland Loess Plateau","authors":"Xingyu Guo , Hao Wang , Naeem Ahmad , Rui Wang , Xiaoli Wang , Jun Li","doi":"10.1016/j.fcr.2024.109598","DOIUrl":"10.1016/j.fcr.2024.109598","url":null,"abstract":"<div><h3>Context</h3><div>Cropping systems and tillage practices suitable for local environmental conditions to balance the demand for food production and environmental impacts are critical for achieving a low-carbon cycle and sustainability of agricultural production systems in arid and semiarid regions.</div></div><div><h3>Objectives</h3><div>This study aimed to evaluate the effect of three tillage practices under diversified cropping systems in terms of food production, farmers’ income, mitigation of greenhouse gas (GHG) emissions, and economic and environmental sustainability.</div></div><div><h3>Methods</h3><div>Therefore, we conducted a 12-year (2007–2019) field experiment involving three tillage practices (no-tillage, NT; subsoiling tillage, ST; conventional tillage, CT) and three cropping systems (continuous winter wheat, W-W; winter wheat-spring maize cropping, W-M; continuous spring maize, M-M) in the Loess Plateau of China to evaluate their impact on food production, farmers’ income, GHG emissions, and environmental sustainability.</div></div><div><h3>Results</h3><div>Results indicated that the equivalent yield and equivalent economic benefit were the highest for M-M (9412 kg ha<sup>−1</sup>and 2655 USD ha<sup>−1</sup>); W-M and M-M increased equivalent yield by 44.1 % and 102.4 %, equivalent economic benefit by 44.6 % and 164.6 %, soil C sequestration by 23.8 % and 52.9 %, and reduced net GHG emissions (NGHG) by 12.5 % and 7.3 %, respectively, compared with W-W. The equivalent yield and equivalent economic benefit were highest under ST (7200 kg ha<sup>−1</sup> and 1767 USD ha<sup>−1</sup>); NT and ST increased equivalent yield by 3.7 % and 8.1 %, equivalent economic benefit by 10.2 % and 11.1 %, soil C sequestration by 23.5 % and 7.5 %, and carbon sustainability index (CSI) by 5.5 % and 3.1 %, respectively, compared with CT. In addition, NT resulted in 6.5 % lower NGHG emissions than CT, whereas ST resulted in 2.7 % higher NGHG emissions than CT. This study identified W-M and NT with a higher comprehensive evaluation index (<em>CEI</em>) based on entropy-TOPSIS considering 6 indicators (equivalent yield, equivalent economic benefit, soil C sequestration, carbon sustainability index, net greenhouse gases emissions and yield-scaled carbon footprint).</div></div><div><h3>Conclusion</h3><div>The adoption of W-M and NT in the Loess Plateau has the potential to enhance crop yield and farmers’ income while proving benefits to the environment.</div></div><div><h3>Implications or significance</h3><div>These findings provide a scientifically grounded basis for selecting effective agricultural management strategies that can maintain food security while minimizing environmental impacts amid climate warming.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109598"},"PeriodicalIF":5.6,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1016/j.fcr.2024.109600
Amir Dadrasi , Elias Soltani , David Makowski , Jay Ram Lamichhane
Context
Shifting the sowing date has been proposed as a simple agronomic lever to enhance crop establishment, growth, and yield, which could be a climate change adaptation strategy.
Objective or research question
Previous research showed that the experimental data assessing the effect of sowing date are not consistent and vary between trials and publications. We hypothesized that the difference in pedoclimatic conditions and management practices may be responsible for the contrasting impact of sowing dates on crop establishment, growth, and yield.
Methods
A global meta-analysis of 94 studies and 3145 observations was conducted to quantify the effect of covariates related to crop types and pedoclimatic conditions in relation to early and late sowing dates compared to normal sowing dates.
Results
On average, early sowing significantly increased seedling emergence vigor (53 %, confidence interval (95 %) = [49 %,58 %]) and disease and pest control (88 % [20 %,195 %]) without significant effect on plant biomass (2 % [-2 %,5 %]) and yield (-10 % [-20 %, +0.8 %]) compared to normal sowing date. In contrast, late sowing had no significant effect on seedling emergence vigor (28 %[-4 %,72 %]) or disease and pest control (14 %[-1 %,31 %]) while it significantly decreased plant biomass (-21 %[-21.42 %,-21.12 %]) and yield (-24 % [-28 %, −19 %]) compared to normal sowing date, in particular when the sowing delay exceeded three weeks and when the average minimum temperature was above 13°C during the growing season.
Conclusions
Early sowing does not affect crop productivity while late sowing reduces crop yield. Shifting from normal to late sowing dates may lead to yield losses exceeding 20 %, especially in warm conditions.
Implications or significance
This study offers an important insight into the potential of crop yield improvement by adjusting sowing dates to aid decision-making in relation to specific pedoclimatic conditions and cropping practices.
{"title":"Does shifting from normal to early or late sowing dates provide yield benefits? A global meta-analysis","authors":"Amir Dadrasi , Elias Soltani , David Makowski , Jay Ram Lamichhane","doi":"10.1016/j.fcr.2024.109600","DOIUrl":"10.1016/j.fcr.2024.109600","url":null,"abstract":"<div><h3>Context</h3><div>Shifting the sowing date has been proposed as a simple agronomic lever to enhance crop establishment, growth, and yield, which could be a climate change adaptation strategy.</div></div><div><h3>Objective or research question</h3><div>Previous research showed that the experimental data assessing the effect of sowing date are not consistent and vary between trials and publications. We hypothesized that the difference in pedoclimatic conditions and management practices may be responsible for the contrasting impact of sowing dates on crop establishment, growth, and yield.</div></div><div><h3>Methods</h3><div>A global meta-analysis of 94 studies and 3145 observations was conducted to quantify the effect of covariates related to crop types and pedoclimatic conditions in relation to early and late sowing dates compared to normal sowing dates.</div></div><div><h3>Results</h3><div>On average, early sowing significantly increased seedling emergence vigor (53 %, confidence interval (95 %) = [49 %,58 %]) and disease and pest control (88 % [20 %,195 %]) without significant effect on plant biomass (2 % [-2 %,5 %]) and yield (-10 % [-20 %, +0.8 %]) compared to normal sowing date. In contrast, late sowing had no significant effect on seedling emergence vigor (28 %[-4 %,72 %]) or disease and pest control (14 %[-1 %,31 %]) while it significantly decreased plant biomass (-21 %[-21.42 %,-21.12 %]) and yield (-24 % [-28 %, −19 %]) compared to normal sowing date, in particular when the sowing delay exceeded three weeks and when the average minimum temperature was above 13°C during the growing season.</div></div><div><h3>Conclusions</h3><div>Early sowing does not affect crop productivity while late sowing reduces crop yield. Shifting from normal to late sowing dates may lead to yield losses exceeding 20 %, especially in warm conditions.</div></div><div><h3>Implications or significance</h3><div>This study offers an important insight into the potential of crop yield improvement by adjusting sowing dates to aid decision-making in relation to specific pedoclimatic conditions and cropping practices.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109600"},"PeriodicalIF":5.6,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.fcr.2024.109593
Sasha Loewen, Bruce D. Maxwell
Organic agriculture is often regarded as less damaging to the environment than conventional agriculture, though at the expense of lower yields. Field-specific precision agriculture may benefit organic production practices given the inherent need of organic farmers to understand spatiotemporal variation on large-scale fields. Here the primary research question is whether on-farm precision experimentation (OFPE) can be used as an adaptive management methodology to efficiently maximize farmer net returns using variable cover crop and cash crop seeding rates. Inputs of cash crop seed and previous-year green manure cover crop seed were experimentally varied on five different farms across the Northern Great Plains from 2019 to 2022. Experiments provided data to model the crop yield response, and subsequently net return, in response to input (seeding) rates plus a suite of other spatially explicit data from satellite sources. New, field-specific spatially explicit optimum input rates were generated to maximize net return including temporal variation in economic variables. Inputs were spatially optimized and using simulations it was found that the optimization strategies consistently out-performed other strategies by reducing inputs and increasing yields, particularly for non-tillering crops. By adopting site specific management, the average increase in net return for all fields was $50 ha−1. These results showed that precision agriculture technologies and remote sensing can be utilized to provide organic farmers powerful adaptive management tools with a focus on within-field spatial variability in response to primary input drivers of economic return. Continued OFPE for seeding rate optimization will allow quantification of temporal variability and subsequent probabilistic recommendations.
{"title":"Optimizing crop seeding rates on organic grain farms using on farm precision experimentation","authors":"Sasha Loewen, Bruce D. Maxwell","doi":"10.1016/j.fcr.2024.109593","DOIUrl":"10.1016/j.fcr.2024.109593","url":null,"abstract":"<div><div>Organic agriculture is often regarded as less damaging to the environment than conventional agriculture, though at the expense of lower yields. Field-specific precision agriculture may benefit organic production practices given the inherent need of organic farmers to understand spatiotemporal variation on large-scale fields. Here the primary research question is whether on-farm precision experimentation (OFPE) can be used as an adaptive management methodology to efficiently maximize farmer net returns using variable cover crop and cash crop seeding rates. Inputs of cash crop seed and previous-year green manure cover crop seed were experimentally varied on five different farms across the Northern Great Plains from 2019 to 2022. Experiments provided data to model the crop yield response, and subsequently net return, in response to input (seeding) rates plus a suite of other spatially explicit data from satellite sources. New, field-specific spatially explicit optimum input rates were generated to maximize net return including temporal variation in economic variables. Inputs were spatially optimized and using simulations it was found that the optimization strategies consistently out-performed other strategies by reducing inputs and increasing yields, particularly for non-tillering crops. By adopting site specific management, the average increase in net return for all fields was $50 ha<sup>−1</sup>. These results showed that precision agriculture technologies and remote sensing can be utilized to provide organic farmers powerful adaptive management tools with a focus on within-field spatial variability in response to primary input drivers of economic return. Continued OFPE for seeding rate optimization will allow quantification of temporal variability and subsequent probabilistic recommendations.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109593"},"PeriodicalIF":5.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.fcr.2024.109589
Abebe D. Chukalla, Marloes L. Mul, Poolad Karimi
Context
Two of the key limitations for sustainably increasing agricultural production are the scarcity of land and fresh water resources. Establishing land and water productivity gaps is, therefore, essential for measuring how efficiently these resources are being utilised and assessing the scope for increasing feed and food production. Monitoring the productivity gaps at large scales or over time using field data is challenging and expensive. Remote sensing offers an alternative data source to reveal spatial and temporal variations in productivity.
Objective
This paper presents a framework that integrates remote sensing derived data and field data to assess (1) land and water productivity gaps, (2) bright spots – fields exhibiting land- and water productivity equal to or higher than the target, and (3) net irrigation water demand for increasing production.
Methods
The framework is developed and applied to the Xinavane sugarcane estate in Mozambique, demonstrating its practical application through systematic evaluation on a 6637 ha section of the estate divided by different irrigation application methods.
Results
The results reveal that the productivity gap is the highest on fields irrigated by furrow (13.1 tonnes (ton) per ha), followed by sprinkler (12.6 ton/ha) and centre pivot (9.4 ton/ha). Bridging the productivity gap on the same cropland results in an increased sugarcane production of 12.5 % requiring 8.5 % additional irrigation water, whereas achieving the same production increase through irrigation expansion requires more blue water.
Conclusions
The analyses show that remote sensing provides a viable source of information to diagnose the productivity constraints and how bright spots can provide insights into the best field management practices to overcome them. The framework demonstrates its usefulness for policy makers and stakeholders to make informed decisions on the scarce blue water allocation for enhancing agricultural production.
{"title":"Establishing the water resources implications for closing the land and water productivity gaps using remote sensing – A case study of sugarcane","authors":"Abebe D. Chukalla, Marloes L. Mul, Poolad Karimi","doi":"10.1016/j.fcr.2024.109589","DOIUrl":"10.1016/j.fcr.2024.109589","url":null,"abstract":"<div><h3>Context</h3><div>Two of the key limitations for sustainably increasing agricultural production are the scarcity of land and fresh water resources. Establishing land and water productivity gaps is, therefore, essential for measuring how efficiently these resources are being utilised and assessing the scope for increasing feed and food production. Monitoring the productivity gaps at large scales or over time using field data is challenging and expensive. Remote sensing offers an alternative data source to reveal spatial and temporal variations in productivity.</div></div><div><h3>Objective</h3><div>This paper presents a framework that integrates remote sensing derived data and field data to assess (1) land and water productivity gaps, (2) bright spots – fields exhibiting land- and water productivity equal to or higher than the target, and (3) net irrigation water demand for increasing production.</div></div><div><h3>Methods</h3><div>The framework is developed and applied to the Xinavane sugarcane estate in Mozambique, demonstrating its practical application through systematic evaluation on a 6637 ha section of the estate divided by different irrigation application methods.</div></div><div><h3>Results</h3><div>The results reveal that the productivity gap is the highest on fields irrigated by furrow (13.1 tonnes (ton) per ha), followed by sprinkler (12.6 ton/ha) and centre pivot (9.4 ton/ha). Bridging the productivity gap on the same cropland results in an increased sugarcane production of 12.5 % requiring 8.5 % additional irrigation water, whereas achieving the same production increase through irrigation expansion requires more blue water.</div></div><div><h3>Conclusions</h3><div>The analyses show that remote sensing provides a viable source of information to diagnose the productivity constraints and how bright spots can provide insights into the best field management practices to overcome them. The framework demonstrates its usefulness for policy makers and stakeholders to make informed decisions on the scarce blue water allocation for enhancing agricultural production.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109589"},"PeriodicalIF":5.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.fcr.2024.109596
Yuxing Peng , Feixia Zhang , Shuai Zhang , Zizhong Li , Shuming Cao , Chuxin Luo , Fei Yu
<div><h3>Context</h3><div>Alfalfa (<em>Medicago sativa</em> L.) consumes a large amount of soil inorganic nitrogen (N) but can supply ample rhizosphere deposited N to subsequent crops. Therefore, N fertilizer application levels should be optimized for corn under long-term alfalfa-corn (AC) rotation system to achieve high yield and N use efficiency.</div></div><div><h3>Objective</h3><div>The present study assessed the yield and water and N use efficiency of corn under N fertilizer application in a long-term AC cropping system and optimized the corn N fertilizer application level using the Agricultural Production Systems sIMulator (APSIM).</div></div><div><h3>Methods</h3><div>APSIM was calibrated and validated utilizing the experimental datasets of yield, aboveground biomass, plant N uptake, soil water storage, and inorganic N at 0−140 cm soil layer during corn growth with four N fertilizer treatments (0, 130, 195, and 260 kg N ha<sup>−1</sup>), which were collected from a six-year-old alfalfa field experiment carried out in Lishu County (Jilin Province, China) from 2020 to 2022; the field experiment was initiated in 2014. The validated APSIM was then utilized to simulate the long-term (1981−2020) characteristics of crop and soil under different corn N fertilizer application levels in a continuous corn (CC) cropping system and different alfalfa-corn rotation systems (one, two, three, four, and five years of alfalfa followed by two years of corn; 1A2C, 2A2C, 3A2C, 4A2C, 5A2C). The simulated N treatments included 0−300 kg N ha<sup>−1</sup> range with an increment of 30 kg N ha<sup>−1</sup>.</div></div><div><h3>Results</h3><div>Model evaluation revealed that APSIM effectively captured the dynamics of the crop, soil water, and soil inorganic N during corn cultivation following alfalfa at four N fertilizer application levels. The normalized root-mean-square errors between the observed and simulated values under different treatments were less than 30 %. Alfalfa had legacy effects on the soil water and soil N mineralization (N<sub>min</sub>) of subsequent first-year corn, which ensured the corn yield following alfalfa. The first-year net N<sub>min</sub> in the soil with corn following alfalfa increased by 140 % (65 %−268 %) compared to the CC cropping system. Alfalfa planting also increased the 0−140 cm soil inorganic N before sowing (N<sub>sow</sub>) by 351 % (292 %−463 %) for the subsequent corn with no N fertilizer application and the 0−140 cm soil water storage before sowing by 22 % for the subsequent corn with relatively high N fertilizer application (300 kg N ha<sup>−1</sup>) compared to the CC cropping system. The highest yield and N use efficiency could be achieved by applying 90 kg N ha<sup>−1</sup> N fertilizer for 1A2C/2A2C/3A2C rotation systems and 60 kg N ha<sup>−1</sup> N fertilizer for 4A2C/5A2C rotation systems to the first-year corn following alfalfa. However, the N fertilizer requirement of the second-year corn following alfalfa under AC
{"title":"Using APSIM to optimize corn nitrogen fertilizer application levels in alfalfa-corn rotation system in Northeast China","authors":"Yuxing Peng , Feixia Zhang , Shuai Zhang , Zizhong Li , Shuming Cao , Chuxin Luo , Fei Yu","doi":"10.1016/j.fcr.2024.109596","DOIUrl":"10.1016/j.fcr.2024.109596","url":null,"abstract":"<div><h3>Context</h3><div>Alfalfa (<em>Medicago sativa</em> L.) consumes a large amount of soil inorganic nitrogen (N) but can supply ample rhizosphere deposited N to subsequent crops. Therefore, N fertilizer application levels should be optimized for corn under long-term alfalfa-corn (AC) rotation system to achieve high yield and N use efficiency.</div></div><div><h3>Objective</h3><div>The present study assessed the yield and water and N use efficiency of corn under N fertilizer application in a long-term AC cropping system and optimized the corn N fertilizer application level using the Agricultural Production Systems sIMulator (APSIM).</div></div><div><h3>Methods</h3><div>APSIM was calibrated and validated utilizing the experimental datasets of yield, aboveground biomass, plant N uptake, soil water storage, and inorganic N at 0−140 cm soil layer during corn growth with four N fertilizer treatments (0, 130, 195, and 260 kg N ha<sup>−1</sup>), which were collected from a six-year-old alfalfa field experiment carried out in Lishu County (Jilin Province, China) from 2020 to 2022; the field experiment was initiated in 2014. The validated APSIM was then utilized to simulate the long-term (1981−2020) characteristics of crop and soil under different corn N fertilizer application levels in a continuous corn (CC) cropping system and different alfalfa-corn rotation systems (one, two, three, four, and five years of alfalfa followed by two years of corn; 1A2C, 2A2C, 3A2C, 4A2C, 5A2C). The simulated N treatments included 0−300 kg N ha<sup>−1</sup> range with an increment of 30 kg N ha<sup>−1</sup>.</div></div><div><h3>Results</h3><div>Model evaluation revealed that APSIM effectively captured the dynamics of the crop, soil water, and soil inorganic N during corn cultivation following alfalfa at four N fertilizer application levels. The normalized root-mean-square errors between the observed and simulated values under different treatments were less than 30 %. Alfalfa had legacy effects on the soil water and soil N mineralization (N<sub>min</sub>) of subsequent first-year corn, which ensured the corn yield following alfalfa. The first-year net N<sub>min</sub> in the soil with corn following alfalfa increased by 140 % (65 %−268 %) compared to the CC cropping system. Alfalfa planting also increased the 0−140 cm soil inorganic N before sowing (N<sub>sow</sub>) by 351 % (292 %−463 %) for the subsequent corn with no N fertilizer application and the 0−140 cm soil water storage before sowing by 22 % for the subsequent corn with relatively high N fertilizer application (300 kg N ha<sup>−1</sup>) compared to the CC cropping system. The highest yield and N use efficiency could be achieved by applying 90 kg N ha<sup>−1</sup> N fertilizer for 1A2C/2A2C/3A2C rotation systems and 60 kg N ha<sup>−1</sup> N fertilizer for 4A2C/5A2C rotation systems to the first-year corn following alfalfa. However, the N fertilizer requirement of the second-year corn following alfalfa under AC","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109596"},"PeriodicalIF":5.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.fcr.2024.109591
Raushan Kumar, Nirmali Bordoloi
<div><h3>Context</h3><div>Increasing global demand for wheat necessitates heightened the nitrogen (N) input. However, this amplifies nitrous oxide (N<sub>2</sub>O) emissions, impairing global climate change.</div></div><div><h3>Objectives</h3><div>To address this dual challenge of meeting crop demands while curbing N<sub>2</sub>O emissions, a two-years (2022–2023) field study was carried out in Central University of Jharkhand, Brambe, Ranchi, Jharkhand, India. The study aimed to examine the impact of varying fertilizer during the wheat growing seasons on N<sub>2</sub>O emissions, global warming potential (GWP) and nitrogen use efficiency <strong>(</strong>NUE)<strong>.</strong></div></div><div><h3>Methods</h3><div>Seven experimental treatments were set up in a randomized block design i.e., WF0, Control (no fertilizer), WF1 (<em>N at recommended dose (RD), 150kgha</em><sup><em>−1</em></sup><em>)</em>, WF2 (30 % reduce N at RD, 105kgha<sup>−1</sup>), WF3 (<em>Diammonium phosphate at RD)</em>, WF4 (<em>Ammonium sulphate</em> at RD), WF5 (<em>Sesbania aculeata green manure, 5 t ha</em><sup><em>−1</em></sup> <em>+</em> 50 % reduce N, 75kgha<sup>−1</sup>) and WF6 (<em>Crotalaria juncea green manure, 5 t ha</em><sup><em>−1</em></sup> + 50 % reduce N, 75kgha<sup>−1</sup>). The static chamber technique was used for collecting N<sub>2</sub>O gas samples and concentration were analyzed through gas chromatography methods. Additionally, soil mineral nitrogen, enzyme activity, NUE and yield related parameters were analyzed.</div></div><div><h3>Results</h3><div>The results showed that the cumulative emissions of N<sub>2</sub>O in WF3 increased significantly (p < 0.05) by 7.24 %, while those in WF5 and WF6 decreased by 39.90 % and 26.09 % respectively, compared to WF1. WF5 treatment significantly decreased GWP and greenhouse gas intensity of N<sub>2</sub>O by 40 % and 59.71 % respectively, compared to WF1. In contrast, WF5 treatment significantly (p < 0.05) inhibited the nitrate reductase activity (NRA) and urease activity (UA). Along with reduced N<sub>2</sub>O emissions, treatment WF5 also increased the NUE and wheat yield, by 61.98 % and 13.71 %, respectively, over the WF1 treatment. The correlation analysis found positive correlations between soil nitrate, ammonia, water filled pore spaces, NRA and UA, while NUE showed negative correlations with N<sub>2</sub>O emissions.</div></div><div><h3>Conclusions</h3><div>Therefore, fertilization regimes, such as application of green manure i.e., <em>Sesbania aculeata</em> with 50 % reduction in fertilizer rate (75 kg N ha<sup>–1</sup>) compared to the normal rate (150 kg N ha<sup>–1</sup>), could be recommended as fertilization strategies to mitigate N<sub>2</sub>O emissions and ensuring global food security.</div></div><div><h3>Significance</h3><div>The study outcomes provide indispensable insights for optimizing climate resilient agricultural strategies at regional and global scale. The data acquired from thes
{"title":"Combined impact of reduced N fertilizer and green manure on wheat yield, nitrogen use efficiency and nitrous oxide (N2O) emissions reduction in Jharkhand, eastern India","authors":"Raushan Kumar, Nirmali Bordoloi","doi":"10.1016/j.fcr.2024.109591","DOIUrl":"10.1016/j.fcr.2024.109591","url":null,"abstract":"<div><h3>Context</h3><div>Increasing global demand for wheat necessitates heightened the nitrogen (N) input. However, this amplifies nitrous oxide (N<sub>2</sub>O) emissions, impairing global climate change.</div></div><div><h3>Objectives</h3><div>To address this dual challenge of meeting crop demands while curbing N<sub>2</sub>O emissions, a two-years (2022–2023) field study was carried out in Central University of Jharkhand, Brambe, Ranchi, Jharkhand, India. The study aimed to examine the impact of varying fertilizer during the wheat growing seasons on N<sub>2</sub>O emissions, global warming potential (GWP) and nitrogen use efficiency <strong>(</strong>NUE)<strong>.</strong></div></div><div><h3>Methods</h3><div>Seven experimental treatments were set up in a randomized block design i.e., WF0, Control (no fertilizer), WF1 (<em>N at recommended dose (RD), 150kgha</em><sup><em>−1</em></sup><em>)</em>, WF2 (30 % reduce N at RD, 105kgha<sup>−1</sup>), WF3 (<em>Diammonium phosphate at RD)</em>, WF4 (<em>Ammonium sulphate</em> at RD), WF5 (<em>Sesbania aculeata green manure, 5 t ha</em><sup><em>−1</em></sup> <em>+</em> 50 % reduce N, 75kgha<sup>−1</sup>) and WF6 (<em>Crotalaria juncea green manure, 5 t ha</em><sup><em>−1</em></sup> + 50 % reduce N, 75kgha<sup>−1</sup>). The static chamber technique was used for collecting N<sub>2</sub>O gas samples and concentration were analyzed through gas chromatography methods. Additionally, soil mineral nitrogen, enzyme activity, NUE and yield related parameters were analyzed.</div></div><div><h3>Results</h3><div>The results showed that the cumulative emissions of N<sub>2</sub>O in WF3 increased significantly (p < 0.05) by 7.24 %, while those in WF5 and WF6 decreased by 39.90 % and 26.09 % respectively, compared to WF1. WF5 treatment significantly decreased GWP and greenhouse gas intensity of N<sub>2</sub>O by 40 % and 59.71 % respectively, compared to WF1. In contrast, WF5 treatment significantly (p < 0.05) inhibited the nitrate reductase activity (NRA) and urease activity (UA). Along with reduced N<sub>2</sub>O emissions, treatment WF5 also increased the NUE and wheat yield, by 61.98 % and 13.71 %, respectively, over the WF1 treatment. The correlation analysis found positive correlations between soil nitrate, ammonia, water filled pore spaces, NRA and UA, while NUE showed negative correlations with N<sub>2</sub>O emissions.</div></div><div><h3>Conclusions</h3><div>Therefore, fertilization regimes, such as application of green manure i.e., <em>Sesbania aculeata</em> with 50 % reduction in fertilizer rate (75 kg N ha<sup>–1</sup>) compared to the normal rate (150 kg N ha<sup>–1</sup>), could be recommended as fertilization strategies to mitigate N<sub>2</sub>O emissions and ensuring global food security.</div></div><div><h3>Significance</h3><div>The study outcomes provide indispensable insights for optimizing climate resilient agricultural strategies at regional and global scale. The data acquired from thes","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109591"},"PeriodicalIF":5.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.fcr.2024.109597
Junlong Huang , Yi Xu , Mengsu Peng , Rong Jia , Juncong Chu , Amit Kumar , Changzhong Ren , Yadong Yang , Dongmei Wang , Xiaojun Wang , Zhaohai Zeng , Leanne Peixoto , Huadong Zang
Context
Although alternative cropping systems are crucial for enhancing food security and soil quality, continuous maize monoculture remains leading to high environmental consequences and lower sustainability.
Objective
This study aims to assess crop production, economic benefits, and soil quality under 6 years of alternative cropping in comparison to continuous maize.
Methods
A randomized complete block design with three replicates was employed to evaluate the effects of alternative cropping on net income, nutrient equivalent yield, and soil quality. Nutrient equivalent yield was calculated by quantifying the nutritional content of harvested crops. Soil quality was assessed through a combination of physical, chemical, and biological indicators.
Results
Our findings indicate that sorghum-maize-peanut and mung bean-maize-sunflower rotations significantly increased net income by 165.06 % and 37.86 % than continuous maize, respectively. However, these systems did not significantly alter soil quality. Reduced cropping intensity (fallow, maize-fallow, and soybean-maize-fallow) effectively improved soil quality by 14.1–37.8 %. This improvement was attributed to the enhancement of soil organic carbon and total nitrogen, as well as the alleviation of microbial metabolic constraints related to carbon and nitrogen. Despite these benefits, reduced cropping intensity also resulted in a decrease in nutrient-equivalent yields and net income.
Conclusion
The sorghum-maize-peanut rotation achieves a balance between maintaining comparable nutrient-equivalent yields and soil quality, while demonstrating a higher net income compared to continuous maize.
Implications
This study highlights the economic and environmental benefits of diversified cropping and the importance of reduced cropping intensity for soil quality enhancement. These findings are significant for guiding agricultural practices that balance food production with soil conservation.
{"title":"Navigating the trade-offs in crop production and soil quality through alternative cropping","authors":"Junlong Huang , Yi Xu , Mengsu Peng , Rong Jia , Juncong Chu , Amit Kumar , Changzhong Ren , Yadong Yang , Dongmei Wang , Xiaojun Wang , Zhaohai Zeng , Leanne Peixoto , Huadong Zang","doi":"10.1016/j.fcr.2024.109597","DOIUrl":"10.1016/j.fcr.2024.109597","url":null,"abstract":"<div><h3>Context</h3><div>Although alternative cropping systems are crucial for enhancing food security and soil quality, continuous maize monoculture remains leading to high environmental consequences and lower sustainability.</div></div><div><h3>Objective</h3><div>This study aims to assess crop production, economic benefits, and soil quality under 6 years of alternative cropping in comparison to continuous maize.</div></div><div><h3>Methods</h3><div>A randomized complete block design with three replicates was employed to evaluate the effects of alternative cropping on net income, nutrient equivalent yield, and soil quality. Nutrient equivalent yield was calculated by quantifying the nutritional content of harvested crops. Soil quality was assessed through a combination of physical, chemical, and biological indicators.</div></div><div><h3>Results</h3><div>Our findings indicate that sorghum-maize-peanut and mung bean-maize-sunflower rotations significantly increased net income by 165.06 % and 37.86 % than continuous maize, respectively. However, these systems did not significantly alter soil quality. Reduced cropping intensity (fallow, maize-fallow, and soybean-maize-fallow) effectively improved soil quality by 14.1–37.8 %. This improvement was attributed to the enhancement of soil organic carbon and total nitrogen, as well as the alleviation of microbial metabolic constraints related to carbon and nitrogen. Despite these benefits, reduced cropping intensity also resulted in a decrease in nutrient-equivalent yields and net income.</div></div><div><h3>Conclusion</h3><div>The sorghum-maize-peanut rotation achieves a balance between maintaining comparable nutrient-equivalent yields and soil quality, while demonstrating a higher net income compared to continuous maize.</div></div><div><h3>Implications</h3><div>This study highlights the economic and environmental benefits of diversified cropping and the importance of reduced cropping intensity for soil quality enhancement. These findings are significant for guiding agricultural practices that balance food production with soil conservation.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109597"},"PeriodicalIF":5.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.fcr.2024.109576
Arjun Pandey , James Hunt , James Murray , Kate Maddern , Xiaojuan Wang , Caixian Tang , Kate Finger
Context
Nitrogen (N) deficiency is the single biggest cause of the yield gap in Australian wheat production. Nitrogen fertiliser is a costly input and prediction of crop seasonal demand for N in Australia’s variable climate is difficult, so farmers are conservative with investment in N fertiliser, leading to under-fertilisation and over reliance on soil organic N.
Objective
We evaluated the ability of different N decision-making systems to close yield gaps, reduce mining of soil organic N and minimise accumulation of soil nitrate.
Methods
A 5-year (2018–2022) field experiment was conducted in a rainfed Mediterranean environment at Curyo, Victoria in Australia with different N decision-making systems, namely N bank (NB) targets (100, 125 and 150 kg N ha−1), Yield Prophet® (YP) at different yield probabilities (25, 50, 75 and 100 %), annual Australian national average N rate (NA45, 45 kg N ha−1), replacement of N in exported grain (R) and a nil control, as treatments in a randomised complete block design with four replicates.
Results
After five years, YP25, YP50, YP75 and NB125 applied on average 49, 30, 4 and 18 kg ha−1 more N per year than NA45, respectively, and achieved or exceeded economic yield (EY), i.e. 80 % of water-limited potential yield (PYw), as opposed to 72 % of PYw achieved in NA45. These systems also had a higher 5-year mean gross margin (AUD 469–550 ha−1) compared to the NA45 (AUD 401 ha−1). Positive 5-year partial N balance (total N input minus total N exported in grain over 5 years) was observed only in the YP25, YP50, NB150 and NB125 treatments (4–93 kg N ha−1). However, apart from NB125 these treatments had consistently higher soil mineral N levels to 1-m depth compared to NA45 and <2 marginal return:cost ratio. Also nitrate content at 0.7–1.0 m depth in the YP25 and NB150 treatments were consistently higher (p <0.05) than that in NA45.
Conclusions
Low soil nitrate level, achievement of EY and higher gross margin in the NB125 compared to NA45 makes it the N management system best suited for this environment. Additionally, the positive partial N balance (4 kg N ha−1) observed in the system suggests that it is less likely to mine soil organic N compared to NA45 (-39 kg ha−1).
Significance
Adoption by growers of the best performing systems should reduce grain yield gaps and reduce mining of soil organic N with no increased risk of environmental N loss.
{"title":"A comparison of nitrogen fertiliser decision making systems to profitably close grain yield gaps in semi-arid environments","authors":"Arjun Pandey , James Hunt , James Murray , Kate Maddern , Xiaojuan Wang , Caixian Tang , Kate Finger","doi":"10.1016/j.fcr.2024.109576","DOIUrl":"10.1016/j.fcr.2024.109576","url":null,"abstract":"<div><h3>Context</h3><div>Nitrogen (N) deficiency is the single biggest cause of the yield gap in Australian wheat production. Nitrogen fertiliser is a costly input and prediction of crop seasonal demand for N in Australia’s variable climate is difficult, so farmers are conservative with investment in N fertiliser, leading to under-fertilisation and over reliance on soil organic N.</div></div><div><h3>Objective</h3><div>We evaluated the ability of different N decision-making systems to close yield gaps, reduce mining of soil organic N and minimise accumulation of soil nitrate.</div></div><div><h3>Methods</h3><div>A 5-year (2018–2022) field experiment was conducted in a rainfed Mediterranean environment at Curyo, Victoria in Australia with different N decision-making systems, namely N bank (NB) targets (100, 125 and 150 kg N ha<sup>−1</sup>), Yield Prophet® (YP) at different yield probabilities (25, 50, 75 and 100 %), annual Australian national average N rate (NA45, 45 kg N ha<sup>−1</sup>), replacement of N in exported grain (R) and a nil control, as treatments in a randomised complete block design with four replicates.</div></div><div><h3>Results</h3><div>After five years, YP25, YP50, YP75 and NB125 applied on average 49, 30, 4 and 18 kg ha<sup>−1</sup> more N per year than NA45, respectively, and achieved or exceeded economic yield (EY), i.e. 80 % of water-limited potential yield (PY<sub>w</sub>), as opposed to 72 % of PY<sub>w</sub> achieved in NA45. These systems also had a higher 5-year mean gross margin (AUD 469–550 ha<sup>−1</sup>) compared to the NA45 (AUD 401 ha<sup>−1</sup>). Positive 5-year partial N balance (total N input minus total N exported in grain over 5 years) was observed only in the YP25, YP50, NB150 and NB125 treatments (4–93 kg N ha<sup>−1</sup>). However, apart from NB125 these treatments had consistently higher soil mineral N levels to 1-m depth compared to NA45 and <2 marginal return:cost ratio. Also nitrate content at 0.7–1.0 m depth in the YP25 and NB150 treatments were consistently higher (<em>p</em> <0.05) than that in NA45.</div></div><div><h3>Conclusions</h3><div>Low soil nitrate level, achievement of EY and higher gross margin in the NB125 compared to NA45 makes it the N management system best suited for this environment. Additionally, the positive partial N balance (4 kg N ha<sup>−1</sup>) observed in the system suggests that it is less likely to mine soil organic N compared to NA45 (-39 kg ha<sup>−1</sup>).</div></div><div><h3>Significance</h3><div>Adoption by growers of the best performing systems should reduce grain yield gaps and reduce mining of soil organic N with no increased risk of environmental N loss.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109576"},"PeriodicalIF":5.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378429024003290/pdfft?md5=1a8fd023d9116c6f3f72acefdb8731b7&pid=1-s2.0-S0378429024003290-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}