首页 > 最新文献

Frontiers in Computational Neuroscience最新文献

英文 中文
Multiscale modeling of neuronal dynamics in hippocampus CA1 海马 CA1 神经元动态的多尺度建模
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-06 DOI: 10.3389/fncom.2024.1432593
Federico Tesler, Roberta Maria Lorenzi, Adam Ponzi, Claudia Casellato, Fulvia Palesi, Daniela Gandolfi, Claudia A. M. Gandini Wheeler Kingshott, Jonathan Mapelli, Egidio D'Angelo, Michele Migliore, Alain Destexhe
The development of biologically realistic models of brain microcircuits and regions constitutes currently a very relevant topic in computational neuroscience. One of the main challenges of such models is the passage between different scales, going from the microscale (cellular) to the meso (microcircuit) and macroscale (region or whole-brain level), while keeping at the same time a constraint on the demand of computational resources. In this paper we introduce a multiscale modeling framework for the hippocampal CA1, a region of the brain that plays a key role in functions such as learning, memory consolidation and navigation. Our modeling framework goes from the single cell level to the macroscale and makes use of a novel mean-field model of CA1, introduced in this paper, to bridge the gap between the micro and macro scales. We test and validate the model by analyzing the response of the system to the main brain rhythms observed in the hippocampus and comparing our results with the ones of the corresponding spiking network model of CA1. Then, we analyze the implementation of synaptic plasticity within our framework, a key aspect to study the role of hippocampus in learning and memory consolidation, and we demonstrate the capability of our framework to incorporate the variations at synaptic level. Finally, we present an example of the implementation of our model to study a stimulus propagation at the macro-scale level, and we show that the results of our framework can capture the dynamics obtained in the corresponding spiking network model of the whole CA1 area.
大脑微电路和脑区生物现实模型的开发是当前计算神经科学领域一个非常重要的课题。此类模型面临的主要挑战之一是如何在不同尺度之间穿行,从微观尺度(细胞)到中观尺度(微电路)和宏观尺度(区域或全脑水平),同时还要保持对计算资源需求的限制。本文介绍了海马 CA1 的多尺度建模框架,海马 CA1 是大脑的一个区域,在学习、记忆巩固和导航等功能中发挥着关键作用。我们的建模框架从单细胞水平到宏观尺度,并利用本文介绍的 CA1 的新型均场模型来弥合微观和宏观尺度之间的差距。我们通过分析系统对海马体中观察到的主要大脑节律的响应,并将结果与 CA1 的相应尖峰网络模型进行比较,来测试和验证该模型。然后,我们分析了突触可塑性在我们的框架中的实现,这是研究海马在学习和记忆巩固中的作用的一个关键方面。最后,我们举例说明了如何利用我们的模型来研究刺激在宏观尺度上的传播,结果表明我们的框架可以捕捉到整个 CA1 区域相应的尖峰网络模型所获得的动态变化。
{"title":"Multiscale modeling of neuronal dynamics in hippocampus CA1","authors":"Federico Tesler, Roberta Maria Lorenzi, Adam Ponzi, Claudia Casellato, Fulvia Palesi, Daniela Gandolfi, Claudia A. M. Gandini Wheeler Kingshott, Jonathan Mapelli, Egidio D'Angelo, Michele Migliore, Alain Destexhe","doi":"10.3389/fncom.2024.1432593","DOIUrl":"https://doi.org/10.3389/fncom.2024.1432593","url":null,"abstract":"The development of biologically realistic models of brain microcircuits and regions constitutes currently a very relevant topic in computational neuroscience. One of the main challenges of such models is the passage between different scales, going from the microscale (cellular) to the meso (microcircuit) and macroscale (region or whole-brain level), while keeping at the same time a constraint on the demand of computational resources. In this paper we introduce a multiscale modeling framework for the hippocampal CA1, a region of the brain that plays a key role in functions such as learning, memory consolidation and navigation. Our modeling framework goes from the single cell level to the macroscale and makes use of a novel mean-field model of CA1, introduced in this paper, to bridge the gap between the micro and macro scales. We test and validate the model by analyzing the response of the system to the main brain rhythms observed in the hippocampus and comparing our results with the ones of the corresponding spiking network model of CA1. Then, we analyze the implementation of synaptic plasticity within our framework, a key aspect to study the role of hippocampus in learning and memory consolidation, and we demonstrate the capability of our framework to incorporate the variations at synaptic level. Finally, we present an example of the implementation of our model to study a stimulus propagation at the macro-scale level, and we show that the results of our framework can capture the dynamics obtained in the corresponding spiking network model of the whole CA1 area.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"58 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A neural basis for learning sequential memory in brain loop structures 大脑环路结构中学习顺序记忆的神经基础
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-05 DOI: 10.3389/fncom.2024.1421458
Duho Sihn, Sung-Phil Kim
IntroductionBehaviors often involve a sequence of events, and learning and reproducing it is essential for sequential memory. Brain loop structures refer to loop-shaped inter-regional connection structures in the brain such as cortico-basal ganglia-thalamic and cortico-cerebellar loops. They are thought to play a crucial role in supporting sequential memory, but it is unclear what properties of the loop structure are important and why.MethodsIn this study, we investigated conditions necessary for the learning of sequential memory in brain loop structures via computational modeling. We assumed that sequential memory emerges due to delayed information transmission in loop structures and presented a basic neural activity model and validated our theoretical considerations with spiking neural network simulations.ResultsBased on this model, we described the factors for the learning of sequential memory: first, the information transmission delay should decrease as the size of the loop structure increases; and second, the likelihood of the learning of sequential memory increases as the size of the loop structure increases and soon saturates. Combining these factors, we showed that moderate-sized brain loop structures are advantageous for the learning of sequential memory due to the physiological restrictions of information transmission delay.DiscussionOur results will help us better understand the relationship between sequential memory and brain loop structures.
导言行为往往涉及一系列事件,学习和再现这些事件对于顺序记忆至关重要。大脑环路结构是指大脑中的环形区域间连接结构,如皮质-基底节-丘脑环路和皮质-小脑环路。方法在这项研究中,我们通过计算建模研究了脑环路结构中顺序记忆学习的必要条件。我们假设顺序记忆的出现是由于环路结构中信息传递的延迟,并提出了一个基本的神经活动模型,用尖峰神经网络模拟验证了我们的理论考虑。结果基于这个模型,我们描述了顺序记忆学习的因素:首先,信息传递延迟应该随着环路结构规模的增大而减小;其次,顺序记忆学习的可能性随着环路结构规模的增大而增大,并很快达到饱和。综合这些因素,我们发现由于信息传递延迟的生理限制,适度大小的大脑环路结构对顺序记忆的学习是有利的。
{"title":"A neural basis for learning sequential memory in brain loop structures","authors":"Duho Sihn, Sung-Phil Kim","doi":"10.3389/fncom.2024.1421458","DOIUrl":"https://doi.org/10.3389/fncom.2024.1421458","url":null,"abstract":"IntroductionBehaviors often involve a sequence of events, and learning and reproducing it is essential for sequential memory. Brain loop structures refer to loop-shaped inter-regional connection structures in the brain such as cortico-basal ganglia-thalamic and cortico-cerebellar loops. They are thought to play a crucial role in supporting sequential memory, but it is unclear what properties of the loop structure are important and why.MethodsIn this study, we investigated conditions necessary for the learning of sequential memory in brain loop structures via computational modeling. We assumed that sequential memory emerges due to delayed information transmission in loop structures and presented a basic neural activity model and validated our theoretical considerations with spiking neural network simulations.ResultsBased on this model, we described the factors for the learning of sequential memory: first, the information transmission delay should decrease as the size of the loop structure increases; and second, the likelihood of the learning of sequential memory increases as the size of the loop structure increases and soon saturates. Combining these factors, we showed that moderate-sized brain loop structures are advantageous for the learning of sequential memory due to the physiological restrictions of information transmission delay.DiscussionOur results will help us better understand the relationship between sequential memory and brain loop structures.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"3 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eight challenges in developing theory of intelligence 发展智力理论的八大挑战
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-07-24 DOI: 10.3389/fncom.2024.1388166
Haiping Huang
A good theory of mathematical beauty is more practical than any current observation, as new predictions about physical reality can be self-consistently verified. This belief applies to the current status of understanding deep neural networks including large language models and even the biological intelligence. Toy models provide a metaphor of physical reality, allowing mathematically formulating the reality (i.e., the so-called theory), which can be updated as more conjectures are justified or refuted. One does not need to present all details in a model, but rather, more abstract models are constructed, as complex systems such as the brains or deep networks have many sloppy dimensions but much less stiff dimensions that strongly impact macroscopic observables. This type of bottom-up mechanistic modeling is still promising in the modern era of understanding the natural or artificial intelligence. Here, we shed light on eight challenges in developing theory of intelligence following this theoretical paradigm. Theses challenges are representation learning, generalization, adversarial robustness, continual learning, causal learning, internal model of the brain, next-token prediction, and the mechanics of subjective experience.
一个好的数学美学理论比当前的任何观测都更实用,因为关于物理现实的新预测可以自洽地得到验证。这一信念适用于理解深度神经网络(包括大型语言模型)甚至生物智能的现状。玩具模型为物理现实提供了一种隐喻,可以用数学方法表述现实(即所谓的理论),并随着更多猜想的证实或反驳而更新。我们不需要在模型中呈现所有细节,而是要构建更抽象的模型,因为大脑或深层网络等复杂系统有许多马虎的维度,但对宏观观测指标有强烈影响的僵硬维度却少得多。在理解自然或人工智能的现代,这种自下而上的机理建模仍大有可为。在此,我们将阐明按照这种理论范式发展智能理论所面临的八大挑战。这些挑战包括表征学习、泛化、对抗鲁棒性、持续学习、因果学习、大脑内部模型、下一个标记预测以及主观体验的机制。
{"title":"Eight challenges in developing theory of intelligence","authors":"Haiping Huang","doi":"10.3389/fncom.2024.1388166","DOIUrl":"https://doi.org/10.3389/fncom.2024.1388166","url":null,"abstract":"A good theory of mathematical beauty is more practical than any current observation, as new predictions about physical reality can be self-consistently verified. This belief applies to the current status of understanding deep neural networks including large language models and even the biological intelligence. Toy models provide a metaphor of physical reality, allowing mathematically formulating the reality (i.e., the so-called theory), which can be updated as more conjectures are justified or refuted. One does not need to present all details in a model, but rather, more abstract models are constructed, as complex systems such as the brains or deep networks have many sloppy dimensions but much less stiff dimensions that strongly impact macroscopic observables. This type of bottom-up mechanistic modeling is still promising in the modern era of understanding the natural or artificial intelligence. Here, we shed light on eight challenges in developing theory of intelligence following this theoretical paradigm. Theses challenges are representation learning, generalization, adversarial robustness, continual learning, causal learning, internal model of the brain, next-token prediction, and the mechanics of subjective experience.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"47 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EEG-based emotion recognition using graph convolutional neural network with dual attention mechanism 利用图卷积神经网络和双重关注机制进行基于脑电图的情绪识别
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-07-19 DOI: 10.3389/fncom.2024.1416494
Wei Chen, Yuan Liao, Rui Dai, Yuanlin Dong, Liya Huang
EEG-based emotion recognition is becoming crucial in brain-computer interfaces (BCI). Currently, most researches focus on improving accuracy, while neglecting further research on the interpretability of models, we are committed to analyzing the impact of different brain regions and signal frequency bands on emotion generation based on graph structure. Therefore, this paper proposes a method named Dual Attention Mechanism Graph Convolutional Neural Network (DAMGCN). Specifically, we utilize graph convolutional neural networks to model the brain network as a graph to extract representative spatial features. Furthermore, we employ the self-attention mechanism of the Transformer model which allocates more electrode channel weights and signal frequency band weights to important brain regions and frequency bands. The visualization of attention mechanism clearly demonstrates the weight allocation learned by DAMGCN. During the performance evaluation of our model on the DEAP, SEED, and SEED-IV datasets, we achieved the best results on the SEED dataset, showing subject-dependent experiments’ accuracy of 99.42% and subject-independent experiments’ accuracy of 73.21%. The results are demonstrably superior to the accuracies of most existing models in the realm of EEG-based emotion recognition.
基于脑电图的情感识别在脑机接口(BCI)中变得至关重要。目前,大多数研究侧重于提高准确率,而忽视了对模型可解释性的进一步研究,我们致力于分析不同脑区和信号频段对基于图结构的情感生成的影响。因此,本文提出了一种名为双注意机制图卷积神经网络(DAMGCN)的方法。具体来说,我们利用图卷积神经网络将大脑网络建模为图,从而提取具有代表性的空间特征。此外,我们还采用了 Transformer 模型的自我注意机制,将更多的电极通道权重和信号频带权重分配给重要的脑区和频带。注意力机制的可视化清晰地展示了 DAMGCN 学习到的权重分配。在 DEAP、SEED 和 SEED-IV 数据集上对我们的模型进行性能评估时,我们在 SEED 数据集上取得了最好的结果,受试者依赖实验的准确率为 99.42%,受试者独立实验的准确率为 73.21%。在基于脑电图的情感识别领域,这些结果明显优于大多数现有模型的准确率。
{"title":"EEG-based emotion recognition using graph convolutional neural network with dual attention mechanism","authors":"Wei Chen, Yuan Liao, Rui Dai, Yuanlin Dong, Liya Huang","doi":"10.3389/fncom.2024.1416494","DOIUrl":"https://doi.org/10.3389/fncom.2024.1416494","url":null,"abstract":"EEG-based emotion recognition is becoming crucial in brain-computer interfaces (BCI). Currently, most researches focus on improving accuracy, while neglecting further research on the interpretability of models, we are committed to analyzing the impact of different brain regions and signal frequency bands on emotion generation based on graph structure. Therefore, this paper proposes a method named Dual Attention Mechanism Graph Convolutional Neural Network (DAMGCN). Specifically, we utilize graph convolutional neural networks to model the brain network as a graph to extract representative spatial features. Furthermore, we employ the self-attention mechanism of the Transformer model which allocates more electrode channel weights and signal frequency band weights to important brain regions and frequency bands. The visualization of attention mechanism clearly demonstrates the weight allocation learned by DAMGCN. During the performance evaluation of our model on the DEAP, SEED, and SEED-IV datasets, we achieved the best results on the SEED dataset, showing subject-dependent experiments’ accuracy of 99.42% and subject-independent experiments’ accuracy of 73.21%. The results are demonstrably superior to the accuracies of most existing models in the realm of EEG-based emotion recognition.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"40 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hippocampal formation-inspired global self-localization: quick recovery from the kidnapped robot problem from an egocentric perspective 海马体形成启发的全局自我定位:从自我中心视角快速解决被绑架机器人问题
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-07-18 DOI: 10.3389/fncom.2024.1398851
Takeshi Nakashima, Shunsuke Otake, Akira Taniguchi, Katsuyoshi Maeyama, Lotfi El Hafi, Tadahiro Taniguchi, Hiroshi Yamakawa
It remains difficult for mobile robots to continue accurate self-localization when they are suddenly teleported to a location that is different from their beliefs during navigation. Incorporating insights from neuroscience into developing a spatial cognition model for mobile robots may make it possible to acquire the ability to respond appropriately to changing situations, similar to living organisms. Recent neuroscience research has shown that during teleportation in rat navigation, neural populations of place cells in the cornu ammonis-3 region of the hippocampus, which are sparse representations of each other, switch discretely. In this study, we construct a spatial cognition model using brain reference architecture-driven development, a method for developing brain-inspired software that is functionally and structurally consistent with the brain. The spatial cognition model was realized by integrating the recurrent state—space model, a world model, with Monte Carlo localization to infer allocentric self-positions within the framework of neuro-symbol emergence in the robotics toolkit. The spatial cognition model, which models the cornu ammonis-1 and -3 regions with each latent variable, demonstrated improved self-localization performance of mobile robots during teleportation in a simulation environment. Moreover, it was confirmed that sparse neural activity could be obtained for the latent variables corresponding to cornu ammonis-3. These results suggest that spatial cognition models incorporating neuroscience insights can contribute to improving the self-localization technology for mobile robots. The project website is https://nakashimatakeshi.github.io/HF-IGL/.
当移动机器人在导航过程中突然被传送到一个与其信念不同的位置时,它们仍然很难继续进行准确的自我定位。在开发移动机器人的空间认知模型时融入神经科学的见解,可能会使移动机器人获得对不断变化的情况做出适当反应的能力,类似于生物体。最近的神经科学研究表明,在大鼠导航的远距离传送过程中,海马角氨-3区的位置细胞神经群会离散切换,而这些神经群是彼此稀疏的表征。在这项研究中,我们利用大脑参考架构驱动的开发方法构建了一个空间认知模型,这种方法用于开发在功能和结构上与大脑一致的大脑启发软件。空间认知模型是在机器人工具包的神经符号涌现框架内,通过将循环状态空间模型(一种世界模型)与蒙特卡洛定位推断分配中心自我位置相结合而实现的。该空间认知模型利用每个潜变量对 cornu ammonis-1 和 -3 区域进行建模,在模拟环境中展示了移动机器人在远距传物过程中自我定位性能的提高。此外,研究还证实,与 cornu ammonis-3 相对应的潜变量可以获得稀疏的神经活动。这些结果表明,结合神经科学见解的空间认知模型有助于改进移动机器人的自我定位技术。项目网站:https://nakashimatakeshi.github.io/HF-IGL/。
{"title":"Hippocampal formation-inspired global self-localization: quick recovery from the kidnapped robot problem from an egocentric perspective","authors":"Takeshi Nakashima, Shunsuke Otake, Akira Taniguchi, Katsuyoshi Maeyama, Lotfi El Hafi, Tadahiro Taniguchi, Hiroshi Yamakawa","doi":"10.3389/fncom.2024.1398851","DOIUrl":"https://doi.org/10.3389/fncom.2024.1398851","url":null,"abstract":"It remains difficult for mobile robots to continue accurate self-localization when they are suddenly teleported to a location that is different from their beliefs during navigation. Incorporating insights from neuroscience into developing a spatial cognition model for mobile robots may make it possible to acquire the ability to respond appropriately to changing situations, similar to living organisms. Recent neuroscience research has shown that during teleportation in rat navigation, neural populations of place cells in the cornu ammonis-3 region of the hippocampus, which are sparse representations of each other, switch discretely. In this study, we construct a spatial cognition model using brain reference architecture-driven development, a method for developing brain-inspired software that is functionally and structurally consistent with the brain. The spatial cognition model was realized by integrating the recurrent state—space model, a world model, with Monte Carlo localization to infer allocentric self-positions within the framework of neuro-symbol emergence in the robotics toolkit. The spatial cognition model, which models the cornu ammonis-1 and -3 regions with each latent variable, demonstrated improved self-localization performance of mobile robots during teleportation in a simulation environment. Moreover, it was confirmed that sparse neural activity could be obtained for the latent variables corresponding to cornu ammonis-3. These results suggest that spatial cognition models incorporating neuroscience insights can contribute to improving the self-localization technology for mobile robots. The project website is <jats:ext-link>https://nakashimatakeshi.github.io/HF-IGL/</jats:ext-link>.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"25 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A three-step, “brute-force” approach toward optimized affine spatial normalization 优化仿射空间归一化的三步 "蛮力 "法
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-07-08 DOI: 10.3389/fncom.2024.1367148
Marko Wilke
The first step in spatial normalization of magnetic resonance (MR) images commonly is an affine transformation, which may be vulnerable to image imperfections (such as inhomogeneities or “unusual” heads). Additionally, common software solutions use internal starting estimates to allow for a more efficient computation, which may pose a problem in datasets not conforming to these assumptions (such as those from children). In this technical note, three main questions were addressed: one, does the affine spatial normalization step implemented in SPM12 benefit from an initial inhomogeneity correction. Two, does using a complexity-reduced image version improve robustness when matching “unusual” images. And three, can a blind “brute-force” application of a wide range of parameter combinations improve the affine fit for unusual datasets in particular. A large database of 2081 image datasets was used, covering the full age range from birth to old age. All analyses were performed in Matlab. Results demonstrate that an initial removal of image inhomogeneities improved the affine fit particularly when more inhomogeneity was present. Further, using a complexity-reduced input image also improved the affine fit and was beneficial in younger children in particular. Finally, blindly exploring a very wide parameter space resulted in a better fit for the vast majority of subjects, but again particularly so in infants and young children. In summary, the suggested modifications were shown to improve the affine transformation in the large majority of datasets in general, and in children in particular. The changes can easily be implemented into SPM12.
磁共振(MR)图像空间归一化的第一步通常是仿射变换,这可能容易受到图像缺陷(如不均匀或 "异常 "头部)的影响。此外,常见的软件解决方案使用内部起始估计值来提高计算效率,这可能会给不符合这些假设的数据集(如来自儿童的数据集)带来问题。在本技术说明中,主要讨论了三个问题:其一,SPM12 中实施的仿射空间归一化步骤是否受益于初始不均匀性校正。其二,在匹配 "异常 "图像时,使用复杂度降低的图像版本是否能提高鲁棒性。第三,盲目 "强制 "应用各种参数组合是否能改善仿射拟合,尤其是针对不寻常数据集的拟合。我们使用了一个包含 2081 个图像数据集的大型数据库,涵盖了从出生到老年的所有年龄段。所有分析均在 Matlab 中进行。结果表明,初步去除图像不均匀性后,仿射拟合效果有所改善,尤其是在存在较多不均匀性的情况下。此外,使用复杂度降低的输入图像也能改善仿射拟合效果,尤其是对年龄较小的儿童。最后,盲目探索一个非常宽的参数空间对绝大多数受试者都有更好的拟合效果,尤其是对婴幼儿。总之,建议的修改在绝大多数数据集,尤其是儿童数据集上都能改善仿射变换。这些修改可以很容易地应用到 SPM12 中。
{"title":"A three-step, “brute-force” approach toward optimized affine spatial normalization","authors":"Marko Wilke","doi":"10.3389/fncom.2024.1367148","DOIUrl":"https://doi.org/10.3389/fncom.2024.1367148","url":null,"abstract":"The first step in spatial normalization of magnetic resonance (MR) images commonly is an affine transformation, which may be vulnerable to image imperfections (such as inhomogeneities or “unusual” heads). Additionally, common software solutions use internal starting estimates to allow for a more efficient computation, which may pose a problem in datasets not conforming to these assumptions (such as those from children). In this technical note, three main questions were addressed: one, does the affine spatial normalization step implemented in SPM12 benefit from an initial inhomogeneity correction. Two, does using a complexity-reduced image version improve robustness when matching “unusual” images. And three, can a blind “brute-force” application of a wide range of parameter combinations improve the affine fit for unusual datasets in particular. A large database of 2081 image datasets was used, covering the full age range from birth to old age. All analyses were performed in Matlab. Results demonstrate that an initial removal of image inhomogeneities improved the affine fit particularly when more inhomogeneity was present. Further, using a complexity-reduced input image also improved the affine fit and was beneficial in younger children in particular. Finally, blindly exploring a very wide parameter space resulted in a better fit for the vast majority of subjects, but again particularly so in infants and young children. In summary, the suggested modifications were shown to improve the affine transformation in the large majority of datasets in general, and in children in particular. The changes can easily be implemented into SPM12.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"46 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141568415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A spatial map: a propitious choice for constraining the binding problem 空间地图:制约约束问题的有利选择
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-07-02 DOI: 10.3389/fncom.2024.1397819
Zhixian Han, Anne B. Sereno
Many studies have shown that the human visual system has two major functionally distinct cortical visual pathways: a ventral pathway, thought to be important for object recognition, and a dorsal pathway, thought to be important for spatial cognition. According to our and others previous studies, artificial neural networks with two segregated pathways can determine objects' identities and locations more accurately and efficiently than one-pathway artificial neural networks. In addition, we showed that these two segregated artificial cortical visual pathways can each process identity and spatial information of visual objects independently and differently. However, when using such networks to process multiple objects' identities and locations, a binding problem arises because the networks may not associate each object's identity with its location correctly. In a previous study, we constrained the binding problem by training the artificial identity pathway to retain relative location information of objects. This design uses a location map to constrain the binding problem. One limitation of that study was that we only considered two attributes of our objects (identity and location) and only one possible map (location) for binding. However, typically the brain needs to process and bind many attributes of an object, and any of these attributes could be used to constrain the binding problem. In our current study, using visual objects with multiple attributes (identity, luminance, orientation, and location) that need to be recognized, we tried to find the best map (among an identity map, a luminance map, an orientation map, or a location map) to constrain the binding problem. We found that in our experimental simulations, when visual attributes are independent of each other, a location map is always a better choice than the other kinds of maps examined for constraining the binding problem. Our findings agree with previous neurophysiological findings that show that the organization or map in many visual cortical areas is primarily retinotopic or spatial.
许多研究表明,人类视觉系统有两条功能不同的主要皮层视觉通路:一条是腹侧通路,被认为对物体识别很重要;另一条是背侧通路,被认为对空间认知很重要。根据我们和其他学者之前的研究,具有两条分离通路的人工神经网络能比单通路人工神经网络更准确、更高效地确定物体的身份和位置。此外,我们还发现,这两条分离的人工皮层视觉通路可以各自独立地、以不同的方式处理视觉对象的身份和空间信息。然而,当使用这种网络处理多个物体的身份和位置时,会出现一个绑定问题,因为网络可能无法正确地将每个物体的身份与其位置联系起来。在之前的研究中,我们通过训练人工身份路径来保留物体的相对位置信息,从而限制了绑定问题。这种设计使用位置图来限制绑定问题。该研究的一个局限是,我们只考虑了物体的两个属性(身份和位置),而且只有一个可能的地图(位置)用于绑定。然而,大脑通常需要处理和绑定对象的多个属性,这些属性中的任何一个都可以用来限制绑定问题。在我们目前的研究中,我们利用需要识别的具有多种属性(身份、亮度、方向和位置)的视觉对象,试图找到约束绑定问题的最佳映射(身份映射、亮度映射、方向映射或位置映射)。我们发现,在我们的实验模拟中,当视觉属性相互独立时,位置图总是比其他类型的地图更适合用来限制绑定问题。我们的研究结果与之前的神经生理学研究结果一致,这些研究结果表明,许多视觉皮层区域的组织或地图主要是视网膜定位或空间定位的。
{"title":"A spatial map: a propitious choice for constraining the binding problem","authors":"Zhixian Han, Anne B. Sereno","doi":"10.3389/fncom.2024.1397819","DOIUrl":"https://doi.org/10.3389/fncom.2024.1397819","url":null,"abstract":"Many studies have shown that the human visual system has two major functionally distinct cortical visual pathways: a ventral pathway, thought to be important for object recognition, and a dorsal pathway, thought to be important for spatial cognition. According to our and others previous studies, artificial neural networks with two segregated pathways can determine objects' identities and locations more accurately and efficiently than one-pathway artificial neural networks. In addition, we showed that these two segregated artificial cortical visual pathways can each process identity and spatial information of visual objects independently and differently. However, when using such networks to process multiple objects' identities and locations, a binding problem arises because the networks may not associate each object's identity with its location correctly. In a previous study, we constrained the binding problem by training the artificial identity pathway to retain relative location information of objects. This design uses a location map to constrain the binding problem. One limitation of that study was that we only considered two attributes of our objects (identity and location) and only one possible map (location) for binding. However, typically the brain needs to process and bind many attributes of an object, and any of these attributes could be used to constrain the binding problem. In our current study, using visual objects with multiple attributes (identity, luminance, orientation, and location) that need to be recognized, we tried to find the best map (among an identity map, a luminance map, an orientation map, or a location map) to constrain the binding problem. We found that in our experimental simulations, when visual attributes are independent of each other, a location map is always a better choice than the other kinds of maps examined for constraining the binding problem. Our findings agree with previous neurophysiological findings that show that the organization or map in many visual cortical areas is primarily retinotopic or spatial.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"45 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knowledge graph construction for heart failure using large language models with prompt engineering 利用大型语言模型和提示工程构建治疗心力衰竭的知识图谱
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-07-02 DOI: 10.3389/fncom.2024.1389475
Tianhan Xu, Yixun Gu, Mantian Xue, Renjie Gu, Bin Li, Xiang Gu
IntroductionConstructing an accurate and comprehensive knowledge graph of specific diseases is critical for practical clinical disease diagnosis and treatment, reasoning and decision support, rehabilitation, and health management. For knowledge graph construction tasks (such as named entity recognition, relation extraction), classical BERT-based methods require a large amount of training data to ensure model performance. However, real-world medical annotation data, especially disease-specific annotation samples, are very limited. In addition, existing models do not perform well in recognizing out-of-distribution entities and relations that are not seen in the training phase.MethodIn this study, we present a novel and practical pipeline for constructing a heart failure knowledge graph using large language models and medical expert refinement. We apply prompt engineering to the three phases of schema design: schema design, information extraction, and knowledge completion. The best performance is achieved by designing task-specific prompt templates combined with the TwoStepChat approach.ResultsExperiments on two datasets show that the TwoStepChat method outperforms the Vanillia prompt and outperforms the fine-tuned BERT-based baselines. Moreover, our method saves 65% of the time compared to manual annotation and is better suited to extract the out-of-distribution information in the real world.
引言构建准确而全面的特定疾病知识图谱对于实际的临床疾病诊断和治疗、推理和决策支持、康复和健康管理至关重要。对于知识图谱构建任务(如命名实体识别、关系提取),基于 BERT 的经典方法需要大量训练数据来确保模型性能。然而,现实世界中的医学注释数据,尤其是特定疾病的注释样本非常有限。方法在本研究中,我们提出了一个新颖实用的管道,利用大型语言模型和医学专家提炼来构建心衰知识图谱。我们在图式设计的三个阶段应用了提示工程:图式设计、信息提取和知识完成。结果在两个数据集上的实验表明,TwoStepChat 方法优于 Vanillia 提示方法,也优于基于 BERT 的微调基线。此外,与人工标注相比,我们的方法节省了 65% 的时间,更适合在现实世界中提取分布外信息。
{"title":"Knowledge graph construction for heart failure using large language models with prompt engineering","authors":"Tianhan Xu, Yixun Gu, Mantian Xue, Renjie Gu, Bin Li, Xiang Gu","doi":"10.3389/fncom.2024.1389475","DOIUrl":"https://doi.org/10.3389/fncom.2024.1389475","url":null,"abstract":"IntroductionConstructing an accurate and comprehensive knowledge graph of specific diseases is critical for practical clinical disease diagnosis and treatment, reasoning and decision support, rehabilitation, and health management. For knowledge graph construction tasks (such as named entity recognition, relation extraction), classical BERT-based methods require a large amount of training data to ensure model performance. However, real-world medical annotation data, especially disease-specific annotation samples, are very limited. In addition, existing models do not perform well in recognizing out-of-distribution entities and relations that are not seen in the training phase.MethodIn this study, we present a novel and practical pipeline for constructing a heart failure knowledge graph using large language models and medical expert refinement. We apply prompt engineering to the three phases of schema design: schema design, information extraction, and knowledge completion. The best performance is achieved by designing task-specific prompt templates combined with the TwoStepChat approach.ResultsExperiments on two datasets show that the TwoStepChat method outperforms the Vanillia prompt and outperforms the fine-tuned BERT-based baselines. Moreover, our method saves 65% of the time compared to manual annotation and is better suited to extract the out-of-distribution information in the real world.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"31 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditional spatial biased intuitionistic clustering technique for brain MRI image segmentation 用于脑磁共振成像图像分割的条件空间偏向直觉聚类技术
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-06-28 DOI: 10.3389/fncom.2024.1425008
Jyoti Arora, Ghadir Altuwaijri, Ali Nauman, Meena Tushir, Tripti Sharma, Deepali Gupta, Sung Won Kim
In clinical research, it is crucial to segment the magnetic resonance (MR) brain image for studying the internal tissues of the brain. To address this challenge in a sustainable manner, a novel approach has been proposed leveraging the power of unsupervised clustering while integrating conditional spatial properties of the image into intuitionistic clustering technique for segmenting MRI images of brain scans. In the proposed technique, an Intuitionistic-based clustering approach incorporates a nuanced understanding of uncertainty inherent in the image data. The measure of uncertainty is achieved through calculation of hesitation degree. The approach introduces a conditional spatial function alongside the intuitionistic membership matrix, enabling the consideration of spatial relationships within the image. Furthermore, by calculating weighted intuitionistic membership matrix, the algorithm gains the ability to adapt its smoothing behavior based on the local context. The main advantages are enhanced robustness with homogenous segments, lower sensitivity to noise, intensity inhomogeneity and accommodation of degree of hesitation or uncertainty that may exist in the real-world datasets. A comparative analysis of synthetic and real datasets of MR brain images proves the efficiency of the suggested approach over different algorithms. The paper investigates how the suggested research methodology performs in medical industry under different circumstances including both qualitative and quantitative parameters such as segmentation accuracy, similarity index, true positive ratio, false positive ratio. The experimental outcomes demonstrate that the suggested algorithm outperforms in retaining image details and achieving segmentation accuracy.
在临床研究中,分割脑磁共振(MR)图像对研究大脑内部组织至关重要。为了以可持续的方式应对这一挑战,有人提出了一种新方法,利用无监督聚类的力量,同时将图像的条件空间属性整合到直觉聚类技术中,用于分割脑部扫描的磁共振图像。在所提出的技术中,基于直觉的聚类方法结合了对图像数据内在不确定性的细致理解。不确定性的度量是通过计算犹豫度来实现的。该方法在引入直觉成员矩阵的同时,还引入了条件空间函数,从而能够考虑图像内部的空间关系。此外,通过计算加权直观成员矩阵,该算法还能根据局部环境调整其平滑行为。该算法的主要优点是增强了同质片段的鲁棒性,降低了对噪声、强度不均匀性的敏感性,并适应了现实世界数据集中可能存在的犹豫或不确定性。通过对磁共振脑图像的合成数据集和真实数据集进行比较分析,证明了所建议的方法比不同算法更有效。论文研究了所建议的研究方法在不同情况下在医疗行业中的表现,包括定性和定量参数,如分割准确率、相似性指数、真阳性率、假阳性率。实验结果表明,建议的算法在保留图像细节和实现分割准确性方面表现出色。
{"title":"Conditional spatial biased intuitionistic clustering technique for brain MRI image segmentation","authors":"Jyoti Arora, Ghadir Altuwaijri, Ali Nauman, Meena Tushir, Tripti Sharma, Deepali Gupta, Sung Won Kim","doi":"10.3389/fncom.2024.1425008","DOIUrl":"https://doi.org/10.3389/fncom.2024.1425008","url":null,"abstract":"In clinical research, it is crucial to segment the magnetic resonance (MR) brain image for studying the internal tissues of the brain. To address this challenge in a sustainable manner, a novel approach has been proposed leveraging the power of unsupervised clustering while integrating conditional spatial properties of the image into intuitionistic clustering technique for segmenting MRI images of brain scans. In the proposed technique, an Intuitionistic-based clustering approach incorporates a nuanced understanding of uncertainty inherent in the image data. The measure of uncertainty is achieved through calculation of hesitation degree. The approach introduces a conditional spatial function alongside the intuitionistic membership matrix, enabling the consideration of spatial relationships within the image. Furthermore, by calculating weighted intuitionistic membership matrix, the algorithm gains the ability to adapt its smoothing behavior based on the local context. The main advantages are enhanced robustness with homogenous segments, lower sensitivity to noise, intensity inhomogeneity and accommodation of degree of hesitation or uncertainty that may exist in the real-world datasets. A comparative analysis of synthetic and real datasets of MR brain images proves the efficiency of the suggested approach over different algorithms. The paper investigates how the suggested research methodology performs in medical industry under different circumstances including both qualitative and quantitative parameters such as segmentation accuracy, similarity index, true positive ratio, false positive ratio. The experimental outcomes demonstrate that the suggested algorithm outperforms in retaining image details and achieving segmentation accuracy.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"193 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontiers | SaE-GBLS: an effective self-adaptive evolutionary optimized graph-broad model for EEG-based automatic epileptic seizure detection 前沿 | SaE-GBLS:基于脑电图的癫痫发作自动检测的有效自适应进化优化图宽模型
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-06-26 DOI: 10.3389/fncom.2024.1379368
Liming Cheng, Jiaqi Xiong, Junwei Duan, Yuhang Zhang, Chun Chen, Jingxin Zhong, Zhiguo Zhou, Yujuan Quan
IntroductionEpilepsy is a common neurological condition that affects a large number of individuals worldwide. One of the primary challenges in epilepsy is the accurate and timely detection of seizure. Recently, the graph regularized broad learning system (GBLS) has achieved superior performance improvement with its flat structure and less time-consuming training process compared to deep neural networks. Nevertheless, the number of feature and enhancement nodes in GBLS is predetermined. These node settings are also randomly selected and remain unchanged throughout the training process. The characteristic of randomness is thus more easier to make non-optimal nodes generate, which cannot contribute significantly to solving the optimization problem.MethodsTo obtain more optimal nodes for optimization and achieve superior automatic detection performance, we propose a novel broad neural network named self-adaptive evolutionary graph regularized broad learning system (SaE-GBLS). Self-adaptive evolutionary algorithm, which can construct mutation strategies in the strategy pool based on the experience of producing solutions for selecting network parameters, is incorporated into SaE-GBLS model for optimizing the node parameters. The epilepsy seizure is automatic detected by our proposed SaE-GBLS model based on three publicly available EEG datasets and one private clinical EEG dataset.Results and discussionThe experimental results indicate that our suggested strategy has the potential to perform as well as current machine learning approaches.
导言癫痫是一种常见的神经系统疾病,影响着全球众多患者。癫痫的主要挑战之一是准确及时地检测癫痫发作。最近,与深度神经网络相比,图正则化广泛学习系统(GBLS)凭借其扁平化结构和较少的训练过程耗时,实现了卓越的性能提升。然而,GBLS 中特征节点和增强节点的数量是预先确定的。这些节点的设置也是随机选择的,并在整个训练过程中保持不变。为了获得更多优化节点,实现更优越的自动检测性能,我们提出了一种名为自适应进化图正则化广义学习系统(SaE-GBLS)的新型广义神经网络。在 SaE-GBLS 模型中加入了自适应进化算法,该算法可根据产生解决方案的经验在策略池中构建突变策略,以选择网络参数,从而优化节点参数。我们提出的 SaE-GBLS 模型基于三个公开的脑电图数据集和一个私人临床脑电图数据集自动检测癫痫发作。
{"title":"Frontiers | SaE-GBLS: an effective self-adaptive evolutionary optimized graph-broad model for EEG-based automatic epileptic seizure detection","authors":"Liming Cheng, Jiaqi Xiong, Junwei Duan, Yuhang Zhang, Chun Chen, Jingxin Zhong, Zhiguo Zhou, Yujuan Quan","doi":"10.3389/fncom.2024.1379368","DOIUrl":"https://doi.org/10.3389/fncom.2024.1379368","url":null,"abstract":"IntroductionEpilepsy is a common neurological condition that affects a large number of individuals worldwide. One of the primary challenges in epilepsy is the accurate and timely detection of seizure. Recently, the graph regularized broad learning system (GBLS) has achieved superior performance improvement with its flat structure and less time-consuming training process compared to deep neural networks. Nevertheless, the number of feature and enhancement nodes in GBLS is predetermined. These node settings are also randomly selected and remain unchanged throughout the training process. The characteristic of randomness is thus more easier to make non-optimal nodes generate, which cannot contribute significantly to solving the optimization problem.MethodsTo obtain more optimal nodes for optimization and achieve superior automatic detection performance, we propose a novel broad neural network named self-adaptive evolutionary graph regularized broad learning system (SaE-GBLS). Self-adaptive evolutionary algorithm, which can construct mutation strategies in the strategy pool based on the experience of producing solutions for selecting network parameters, is incorporated into SaE-GBLS model for optimizing the node parameters. The epilepsy seizure is automatic detected by our proposed SaE-GBLS model based on three publicly available EEG datasets and one private clinical EEG dataset.Results and discussionThe experimental results indicate that our suggested strategy has the potential to perform as well as current machine learning approaches.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"16 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Computational Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1