首页 > 最新文献

Frontiers in Computational Neuroscience最新文献

英文 中文
Latent dynamics of primary sensory cortical population activity structured by fluctuations in the local field potential. 由局部场电位波动构成的初级感觉皮层群体活动的潜伏动态。
IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI: 10.3389/fncom.2024.1445621
Audrey Sederberg, Aurélie Pala, Garrett B Stanley

Introduction: As emerging technologies enable measurement of precise details of the activity within microcircuits at ever-increasing scales, there is a growing need to identify the salient features and patterns within the neural populations that represent physiologically and behaviorally relevant aspects of the network. Accumulating evidence from recordings of large neural populations suggests that neural population activity frequently exhibits relatively low-dimensional structure, with a small number of variables explaining a substantial fraction of the structure of the activity. While such structure has been observed across the brain, it is not known how reduced-dimension representations of neural population activity relate to classical metrics of "brain state," typically described in terms of fluctuations in the local field potential (LFP), single-cell activity, and behavioral metrics.

Methods: Hidden state models were fit to spontaneous spiking activity of populations of neurons, recorded in the whisker area of primary somatosensory cortex of awake mice. Classic measures of cortical state in S1, including the LFP and whisking activity, were compared to the dynamics of states inferred from spiking activity.

Results: A hidden Markov model fit the population spiking data well with a relatively small number of states, and putative inhibitory neurons played an outsize role in determining the latent state dynamics. Spiking states inferred from the model were more informative of the cortical state than a direct readout of the spiking activity of single neurons or of the population. Further, the spiking states predicted both the trial-by-trial variability in sensory responses and one aspect of behavior, whisking activity.

Discussion: Our results show how classical measurements of brain state relate to neural population spiking dynamics at the scale of the microcircuit and provide an approach for quantitative mapping of brain state dynamics across brain areas.

导言:随着新兴技术能够以越来越高的尺度精确测量微电路内活动的细节,人们越来越需要识别神经群中代表网络生理和行为相关方面的显著特征和模式。对大型神经群的记录所积累的证据表明,神经群活动经常表现出相对低维的结构,少量变量就能解释活动结构的大部分。方法:在清醒小鼠初级躯体感觉皮层胡须区记录的神经元群的自发尖峰活动拟合了隐态模型。将 S1 中皮层状态的传统测量方法(包括 LFP 和拂动活动)与根据尖峰活动推断出的状态动态进行了比较:结果:隐马尔可夫模型很好地拟合了状态数量相对较少的群体尖峰数据,推定的抑制性神经元在决定潜伏状态动态方面发挥了巨大作用。从模型中推断出的尖峰状态比直接读出单个神经元或群体的尖峰活动更能反映大脑皮层的状态。此外,尖峰状态还能预测感觉反应的逐次试验变异性和行为的一个方面--拂动活动:我们的研究结果表明了大脑状态的经典测量方法与微电路尺度上神经群尖峰动态的关系,并为跨脑区大脑状态动态的定量映射提供了一种方法。
{"title":"Latent dynamics of primary sensory cortical population activity structured by fluctuations in the local field potential.","authors":"Audrey Sederberg, Aurélie Pala, Garrett B Stanley","doi":"10.3389/fncom.2024.1445621","DOIUrl":"10.3389/fncom.2024.1445621","url":null,"abstract":"<p><strong>Introduction: </strong>As emerging technologies enable measurement of precise details of the activity within microcircuits at ever-increasing scales, there is a growing need to identify the salient features and patterns within the neural populations that represent physiologically and behaviorally relevant aspects of the network. Accumulating evidence from recordings of large neural populations suggests that neural population activity frequently exhibits relatively low-dimensional structure, with a small number of variables explaining a substantial fraction of the structure of the activity. While such structure has been observed across the brain, it is not known how reduced-dimension representations of neural population activity relate to classical metrics of \"brain state,\" typically described in terms of fluctuations in the local field potential (LFP), single-cell activity, and behavioral metrics.</p><p><strong>Methods: </strong>Hidden state models were fit to spontaneous spiking activity of populations of neurons, recorded in the whisker area of primary somatosensory cortex of awake mice. Classic measures of cortical state in S1, including the LFP and whisking activity, were compared to the dynamics of states inferred from spiking activity.</p><p><strong>Results: </strong>A hidden Markov model fit the population spiking data well with a relatively small number of states, and putative inhibitory neurons played an outsize role in determining the latent state dynamics. Spiking states inferred from the model were more informative of the cortical state than a direct readout of the spiking activity of single neurons or of the population. Further, the spiking states predicted both the trial-by-trial variability in sensory responses and one aspect of behavior, whisking activity.</p><p><strong>Discussion: </strong>Our results show how classical measurements of brain state relate to neural population spiking dynamics at the scale of the microcircuit and provide an approach for quantitative mapping of brain state dynamics across brain areas.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1445621"},"PeriodicalIF":2.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-stage semi-supervised learning enhances white matter hyperintensity segmentation. 多阶段半监督学习增强了白质超强度分割。
IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-22 eCollection Date: 2024-01-01 DOI: 10.3389/fncom.2024.1487877
Kauê T N Duarte, Abhijot S Sidhu, Murilo C Barros, David G Gobbi, Cheryl R McCreary, Feryal Saad, Richard Camicioli, Eric E Smith, Mariana P Bento, Richard Frayne

Introduction: White matter hyperintensities (WMHs) are frequently observed on magnetic resonance (MR) images in older adults, commonly appearing as areas of high signal intensity on fluid-attenuated inversion recovery (FLAIR) MR scans. Elevated WMH volumes are associated with a greater risk of dementia and stroke, even after accounting for vascular risk factors. Manual segmentation, while considered the ground truth, is both labor-intensive and time-consuming, limiting the generation of annotated WMH datasets. Un-annotated data are relatively available; however, the requirement of annotated data poses a challenge for developing supervised machine learning models.

Methods: To address this challenge, we implemented a multi-stage semi-supervised learning (M3SL) approach that first uses un-annotated data segmented by traditional processing methods ("bronze" and "silver" quality data) and then uses a smaller number of "gold"-standard annotations for model refinement. The M3SL approach enabled fine-tuning of the model weights with the gold-standard annotations. This approach was integrated into the training of a U-Net model for WMH segmentation. We used data from three scanner vendors (over more than five scanners) and from both cognitively normal (CN) adult and patients cohorts [with mild cognitive impairment and Alzheimer's disease (AD)].

Results: An analysis of WMH segmentation performance across both scanner and clinical stage (CN, MCI, AD) factors was conducted. We compared our results to both conventional and transfer-learning deep learning methods and observed better generalization with M3SL across different datasets. We evaluated several metrics (F-measure, IoU, and Hausdorff distance) and found significant improvements with our method compared to conventional (p < 0.001) and transfer-learning (p < 0.001).

Discussion: These findings suggest that automated, non-machine learning, tools have a role in a multi-stage learning framework and can reduce the impact of limited annotated data and, thus, enhance model performance.

简介:在老年人的磁共振(MR)图像中经常可以观察到白质增厚(WMH),通常表现为流体增强反转恢复(FLAIR)MR 扫描中的高信号强度区域。即使考虑了血管风险因素,WMH 体积增大也与痴呆和中风的风险增加有关。手动分割虽然被认为是基本事实,但却既耗费人力又耗费时间,从而限制了注释 WMH 数据集的生成。未注释的数据相对较多;然而,对注释数据的要求为开发监督机器学习模型带来了挑战:为了应对这一挑战,我们采用了一种多阶段半监督学习(M3SL)方法,首先使用按传统处理方法分割的未注释数据("铜 "和 "银 "质量数据),然后使用数量较少的 "金 "标准注释来完善模型。M3SL 方法能够利用黄金标准注释对模型权重进行微调。这种方法被集成到用于 WMH 切分的 U-Net 模型的训练中。我们使用了来自三家扫描仪供应商(超过五台扫描仪)和认知正常(CN)成人及患者队列(轻度认知障碍和阿尔茨海默病(AD))的数据:对扫描仪和临床阶段(CN、MCI、AD)因素的 WMH 分段性能进行了分析。我们将结果与传统深度学习方法和迁移学习深度学习方法进行了比较,观察到 M3SL 在不同数据集上具有更好的泛化效果。我们评估了几个指标(F-measure、IoU 和 Hausdorff 距离),发现与传统方法(p < 0.001)和迁移学习方法(p < 0.001)相比,我们的方法有显著改善:这些研究结果表明,自动化的非机器学习工具在多阶段学习框架中可以发挥作用,并能减少有限注释数据的影响,从而提高模型性能。
{"title":"Multi-stage semi-supervised learning enhances white matter hyperintensity segmentation.","authors":"Kauê T N Duarte, Abhijot S Sidhu, Murilo C Barros, David G Gobbi, Cheryl R McCreary, Feryal Saad, Richard Camicioli, Eric E Smith, Mariana P Bento, Richard Frayne","doi":"10.3389/fncom.2024.1487877","DOIUrl":"10.3389/fncom.2024.1487877","url":null,"abstract":"<p><strong>Introduction: </strong>White matter hyperintensities (WMHs) are frequently observed on magnetic resonance (MR) images in older adults, commonly appearing as areas of high signal intensity on fluid-attenuated inversion recovery (FLAIR) MR scans. Elevated WMH volumes are associated with a greater risk of dementia and stroke, even after accounting for vascular risk factors. Manual segmentation, while considered the ground truth, is both labor-intensive and time-consuming, limiting the generation of annotated WMH datasets. Un-annotated data are relatively available; however, the requirement of annotated data poses a challenge for developing supervised machine learning models.</p><p><strong>Methods: </strong>To address this challenge, we implemented a multi-stage semi-supervised learning (M3SL) approach that first uses un-annotated data segmented by traditional processing methods (\"bronze\" and \"silver\" quality data) and then uses a smaller number of \"gold\"-standard annotations for model refinement. The M3SL approach enabled fine-tuning of the model weights with the gold-standard annotations. This approach was integrated into the training of a U-Net model for WMH segmentation. We used data from three scanner vendors (over more than five scanners) and from both cognitively normal (CN) adult and patients cohorts [with mild cognitive impairment and Alzheimer's disease (AD)].</p><p><strong>Results: </strong>An analysis of WMH segmentation performance across both scanner and clinical stage (CN, MCI, AD) factors was conducted. We compared our results to both conventional and transfer-learning deep learning methods and observed better generalization with M3SL across different datasets. We evaluated several metrics (<i>F</i>-measure, <i>IoU</i>, and Hausdorff distance) and found significant improvements with our method compared to conventional (<i>p</i> < 0.001) and transfer-learning (<i>p</i> < 0.001).</p><p><strong>Discussion: </strong>These findings suggest that automated, non-machine learning, tools have a role in a multi-stage learning framework and can reduce the impact of limited annotated data and, thus, enhance model performance.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1487877"},"PeriodicalIF":2.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-centric automated approach to predict autism spectrum disorder based on selective features and explainable artificial intelligence. 基于选择性特征和可解释人工智能的以数据为中心的自闭症谱系障碍自动预测方法。
IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-21 eCollection Date: 2024-01-01 DOI: 10.3389/fncom.2024.1489463
Asma Aldrees, Stephen Ojo, James Wanliss, Muhammad Umer, Muhammad Attique Khan, Bayan Alabdullah, Shtwai Alsubai, Nisreen Innab

Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by notable challenges in cognitive function, understanding language, recognizing objects, interacting with others, and communicating effectively. Its origins are mainly genetic, and identifying it early and intervening promptly can reduce the necessity for extensive medical treatments and lengthy diagnostic procedures for those impacted by ASD. This research is designed with two types of experimentation for ASD analysis. In the first set of experiments, authors utilized three feature engineering techniques (Chi-square, backward feature elimination, and PCA) with multiple machine learning models for autism presence prediction in toddlers. The proposed XGBoost 2.0 obtained 99% accuracy, F1 score, and recall with 98% precision with chi-square significant features. In the second scenario, main focus shifts to identifying tailored educational methods for children with ASD through the assessment of their behavioral, verbal, and physical responses. Again, the proposed approach performs well with 99% accuracy, F1 score, recall, and precision. In this research, cross-validation technique is also implemented to check the stability of the proposed model along with the comparison of previously published research works to show the significance of the proposed model. This study aims to develop personalized educational strategies for individuals with ASD using machine learning techniques to meet their specific needs better.

自闭症谱系障碍(ASD)是一种神经发育疾病,其特征是在认知功能、理解语言、识别物体、与他人互动和有效沟通方面存在明显的障碍。其病因主要是遗传,及早发现并及时干预可以减少受 ASD 影响的人接受大量医疗和冗长诊断程序的必要性。这项研究设计了两种类型的实验来分析 ASD。在第一组实验中,作者利用三种特征工程技术(Chi-square、后向特征消除和 PCA)和多种机器学习模型来预测幼儿是否患有自闭症。所提出的 XGBoost 2.0 获得了 99% 的准确率、F1 分数和 98% 的召回率,其中 Chi-square 特征显著。在第二种情况下,主要重点转移到通过评估 ASD 儿童的行为、语言和身体反应来确定适合他们的教育方法。同样,所提出的方法表现出色,准确率、F1 分数、召回率和精确度均达到 99%。在这项研究中,还采用了交叉验证技术来检查所提模型的稳定性,并与以前发表的研究成果进行比较,以显示所提模型的重要性。本研究旨在利用机器学习技术为 ASD 患者制定个性化教育策略,以更好地满足他们的特定需求。
{"title":"Data-centric automated approach to predict autism spectrum disorder based on selective features and explainable artificial intelligence.","authors":"Asma Aldrees, Stephen Ojo, James Wanliss, Muhammad Umer, Muhammad Attique Khan, Bayan Alabdullah, Shtwai Alsubai, Nisreen Innab","doi":"10.3389/fncom.2024.1489463","DOIUrl":"10.3389/fncom.2024.1489463","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by notable challenges in cognitive function, understanding language, recognizing objects, interacting with others, and communicating effectively. Its origins are mainly genetic, and identifying it early and intervening promptly can reduce the necessity for extensive medical treatments and lengthy diagnostic procedures for those impacted by ASD. This research is designed with two types of experimentation for ASD analysis. In the first set of experiments, authors utilized three feature engineering techniques (Chi-square, backward feature elimination, and PCA) with multiple machine learning models for autism presence prediction in toddlers. The proposed XGBoost 2.0 obtained 99% accuracy, F1 score, and recall with 98% precision with chi-square significant features. In the second scenario, main focus shifts to identifying tailored educational methods for children with ASD through the assessment of their behavioral, verbal, and physical responses. Again, the proposed approach performs well with 99% accuracy, F1 score, recall, and precision. In this research, cross-validation technique is also implemented to check the stability of the proposed model along with the comparison of previously published research works to show the significance of the proposed model. This study aims to develop personalized educational strategies for individuals with ASD using machine learning techniques to meet their specific needs better.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1489463"},"PeriodicalIF":2.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A combinatorial deep learning method for Alzheimer's disease classification-based merging pretrained networks. 基于合并预训练网络的阿尔茨海默病分类组合式深度学习方法。
IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-17 eCollection Date: 2024-01-01 DOI: 10.3389/fncom.2024.1444019
Houmem Slimi, Ala Balti, Sabeur Abid, Mounir Sayadi

Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. Despite significant research, AD remains incurable, highlighting the critical need for early diagnosis and intervention to improve patient outcomes. Timely detection plays a crucial role in managing the disease more effectively. Pretrained convolutional neural networks (CNNs) trained on large-scale datasets, such as ImageNet, have been employed for AD classification, providing a head start for developing more accurate models.

Methods: This paper proposes a novel hybrid deep learning approach that combines the strengths of two specific pretrained architectures. The proposed model enhances the representation of AD-related patterns by leveraging the feature extraction capabilities of both networks. We validated this model using a large dataset of MRI images from AD patients. Performance was evaluated in terms of classification accuracy and robustness against noise, and the results were compared to several commonly used models in AD detection.

Results: The proposed hybrid model demonstrated significant performance improvements over individual models, achieving an accuracy classification rate of 99.85%. Comparative analysis with other models further revealed the superiority of the new architecture, particularly in terms of classification rate and resistance to noise interference.

Discussion: The high accuracy and robustness of the proposed hybrid model suggest its potential utility in early AD detection. By improving feature representation through the combination of two pretrained networks, this model could provide clinicians with a more reliable tool for early diagnosis and monitoring of AD progression. This approach holds promise for aiding in timely diagnoses and treatment decisions, contributing to better management of Alzheimer's disease.

前言阿尔茨海默病(AD)是一种进行性神经退行性疾病,以认知能力下降、记忆力减退和日常功能受损为特征。尽管开展了大量研究,但阿尔茨海默病仍无法治愈,这突出表明了早期诊断和干预以改善患者预后的迫切需要。及时发现对更有效地控制疾病起着至关重要的作用。在大规模数据集(如 ImageNet)上训练的预训练卷积神经网络(CNN)已被用于 AD 分类,为开发更精确的模型提供了一个良好的开端:本文提出了一种新型混合深度学习方法,它结合了两种特定预训练架构的优势。通过利用这两种网络的特征提取能力,所提出的模型增强了对注意力缺失症相关模式的表示。我们使用来自 AD 患者的大型 MRI 图像数据集对该模型进行了验证。我们从分类准确性和对噪声的鲁棒性两个方面对其性能进行了评估,并将结果与一些常用的注意力缺失症检测模型进行了比较:结果:与单个模型相比,所提出的混合模型的性能有了显著提高,分类准确率达到 99.85%。与其他模型的对比分析进一步显示了新架构的优越性,尤其是在分类率和抗噪声干扰能力方面:讨论:所提出的混合模型的高准确率和鲁棒性表明,它在早期注意力缺失症检测中具有潜在的实用性。通过结合两个预训练网络来改进特征表示,该模型可以为临床医生提供更可靠的工具,用于早期诊断和监测注意力缺失症的进展。这种方法有望帮助及时做出诊断和治疗决定,为更好地管理阿尔茨海默病做出贡献。
{"title":"A combinatorial deep learning method for Alzheimer's disease classification-based merging pretrained networks.","authors":"Houmem Slimi, Ala Balti, Sabeur Abid, Mounir Sayadi","doi":"10.3389/fncom.2024.1444019","DOIUrl":"10.3389/fncom.2024.1444019","url":null,"abstract":"<p><strong>Introduction: </strong>Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. Despite significant research, AD remains incurable, highlighting the critical need for early diagnosis and intervention to improve patient outcomes. Timely detection plays a crucial role in managing the disease more effectively. Pretrained convolutional neural networks (CNNs) trained on large-scale datasets, such as ImageNet, have been employed for AD classification, providing a head start for developing more accurate models.</p><p><strong>Methods: </strong>This paper proposes a novel hybrid deep learning approach that combines the strengths of two specific pretrained architectures. The proposed model enhances the representation of AD-related patterns by leveraging the feature extraction capabilities of both networks. We validated this model using a large dataset of MRI images from AD patients. Performance was evaluated in terms of classification accuracy and robustness against noise, and the results were compared to several commonly used models in AD detection.</p><p><strong>Results: </strong>The proposed hybrid model demonstrated significant performance improvements over individual models, achieving an accuracy classification rate of 99.85%. Comparative analysis with other models further revealed the superiority of the new architecture, particularly in terms of classification rate and resistance to noise interference.</p><p><strong>Discussion: </strong>The high accuracy and robustness of the proposed hybrid model suggest its potential utility in early AD detection. By improving feature representation through the combination of two pretrained networks, this model could provide clinicians with a more reliable tool for early diagnosis and monitoring of AD progression. This approach holds promise for aiding in timely diagnoses and treatment decisions, contributing to better management of Alzheimer's disease.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1444019"},"PeriodicalIF":2.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-scale asynchronous correlation and 2D convolutional autoencoder for adolescent health risk prediction with limited fMRI data. 利用有限的 fMRI 数据进行青少年健康风险预测的多尺度异步相关性和二维卷积自动编码器。
IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-15 eCollection Date: 2024-01-01 DOI: 10.3389/fncom.2024.1478193
Di Gao, Guanghao Yang, Jiarun Shen, Fang Wu, Chao Ji

Introduction: Adolescence is a fundamental period of transformation, encompassing extensive physical, psychological, and behavioral changes. Effective health risk assessment during this stage is crucial for timely intervention, yet traditional methodologies often fail to accurately predict mental and behavioral health risks due to the intricacy of neural dynamics and the scarcity of quality-annotated fMRI datasets.

Methods: This study introduces an innovative deep learning-based framework for health risk assessment in adolescents by employing a combination of a two-dimensional convolutional autoencoder (2DCNN-AE) with multi-sequence learning and multi-scale asynchronous correlation information extraction techniques. This approach facilitates the intricate analysis of spatial and temporal features within fMRI data, aiming to enhance the accuracy of the risk assessment process.

Results: Upon examination using the Adolescent Risk Behavior (AHRB) dataset, which includes fMRI scans from 174 individuals aged 17-22, the proposed methodology exhibited a significant improvement over conventional models. It attained a precision of 83.116%, a recall of 84.784%, and an F1-score of 83.942%, surpassing standard benchmarks in most pertinent evaluative measures.

Discussion: The results underscore the superior performance of the deep learning-based approach in understanding and predicting health-related risks in adolescents. It underscores the value of this methodology in advancing the precision of health risk assessments, offering an enhanced tool for early detection and potential intervention strategies in this sensitive developmental stage.

引言青春期是一个基本的转变时期,包括广泛的生理、心理和行为变化。在这一阶段进行有效的健康风险评估对于及时干预至关重要,然而,由于神经动力学的复杂性和高质量标注的 fMRI 数据集的稀缺性,传统方法往往无法准确预测心理和行为健康风险:本研究采用二维卷积自动编码器(2DCNN-AE)与多序列学习和多尺度异步相关信息提取技术相结合的方法,为青少年健康风险评估引入了一种基于深度学习的创新框架。这种方法有助于对 fMRI 数据中的空间和时间特征进行复杂分析,从而提高风险评估过程的准确性:在使用青少年风险行为(AHRB)数据集(其中包括 174 名 17-22 岁个体的 fMRI 扫描)进行检验后,所提出的方法比传统模型有了显著改善。其精确度为 83.116%,召回率为 84.784%,F1 分数为 83.942%,在大多数相关评估指标上都超过了标准基准:结果表明,基于深度学习的方法在理解和预测青少年健康相关风险方面表现出色。讨论:研究结果表明,基于深度学习的方法在理解和预测青少年健康相关风险方面表现出色,并强调了该方法在提高健康风险评估的精确度方面的价值,为在这一敏感的发展阶段进行早期检测和制定潜在干预策略提供了更先进的工具。
{"title":"Multi-scale asynchronous correlation and 2D convolutional autoencoder for adolescent health risk prediction with limited fMRI data.","authors":"Di Gao, Guanghao Yang, Jiarun Shen, Fang Wu, Chao Ji","doi":"10.3389/fncom.2024.1478193","DOIUrl":"https://doi.org/10.3389/fncom.2024.1478193","url":null,"abstract":"<p><strong>Introduction: </strong>Adolescence is a fundamental period of transformation, encompassing extensive physical, psychological, and behavioral changes. Effective health risk assessment during this stage is crucial for timely intervention, yet traditional methodologies often fail to accurately predict mental and behavioral health risks due to the intricacy of neural dynamics and the scarcity of quality-annotated fMRI datasets.</p><p><strong>Methods: </strong>This study introduces an innovative deep learning-based framework for health risk assessment in adolescents by employing a combination of a two-dimensional convolutional autoencoder (2DCNN-AE) with multi-sequence learning and multi-scale asynchronous correlation information extraction techniques. This approach facilitates the intricate analysis of spatial and temporal features within fMRI data, aiming to enhance the accuracy of the risk assessment process.</p><p><strong>Results: </strong>Upon examination using the Adolescent Risk Behavior (AHRB) dataset, which includes fMRI scans from 174 individuals aged 17-22, the proposed methodology exhibited a significant improvement over conventional models. It attained a precision of 83.116%, a recall of 84.784%, and an F1-score of 83.942%, surpassing standard benchmarks in most pertinent evaluative measures.</p><p><strong>Discussion: </strong>The results underscore the superior performance of the deep learning-based approach in understanding and predicting health-related risks in adolescents. It underscores the value of this methodology in advancing the precision of health risk assessments, offering an enhanced tool for early detection and potential intervention strategies in this sensitive developmental stage.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1478193"},"PeriodicalIF":2.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518741/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing extubation success: a comparative analysis of time series algorithms and activation functions. 优化拔管成功率:时间序列算法和激活函数的比较分析。
IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-04 eCollection Date: 2024-01-01 DOI: 10.3389/fncom.2024.1456771
Kuo-Yang Huang, Ching-Hsiung Lin, Shu-Hua Chi, Ying-Lin Hsu, Jia-Lang Xu

Background: The success and failure of extubation of patients with acute respiratory failure is a very important issue for clinicians, and the failure of the ventilator often leads to possible complications, which in turn leads to a lot of doubts about the medical treatment in the minds of the people, so in order to increase the success of extubation success of the doctors to prevent the possible complications, the present study compared different time series algorithms and different activation functions for the training and prediction of extubation success or failure models.

Methods: This study compared different time series algorithms and different activation functions for training and predicting the success or failure of the extubation model.

Results: The results of this study using four validation methods show that the GRU model and Tanh's model have a better predictive model for predicting the success or failure of the extubation and better predictive result of 94.44% can be obtained using Holdout cross-validation validation method.

Conclusion: This study proposes a prediction method using GRU on the topic of extubation, and it can provide the doctors with the clinical application of extubation to give advice for reference.

背景:对于临床医生来说,急性呼吸衰竭患者的拔管成功与否是一个非常重要的问题,而呼吸机的失灵往往会导致可能出现的并发症,进而导致人们心中对医疗产生诸多疑虑,因此为了提高医生的拔管成功率,防止可能出现的并发症,本研究比较了不同时间序列算法和不同激活函数对拔管成功或失败模型的训练和预测:本研究比较了用于训练和预测拔管成功或失败模型的不同时间序列算法和不同激活函数:本研究使用四种验证方法的结果表明,GRU 模型和 Tanh's 模型在预测拔管成败方面具有较好的预测模型,使用 Holdout 交叉验证验证方法可获得 94.44% 的较好预测结果:本研究提出了一种以拔管为主题的GRU预测方法,可为医生提供拔管的临床应用建议,以供参考。
{"title":"Optimizing extubation success: a comparative analysis of time series algorithms and activation functions.","authors":"Kuo-Yang Huang, Ching-Hsiung Lin, Shu-Hua Chi, Ying-Lin Hsu, Jia-Lang Xu","doi":"10.3389/fncom.2024.1456771","DOIUrl":"10.3389/fncom.2024.1456771","url":null,"abstract":"<p><strong>Background: </strong>The success and failure of extubation of patients with acute respiratory failure is a very important issue for clinicians, and the failure of the ventilator often leads to possible complications, which in turn leads to a lot of doubts about the medical treatment in the minds of the people, so in order to increase the success of extubation success of the doctors to prevent the possible complications, the present study compared different time series algorithms and different activation functions for the training and prediction of extubation success or failure models.</p><p><strong>Methods: </strong>This study compared different time series algorithms and different activation functions for training and predicting the success or failure of the extubation model.</p><p><strong>Results: </strong>The results of this study using four validation methods show that the GRU model and Tanh's model have a better predictive model for predicting the success or failure of the extubation and better predictive result of 94.44% can be obtained using Holdout cross-validation validation method.</p><p><strong>Conclusion: </strong>This study proposes a prediction method using GRU on the topic of extubation, and it can provide the doctors with the clinical application of extubation to give advice for reference.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1456771"},"PeriodicalIF":2.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the application of deep learning in neuroscience: a bibliometric analysis. 解码深度学习在神经科学中的应用:文献计量分析。
IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-04 eCollection Date: 2024-01-01 DOI: 10.3389/fncom.2024.1402689
Yin Li, Zilong Zhong

The application of deep learning in neuroscience holds unprecedented potential for unraveling the complex dynamics of the brain. Our bibliometric analysis, spanning from 2012 to 2023, delves into the integration of deep learning in neuroscience, shedding light on the evolutionary trends and identifying pivotal research hotspots. Through the examination of 421 articles, this study unveils a significant growth in interdisciplinary research, marked by the burgeoning application of deep learning techniques in understanding neural mechanisms and addressing neurological disorders. Central to our findings is the critical role of classification algorithms, models, and neural networks in advancing neuroscience, highlighting their efficacy in interpreting complex neural data, simulating brain functions, and translating theoretical insights into practical diagnostics and therapeutic interventions. Additionally, our analysis delineates a thematic evolution, showcasing a shift from foundational methodologies toward more specialized and nuanced approaches, particularly in areas like EEG analysis and convolutional neural networks. This evolution reflects the field's maturation and its adaptation to technological advancements. The study further emphasizes the importance of interdisciplinary collaborations and the adoption of cutting-edge technologies to foster innovation in decoding the cerebral code. The current study provides a strategic roadmap for future explorations, urging the scientific community toward areas ripe for breakthrough discoveries and practical applications. This analysis not only charts the past and present landscape of deep learning in neuroscience but also illuminates pathways for future research, underscoring the transformative impact of deep learning on our understanding of the brain.

深度学习在神经科学中的应用为揭示大脑的复杂动力学提供了前所未有的潜力。我们的文献计量分析跨越 2012 年至 2023 年,深入探讨了深度学习与神经科学的结合,揭示了演变趋势,并确定了关键的研究热点。通过对 421 篇文章的研究,本研究揭示了跨学科研究的显著增长,其标志是深度学习技术在理解神经机制和解决神经系统疾病方面的蓬勃应用。我们研究结果的核心是分类算法、模型和神经网络在推动神经科学发展方面的关键作用,突出了它们在解释复杂神经数据、模拟大脑功能以及将理论见解转化为实际诊断和治疗干预措施方面的功效。此外,我们的分析还勾勒出一个主题演变过程,展示了从基础方法到更专业、更细致的方法的转变,尤其是在脑电图分析和卷积神经网络等领域。这种演变反映了该领域的成熟及其对技术进步的适应。研究进一步强调了跨学科合作和采用尖端技术的重要性,以促进解码大脑密码的创新。当前的研究为未来的探索提供了一个战略路线图,敦促科学界朝着突破性发现和实际应用成熟的领域迈进。这项分析不仅描绘了神经科学领域深度学习的过去和现在,还为未来研究指明了道路,强调了深度学习对我们理解大脑的变革性影响。
{"title":"Decoding the application of deep learning in neuroscience: a bibliometric analysis.","authors":"Yin Li, Zilong Zhong","doi":"10.3389/fncom.2024.1402689","DOIUrl":"10.3389/fncom.2024.1402689","url":null,"abstract":"<p><p>The application of deep learning in neuroscience holds unprecedented potential for unraveling the complex dynamics of the brain. Our bibliometric analysis, spanning from 2012 to 2023, delves into the integration of deep learning in neuroscience, shedding light on the evolutionary trends and identifying pivotal research hotspots. Through the examination of 421 articles, this study unveils a significant growth in interdisciplinary research, marked by the burgeoning application of deep learning techniques in understanding neural mechanisms and addressing neurological disorders. Central to our findings is the critical role of classification algorithms, models, and neural networks in advancing neuroscience, highlighting their efficacy in interpreting complex neural data, simulating brain functions, and translating theoretical insights into practical diagnostics and therapeutic interventions. Additionally, our analysis delineates a thematic evolution, showcasing a shift from foundational methodologies toward more specialized and nuanced approaches, particularly in areas like EEG analysis and convolutional neural networks. This evolution reflects the field's maturation and its adaptation to technological advancements. The study further emphasizes the importance of interdisciplinary collaborations and the adoption of cutting-edge technologies to foster innovation in decoding the cerebral code. The current study provides a strategic roadmap for future explorations, urging the scientific community toward areas ripe for breakthrough discoveries and practical applications. This analysis not only charts the past and present landscape of deep learning in neuroscience but also illuminates pathways for future research, underscoring the transformative impact of deep learning on our understanding of the brain.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1402689"},"PeriodicalIF":2.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Understanding and bridging the gap between neuromorphic computing and machine learning, volume II. 社论:理解和弥合神经形态计算与机器学习之间的差距》,第二卷。
IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-10-03 eCollection Date: 2024-01-01 DOI: 10.3389/fncom.2024.1455530
Lei Deng, Huajin Tang, Kaushik Roy
{"title":"Editorial: Understanding and bridging the gap between neuromorphic computing and machine learning, volume II.","authors":"Lei Deng, Huajin Tang, Kaushik Roy","doi":"10.3389/fncom.2024.1455530","DOIUrl":"https://doi.org/10.3389/fncom.2024.1455530","url":null,"abstract":"","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1455530"},"PeriodicalIF":2.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-label remote sensing classification with self-supervised gated multi-modal transformers. 利用自监督门控多模式转换器进行多标签遥感分类。
IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-09-24 eCollection Date: 2024-01-01 DOI: 10.3389/fncom.2024.1404623
Na Liu, Ye Yuan, Guodong Wu, Sai Zhang, Jie Leng, Lihong Wan

Introduction: With the great success of Transformers in the field of machine learning, it is also gradually attracting widespread interest in the field of remote sensing (RS). However, the research in the field of remote sensing has been hampered by the lack of large labeled data sets and the inconsistency of data modes caused by the diversity of RS platforms. With the rise of self-supervised learning (SSL) algorithms in recent years, RS researchers began to pay attention to the application of "pre-training and fine-tuning" paradigm in RS. However, there are few researches on multi-modal data fusion in remote sensing field. Most of them choose to use only one of the modal data or simply splice multiple modal data roughly.

Method: In order to study a more efficient multi-modal data fusion scheme, we propose a multi-modal fusion mechanism based on gated unit control (MGSViT). In this paper, we pretrain the ViT model based on BigEarthNet dataset by combining two commonly used SSL algorithms, and propose an intra-modal and inter-modal gated fusion unit for feature learning by combining multispectral (MS) and synthetic aperture radar (SAR). Our method can effectively combine different modal data to extract key feature information.

Results and discussion: After fine-tuning and comparison experiments, we outperform the most advanced algorithms in all downstream classification tasks. The validity of our proposed method is verified.

导言:随着变形金刚在机器学习领域的巨大成功,它也逐渐引起了遥感(RS)领域的广泛关注。然而,遥感领域的研究一直受制于缺乏大型标注数据集以及遥感平台多样性导致的数据模式不一致。近年来,随着自监督学习(SSL)算法的兴起,RS 研究人员开始关注 "预训练和微调 "范式在 RS 中的应用。然而,遥感领域的多模态数据融合研究还很少。他们大多选择只使用其中一种模态数据或简单地将多种模态数据粗略拼接的方法:为了研究一种更有效的多模态数据融合方案,我们提出了一种基于门控单元控制的多模态融合机制(MGSViT)。本文结合两种常用的 SSL 算法,基于 BigEarthNet 数据集对 ViT 模型进行预训练,并结合多光谱(MS)和合成孔径雷达(SAR),提出了用于特征学习的模内和模间门控融合单元。我们的方法可以有效地结合不同模态数据来提取关键特征信息:经过微调和对比实验,我们在所有下游分类任务中的表现都优于最先进的算法。我们提出的方法的有效性得到了验证。
{"title":"Multi-label remote sensing classification with self-supervised gated multi-modal transformers.","authors":"Na Liu, Ye Yuan, Guodong Wu, Sai Zhang, Jie Leng, Lihong Wan","doi":"10.3389/fncom.2024.1404623","DOIUrl":"https://doi.org/10.3389/fncom.2024.1404623","url":null,"abstract":"<p><strong>Introduction: </strong>With the great success of Transformers in the field of machine learning, it is also gradually attracting widespread interest in the field of remote sensing (RS). However, the research in the field of remote sensing has been hampered by the lack of large labeled data sets and the inconsistency of data modes caused by the diversity of RS platforms. With the rise of self-supervised learning (SSL) algorithms in recent years, RS researchers began to pay attention to the application of \"pre-training and fine-tuning\" paradigm in RS. However, there are few researches on multi-modal data fusion in remote sensing field. Most of them choose to use only one of the modal data or simply splice multiple modal data roughly.</p><p><strong>Method: </strong>In order to study a more efficient multi-modal data fusion scheme, we propose a multi-modal fusion mechanism based on gated unit control (MGSViT). In this paper, we pretrain the ViT model based on BigEarthNet dataset by combining two commonly used SSL algorithms, and propose an intra-modal and inter-modal gated fusion unit for feature learning by combining multispectral (MS) and synthetic aperture radar (SAR). Our method can effectively combine different modal data to extract key feature information.</p><p><strong>Results and discussion: </strong>After fine-tuning and comparison experiments, we outperform the most advanced algorithms in all downstream classification tasks. The validity of our proposed method is verified.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1404623"},"PeriodicalIF":2.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458396/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing top-down visual attention in the context of gamma oscillations: a layer- dependent network-of- networks approach. 在伽马振荡背景下分析自上而下的视觉注意力:一种依赖层的网络方法。
IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-09-23 eCollection Date: 2024-01-01 DOI: 10.3389/fncom.2024.1439632
Tianyi Zheng, Masato Sugino, Yasuhiko Jimbo, G Bard Ermentrout, Kiyoshi Kotani

Top-down visual attention is a fundamental cognitive process that allows individuals to selectively attend to salient visual stimuli in the environment. Recent empirical findings have revealed that gamma oscillations participate in the modulation of visual attention. However, computational studies face challenges when analyzing the attentional process in the context of gamma oscillation due to the unstable nature of gamma oscillations and the complexity induced by the layered fashion in the visual cortex. In this study, we propose a layer-dependent network-of-networks approach to analyze such attention with gamma oscillations. The model is validated by reproducing empirical findings on orientation preference and the enhancement of neuronal response due to top-down attention. We perform parameter plane analysis to classify neuronal responses into several patterns and find that the neuronal response to sensory and attention signals was modulated by the heterogeneity of the neuronal population. Furthermore, we revealed a counter-intuitive scenario that the excitatory populations in layer 2/3 and layer 5 exhibit opposite responses to the attentional input. By modification of the original model, we confirmed layer 6 plays an indispensable role in such cases. Our findings uncover the layer-dependent dynamics in the cortical processing of visual attention and open up new possibilities for further research on layer-dependent properties in the cerebral cortex.

自上而下的视觉注意是一种基本的认知过程,它能让人有选择地注意环境中的显著视觉刺激。最近的实证研究发现,伽马振荡参与了视觉注意力的调节。然而,由于伽马振荡的不稳定性和视觉皮层分层方式的复杂性,计算研究在分析伽马振荡背景下的注意过程时面临挑战。在本研究中,我们提出了一种层依赖网络(network-of-networks)方法来分析伽马振荡下的注意力。该模型通过再现方位偏好和自上而下注意引起的神经元反应增强的经验发现得到了验证。我们进行了参数平面分析,将神经元反应分为几种模式,并发现神经元对感觉和注意力信号的反应受神经元群异质性的调节。此外,我们还发现了一种与直觉相反的情况,即第 2/3 层和第 5 层的兴奋神经元群对注意输入的反应相反。通过修改原始模型,我们证实第 6 层在这种情况下发挥着不可或缺的作用。我们的发现揭示了大脑皮层处理视觉注意力过程中的层依赖动态,为进一步研究大脑皮层的层依赖特性提供了新的可能性。
{"title":"Analyzing top-down visual attention in the context of gamma oscillations: a layer- dependent network-of- networks approach.","authors":"Tianyi Zheng, Masato Sugino, Yasuhiko Jimbo, G Bard Ermentrout, Kiyoshi Kotani","doi":"10.3389/fncom.2024.1439632","DOIUrl":"https://doi.org/10.3389/fncom.2024.1439632","url":null,"abstract":"<p><p>Top-down visual attention is a fundamental cognitive process that allows individuals to selectively attend to salient visual stimuli in the environment. Recent empirical findings have revealed that gamma oscillations participate in the modulation of visual attention. However, computational studies face challenges when analyzing the attentional process in the context of gamma oscillation due to the unstable nature of gamma oscillations and the complexity induced by the layered fashion in the visual cortex. In this study, we propose a layer-dependent network-of-networks approach to analyze such attention with gamma oscillations. The model is validated by reproducing empirical findings on orientation preference and the enhancement of neuronal response due to top-down attention. We perform parameter plane analysis to classify neuronal responses into several patterns and find that the neuronal response to sensory and attention signals was modulated by the heterogeneity of the neuronal population. Furthermore, we revealed a counter-intuitive scenario that the excitatory populations in layer 2/3 and layer 5 exhibit opposite responses to the attentional input. By modification of the original model, we confirmed layer 6 plays an indispensable role in such cases. Our findings uncover the layer-dependent dynamics in the cortical processing of visual attention and open up new possibilities for further research on layer-dependent properties in the cerebral cortex.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1439632"},"PeriodicalIF":2.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Computational Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1