首页 > 最新文献

Frontiers in Computational Neuroscience最新文献

英文 中文
Residual and bidirectional LSTM for epileptic seizure detection. 用于癫痫发作检测的残差和双向 LSTM。
IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-06-17 eCollection Date: 2024-01-01 DOI: 10.3389/fncom.2024.1415967
Wei Zhao, Wen-Feng Wang, Lalit Mohan Patnaik, Bao-Can Zhang, Su-Jun Weng, Shi-Xiao Xiao, De-Zhi Wei, Hai-Feng Zhou

Electroencephalogram (EEG) plays a pivotal role in the detection and analysis of epileptic seizures, which affects over 70 million people in the world. Nonetheless, the visual interpretation of EEG signals for epilepsy detection is laborious and time-consuming. To tackle this open challenge, we introduce a straightforward yet efficient hybrid deep learning approach, named ResBiLSTM, for detecting epileptic seizures using EEG signals. Firstly, a one-dimensional residual neural network (ResNet) is tailored to adeptly extract the local spatial features of EEG signals. Subsequently, the acquired features are input into a bidirectional long short-term memory (BiLSTM) layer to model temporal dependencies. These output features are further processed through two fully connected layers to achieve the final epileptic seizure detection. The performance of ResBiLSTM is assessed on the epileptic seizure datasets provided by the University of Bonn and Temple University Hospital (TUH). The ResBiLSTM model achieves epileptic seizure detection accuracy rates of 98.88-100% in binary and ternary classifications on the Bonn dataset. Experimental outcomes for seizure recognition across seven epilepsy seizure types on the TUH seizure corpus (TUSZ) dataset indicate that the ResBiLSTM model attains a classification accuracy of 95.03% and a weighted F1 score of 95.03% with 10-fold cross-validation. These findings illustrate that ResBiLSTM outperforms several recent deep learning state-of-the-art approaches.

脑电图(EEG)在癫痫发作的检测和分析中起着举足轻重的作用,全世界有 7000 多万人受到癫痫发作的影响。然而,用于癫痫检测的脑电信号的可视化解读既费力又费时。为了应对这一挑战,我们引入了一种简单而高效的混合深度学习方法,名为 ResBiLSTM,用于利用脑电信号检测癫痫发作。首先,我们定制了一个一维残差神经网络(ResNet),以巧妙地提取脑电信号的局部空间特征。然后,将获得的特征输入双向长短期记忆(BiLSTM)层,以模拟时间相关性。这些输出特性通过两个全连接层进一步处理,以实现最终的癫痫发作检测。ResBiLSTM 的性能在波恩大学和坦普尔大学医院(TUH)提供的癫痫发作数据集上进行了评估。在波恩数据集的二元和三元分类中,ResBiLSTM 模型的癫痫发作检测准确率达到 98.88%-100%。在 TUH 癫痫发作语料库 (TUSZ) 数据集上进行的七种癫痫发作类型的发作识别实验结果表明,ResBiLSTM 模型的分类准确率为 95.03%,在 10 倍交叉验证下的加权 F1 分数为 95.03%。这些结果表明,ResBiLSTM 的表现优于最近几种最先进的深度学习方法。
{"title":"Residual and bidirectional LSTM for epileptic seizure detection.","authors":"Wei Zhao, Wen-Feng Wang, Lalit Mohan Patnaik, Bao-Can Zhang, Su-Jun Weng, Shi-Xiao Xiao, De-Zhi Wei, Hai-Feng Zhou","doi":"10.3389/fncom.2024.1415967","DOIUrl":"10.3389/fncom.2024.1415967","url":null,"abstract":"<p><p>Electroencephalogram (EEG) plays a pivotal role in the detection and analysis of epileptic seizures, which affects over 70 million people in the world. Nonetheless, the visual interpretation of EEG signals for epilepsy detection is laborious and time-consuming. To tackle this open challenge, we introduce a straightforward yet efficient hybrid deep learning approach, named ResBiLSTM, for detecting epileptic seizures using EEG signals. Firstly, a one-dimensional residual neural network (ResNet) is tailored to adeptly extract the local spatial features of EEG signals. Subsequently, the acquired features are input into a bidirectional long short-term memory (BiLSTM) layer to model temporal dependencies. These output features are further processed through two fully connected layers to achieve the final epileptic seizure detection. The performance of ResBiLSTM is assessed on the epileptic seizure datasets provided by the University of Bonn and Temple University Hospital (TUH). The ResBiLSTM model achieves epileptic seizure detection accuracy rates of 98.88-100% in binary and ternary classifications on the Bonn dataset. Experimental outcomes for seizure recognition across seven epilepsy seizure types on the TUH seizure corpus (TUSZ) dataset indicate that the ResBiLSTM model attains a classification accuracy of 95.03% and a weighted F1 score of 95.03% with 10-fold cross-validation. These findings illustrate that ResBiLSTM outperforms several recent deep learning state-of-the-art approaches.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1415967"},"PeriodicalIF":2.1,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergy quality assessment of muscle modules for determining learning performance using a realistic musculoskeletal model 利用逼真的肌肉骨骼模型对肌肉模块进行协同质量评估,以确定学习成绩
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-05-30 DOI: 10.3389/fncom.2024.1355855
Akito Fukunishi, Kyo Kutsuzawa, Dai Owaki, Mitsuhiro Hayashibe
How our central nervous system efficiently controls our complex musculoskeletal system is still debated. The muscle synergy hypothesis is proposed to simplify this complex system by assuming the existence of functional neural modules that coordinate several muscles. Modularity based on muscle synergies can facilitate motor learning without compromising task performance. However, the effectiveness of modularity in motor control remains debated. This ambiguity can, in part, stem from overlooking that the performance of modularity depends on the mechanical aspects of modules of interest, such as the torque the modules exert. To address this issue, this study introduces two criteria to evaluate the quality of module sets based on commonly used performance metrics in motor learning studies: the accuracy of torque production and learning speed. One evaluates the regularity in the direction of mechanical torque the modules exert, while the other evaluates the evenness of its magnitude. For verification of our criteria, we simulated motor learning of torque production tasks in a realistic musculoskeletal system of the upper arm using feed-forward neural networks while changing the control conditions. We found that the proposed criteria successfully explain the tendency of learning performance in various control conditions. These result suggest that regularity in the direction of and evenness in magnitude of mechanical torque of utilized modules are significant factor for determining learning performance. Although the criteria were originally conceived for an error-based learning scheme, the approach to pursue which set of modules is better for motor control can have significant implications in other studies of modularity in general.
我们的中枢神经系统如何有效控制复杂的肌肉骨骼系统仍存在争议。肌肉协同作用假说假定存在协调多块肌肉的功能神经模块,从而简化了这一复杂系统。基于肌肉协同作用的模块化可以促进运动学习,同时又不影响任务的完成。然而,模块化在运动控制中的有效性仍存在争议。这种模糊性可能部分源于忽略了模块化的性能取决于相关模块的机械方面,如模块施加的扭矩。为了解决这个问题,本研究根据运动学习研究中常用的性能指标:扭矩产生的准确性和学习速度,引入了两个标准来评估模块集的质量。其中一个标准评估模块产生机械扭矩方向的规律性,另一个标准评估其大小的均匀性。为了验证我们的标准,我们使用前馈神经网络模拟了上臂真实肌肉骨骼系统的扭矩产生任务的运动学习,同时改变了控制条件。我们发现,所提出的标准成功地解释了各种控制条件下学习成绩的变化趋势。这些结果表明,所使用模块的机械扭矩方向的规律性和大小的均匀性是决定学习成绩的重要因素。虽然这些标准最初是为基于错误的学习方案而设计的,但这种追求哪组模块更适合运动控制的方法对其他一般模块化研究具有重要意义。
{"title":"Synergy quality assessment of muscle modules for determining learning performance using a realistic musculoskeletal model","authors":"Akito Fukunishi, Kyo Kutsuzawa, Dai Owaki, Mitsuhiro Hayashibe","doi":"10.3389/fncom.2024.1355855","DOIUrl":"https://doi.org/10.3389/fncom.2024.1355855","url":null,"abstract":"How our central nervous system efficiently controls our complex musculoskeletal system is still debated. The muscle synergy hypothesis is proposed to simplify this complex system by assuming the existence of functional neural modules that coordinate several muscles. Modularity based on muscle synergies can facilitate motor learning without compromising task performance. However, the effectiveness of modularity in motor control remains debated. This ambiguity can, in part, stem from overlooking that the performance of modularity depends on the mechanical aspects of modules of interest, such as the torque the modules exert. To address this issue, this study introduces two criteria to evaluate the quality of module sets based on commonly used performance metrics in motor learning studies: the accuracy of torque production and learning speed. One evaluates the regularity in the direction of mechanical torque the modules exert, while the other evaluates the evenness of its magnitude. For verification of our criteria, we simulated motor learning of torque production tasks in a realistic musculoskeletal system of the upper arm using feed-forward neural networks while changing the control conditions. We found that the proposed criteria successfully explain the tendency of learning performance in various control conditions. These result suggest that regularity in the direction of and evenness in magnitude of mechanical torque of utilized modules are significant factor for determining learning performance. Although the criteria were originally conceived for an error-based learning scheme, the approach to pursue which set of modules is better for motor control can have significant implications in other studies of modularity in general.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"24 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DT-SCNN: dual-threshold spiking convolutional neural network with fewer operations and memory access for edge applications DT-SCNN:双阈值尖峰卷积神经网络,运算和内存访问更少,适用于边缘应用
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-05-30 DOI: 10.3389/fncom.2024.1418115
Fuming Lei, Xu Yang, Jian Liu, Runjiang Dou, Nanjian Wu
The spiking convolutional neural network (SCNN) is a kind of spiking neural network (SNN) with high accuracy for visual tasks and power efficiency on neuromorphic hardware, which is attractive for edge applications. However, it is challenging to implement SCNNs on resource-constrained edge devices because of the large number of convolutional operations and membrane potential (Vm) storage needed. Previous works have focused on timestep reduction, network pruning, and network quantization to realize SCNN implementation on edge devices. However, they overlooked similarities between spiking feature maps (SFmaps), which contain significant redundancy and cause unnecessary computation and storage. This work proposes a dual-threshold spiking convolutional neural network (DT-SCNN) to decrease the number of operations and memory access by utilizing similarities between SFmaps. The DT-SCNN employs dual firing thresholds to derive two similar SFmaps from one Vm map, reducing the number of convolutional operations and decreasing the volume of Vms and convolutional weights by half. We propose a variant spatio-temporal back propagation (STBP) training method with a two-stage strategy to train DT-SCNNs to decrease the inference timestep to 1. The experimental results show that the dual-thresholds mechanism achieves a 50% reduction in operations and data storage for the convolutional layers compared to conventional SCNNs while achieving not more than a 0.4% accuracy loss on the CIFAR10, MNIST, and Fashion MNIST datasets. Due to the lightweight network and single timestep inference, the DT-SCNN has the least number of operations compared to previous works, paving the way for low-latency and power-efficient edge applications.
尖峰卷积神经网络(SCNN)是一种尖峰神经网络(SNN),在视觉任务中具有高精确度,在神经形态硬件上具有高能效,对边缘应用很有吸引力。然而,由于需要大量卷积运算和膜电位(Vm)存储,在资源受限的边缘设备上实现 SCNN 是一项挑战。以前的工作主要集中在减少时间步长、网络剪枝和网络量化上,以实现在边缘设备上实施 SCNN。然而,他们忽略了尖峰特征图(SFmaps)之间的相似性,这些特征图包含大量冗余,会造成不必要的计算和存储。本研究提出了一种双阈值尖峰卷积神经网络(DT-SCNN),通过利用 SFmaps 之间的相似性来减少运算次数和内存访问。DT-SCNN 采用双发射阈值,从一个 Vm 映射中推导出两个相似的 SF 映射,从而减少了卷积操作的数量,并将 Vm 和卷积权重的体积减少了一半。实验结果表明,与传统 SCNN 相比,双阈值机制减少了卷积层 50% 的操作和数据存储,同时在 CIFAR10、MNIST 和时尚 MNIST 数据集上的准确率损失不超过 0.4%。由于采用了轻量级网络和单时间步推理,DT-SCNN 的操作次数与以前的作品相比最少,为低延迟、高能效的边缘应用铺平了道路。
{"title":"DT-SCNN: dual-threshold spiking convolutional neural network with fewer operations and memory access for edge applications","authors":"Fuming Lei, Xu Yang, Jian Liu, Runjiang Dou, Nanjian Wu","doi":"10.3389/fncom.2024.1418115","DOIUrl":"https://doi.org/10.3389/fncom.2024.1418115","url":null,"abstract":"The spiking convolutional neural network (SCNN) is a kind of spiking neural network (SNN) with high accuracy for visual tasks and power efficiency on neuromorphic hardware, which is attractive for edge applications. However, it is challenging to implement SCNNs on resource-constrained edge devices because of the large number of convolutional operations and membrane potential (Vm) storage needed. Previous works have focused on timestep reduction, network pruning, and network quantization to realize SCNN implementation on edge devices. However, they overlooked similarities between spiking feature maps (SFmaps), which contain significant redundancy and cause unnecessary computation and storage. This work proposes a dual-threshold spiking convolutional neural network (DT-SCNN) to decrease the number of operations and memory access by utilizing similarities between SFmaps. The DT-SCNN employs dual firing thresholds to derive two similar SFmaps from one Vm map, reducing the number of convolutional operations and decreasing the volume of Vms and convolutional weights by half. We propose a variant spatio-temporal back propagation (STBP) training method with a two-stage strategy to train DT-SCNNs to decrease the inference timestep to 1. The experimental results show that the dual-thresholds mechanism achieves a 50% reduction in operations and data storage for the convolutional layers compared to conventional SCNNs while achieving not more than a 0.4% accuracy loss on the CIFAR10, MNIST, and Fashion MNIST datasets. Due to the lightweight network and single timestep inference, the DT-SCNN has the least number of operations compared to previous works, paving the way for low-latency and power-efficient edge applications.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"15 10 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulated dynamical transitions in a heterogeneous marmoset pFC cluster 模拟异构狨猴 pFC 集群的动态转变
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-05-28 DOI: 10.3389/fncom.2024.1398898
Bernard A. Pailthorpe
Network analysis of the marmoset cortical connectivity data indicates a significant 3D cluster in and around the pre-frontal cortex. A multi-node, heterogeneous neural mass model of this six-node cluster was constructed. Its parameters were informed by available experimental and simulation data so that each neural mass oscillated in a characteristic frequency band. Nodes were connected with directed, weighted links derived from the marmoset structural connectivity data. Heterogeneity arose from the different link weights and model parameters for each node. Stimulation of the cluster with an incident pulse train modulated in the standard frequency bands induced a variety of dynamical state transitions that lasted in the range of 5–10 s, suggestive of timescales relevant to short-term memory. A short gamma burst rapidly reset the beta-induced transition. The theta-induced transition state showed a spontaneous, delayed reset to the resting state. An additional, continuous gamma wave stimulus induced a new beating oscillatory state. Longer or repeated gamma bursts were phase-aligned with the beta oscillation, delivering increasing energy input and causing shorter transition times. The relevance of these results to working memory is yet to be established, but they suggest interesting opportunities.
对狨猴皮层连接数据的网络分析表明,在前额叶皮层及其周围有一个重要的三维集群。我们为这个六节点群构建了一个多节点、异质神经块模型。该模型的参数参考了现有的实验和模拟数据,因此每个神经块都在一个特征频率带内振荡。根据狨猴结构连通性数据得出的有向、加权链接将节点连接起来。每个节点的链接权重和模型参数不同,因此会产生异质性。用标准频带调制的入射脉冲串刺激集群,会诱发各种动态状态转换,持续时间在 5-10 秒之间,这表明了与短时记忆相关的时间尺度。一个短伽玛脉冲串迅速重置了贝塔诱导的转换。θ诱导的过渡状态显示出一种自发的、延迟的重置静息状态。额外的、持续的伽玛波刺激会诱发新的跳动振荡状态。较长或重复的伽玛脉冲与β振荡相位对齐,提供了更多的能量输入,并缩短了过渡时间。这些结果与工作记忆的相关性尚待确定,但它们暗示了有趣的机会。
{"title":"Simulated dynamical transitions in a heterogeneous marmoset pFC cluster","authors":"Bernard A. Pailthorpe","doi":"10.3389/fncom.2024.1398898","DOIUrl":"https://doi.org/10.3389/fncom.2024.1398898","url":null,"abstract":"Network analysis of the marmoset cortical connectivity data indicates a significant 3D cluster in and around the pre-frontal cortex. A multi-node, heterogeneous neural mass model of this six-node cluster was constructed. Its parameters were informed by available experimental and simulation data so that each neural mass oscillated in a characteristic frequency band. Nodes were connected with directed, weighted links derived from the marmoset structural connectivity data. Heterogeneity arose from the different link weights and model parameters for each node. Stimulation of the cluster with an incident pulse train modulated in the standard frequency bands induced a variety of dynamical state transitions that lasted in the range of 5–10 s, suggestive of timescales relevant to short-term memory. A short gamma burst rapidly reset the beta-induced transition. The theta-induced transition state showed a spontaneous, delayed reset to the resting state. An additional, continuous gamma wave stimulus induced a new beating oscillatory state. Longer or repeated gamma bursts were phase-aligned with the beta oscillation, delivering increasing energy input and causing shorter transition times. The relevance of these results to working memory is yet to be established, but they suggest interesting opportunities.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"11 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Information bottleneck-based Hebbian learning rule naturally ties working memory and synaptic updates 基于信息瓶颈的希比学习规则将工作记忆和突触更新自然地联系在一起
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-05-16 DOI: 10.3389/fncom.2024.1240348
Kyle Daruwalla, Mikko Lipasti
Deep neural feedforward networks are effective models for a wide array of problems, but training and deploying such networks presents a significant energy cost. Spiking neural networks (SNNs), which are modeled after biologically realistic neurons, offer a potential solution when deployed correctly on neuromorphic computing hardware. Still, many applications train SNNs offline, and running network training directly on neuromorphic hardware is an ongoing research problem. The primary hurdle is that back-propagation, which makes training such artificial deep networks possible, is biologically implausible. Neuroscientists are uncertain about how the brain would propagate a precise error signal backward through a network of neurons. Recent progress addresses part of this question, e.g., the weight transport problem, but a complete solution remains intangible. In contrast, novel learning rules based on the information bottleneck (IB) train each layer of a network independently, circumventing the need to propagate errors across layers. Instead, propagation is implicit due the layers' feedforward connectivity. These rules take the form of a three-factor Hebbian update a global error signal modulates local synaptic updates within each layer. Unfortunately, the global signal for a given layer requires processing multiple samples concurrently, and the brain only sees a single sample at a time. We propose a new three-factor update rule where the global signal correctly captures information across samples via an auxiliary memory network. The auxiliary network can be trained a priori independently of the dataset being used with the primary network. We demonstrate comparable performance to baselines on image classification tasks. Interestingly, unlike back-propagation-like schemes where there is no link between learning and memory, our rule presents a direct connection between working memory and synaptic updates. To the best of our knowledge, this is the first rule to make this link explicit. We explore these implications in initial experiments examining the effect of memory capacity on learning performance. Moving forward, this work suggests an alternate view of learning where each layer balances memory-informed compression against task performance. This view naturally encompasses several key aspects of neural computation, including memory, efficiency, and locality.
深度神经前馈网络是解决各种问题的有效模型,但训练和部署此类网络需要耗费大量能源。尖峰神经网络(SNN)以生物现实神经元为模型,在神经形态计算硬件上正确部署后,可提供一种潜在的解决方案。尽管如此,许多应用仍然需要离线训练 SNN,而直接在神经形态硬件上运行网络训练是一个持续的研究问题。最主要的障碍是,反向传播技术虽然可以训练这种人工深度网络,但在生物学上是不可信的。神经科学家无法确定大脑如何通过神经元网络向后传播精确的错误信号。最近的研究进展解决了这一问题的一部分,例如权重传输问题,但完整的解决方案仍遥不可及。相比之下,基于信息瓶颈(IB)的新型学习规则能独立训练网络的每一层,从而避免了跨层传播误差的需要。相反,由于各层的前馈连接,传播是隐含的。这些规则采用三因素海比更新的形式,即全局误差信号调节各层的局部突触更新。遗憾的是,给定层的全局信号需要同时处理多个样本,而大脑每次只能看到一个样本。我们提出了一种新的三因素更新规则,即全局信号通过辅助记忆网络正确捕捉跨样本信息。辅助网络可以独立于主网络使用的数据集进行先验训练。在图像分类任务中,我们展示了与基线相当的性能。有趣的是,与学习和记忆之间没有联系的反向传播类似方案不同,我们的规则在工作记忆和突触更新之间建立了直接联系。据我们所知,这是第一个明确提出这种联系的规则。我们在最初的实验中探讨了记忆容量对学习成绩的影响。展望未来,这项工作提出了另一种学习观点,即各层在记忆信息压缩与任务执行之间取得平衡。这种观点自然包含了神经计算的几个关键方面,包括记忆、效率和定位。
{"title":"Information bottleneck-based Hebbian learning rule naturally ties working memory and synaptic updates","authors":"Kyle Daruwalla, Mikko Lipasti","doi":"10.3389/fncom.2024.1240348","DOIUrl":"https://doi.org/10.3389/fncom.2024.1240348","url":null,"abstract":"Deep neural feedforward networks are effective models for a wide array of problems, but training and deploying such networks presents a significant energy cost. Spiking neural networks (SNNs), which are modeled after biologically realistic neurons, offer a potential solution when deployed correctly on neuromorphic computing hardware. Still, many applications train SNNs <jats:italic>offline</jats:italic>, and running network training directly on neuromorphic hardware is an ongoing research problem. The primary hurdle is that back-propagation, which makes training such artificial deep networks possible, is biologically implausible. Neuroscientists are uncertain about how the brain would propagate a precise error signal backward through a network of neurons. Recent progress addresses part of this question, e.g., the weight transport problem, but a complete solution remains intangible. In contrast, novel learning rules based on the information bottleneck (IB) train each layer of a network independently, circumventing the need to propagate errors across layers. Instead, propagation is implicit due the layers' feedforward connectivity. These rules take the form of a three-factor Hebbian update a global error signal modulates local synaptic updates within each layer. Unfortunately, the global signal for a given layer requires processing multiple samples concurrently, and the brain only sees a single sample at a time. We propose a new three-factor update rule where the global signal correctly captures information across samples via an auxiliary memory network. The auxiliary network can be trained <jats:italic>a priori</jats:italic> independently of the dataset being used with the primary network. We demonstrate comparable performance to baselines on image classification tasks. Interestingly, unlike back-propagation-like schemes where there is no link between learning and memory, our rule presents a direct connection between working memory and synaptic updates. To the best of our knowledge, this is the first rule to make this link explicit. We explore these implications in initial experiments examining the effect of memory capacity on learning performance. Moving forward, this work suggests an alternate view of learning where each layer balances memory-informed compression against task performance. This view naturally encompasses several key aspects of neural computation, including memory, efficiency, and locality.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"33 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141058716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine learning approach to evaluate the impact of virtual balance/cognitive training on fall risk in older women 采用机器学习方法评估虚拟平衡/认知训练对老年妇女跌倒风险的影响
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-05-14 DOI: 10.3389/fncom.2024.1390208
Beata Sokołowska, Wiktor Świderski, Edyta Smolis-Bąk, Ewa Sokołowska, Teresa Sadura-Sieklucka
IntroductionNovel technologies based on virtual reality (VR) are creating attractive virtual environments with high ecological value, used both in basic/clinical neuroscience and modern medical practice. The study aimed to evaluate the effects of VR-based training in an elderly population.Materials and methodsThe study included 36 women over the age of 60, who were randomly divided into two groups subjected to balance-strength and balance-cognitive training. The research applied both conventional clinical tests, such as (a) the Timed Up and Go test, (b) the five-times sit-to-stand test, and (c) the posturographic exam with the Romberg test with eyes open and closed. Training in both groups was conducted for 10 sessions and embraced exercises on a bicycle ergometer and exercises using non-immersive VR created by the ActivLife platform. Machine learning methods with a k-nearest neighbors classifier, which are very effective and popular, were proposed to statistically evaluate the differences in training effects in the two groups.Results and conclusionThe study showed that training using VR brought beneficial improvement in clinical tests and changes in the pattern of posturographic trajectories were observed. An important finding of the research was a statistically significant reduction in the risk of falls in the study population. The use of virtual environments in exercise/training has great potential in promoting healthy aging and preventing balance loss and falls among seniors.
导言基于虚拟现实(VR)的新技术正在创造出具有高生态价值的迷人虚拟环境,这些技术在基础/临床神经科学和现代医疗实践中都得到了应用。该研究旨在评估基于虚拟现实技术的训练对老年人群的影响。研究对象包括 36 名 60 岁以上的女性,她们被随机分为两组,分别接受平衡-力量和平衡-认知训练。研究同时应用了传统的临床测试,如(a)定时起立行走测试;(b)五次坐立测试;以及(c)睁眼和闭眼后的罗伯格测试。两组的训练都进行了 10 次,包括在自行车测力计上进行的练习和使用 ActivLife 平台创建的非沉浸式 VR 进行的练习。研究提出了使用 k-nearest neighbors 分类器的机器学习方法,该方法非常有效且广受欢迎,用于统计评估两组训练效果的差异。研究的一个重要发现是,研究人群的跌倒风险在统计学上显著降低。在锻炼/训练中使用虚拟环境在促进健康老龄化、预防老年人平衡能力丧失和跌倒方面具有巨大潜力。
{"title":"A machine learning approach to evaluate the impact of virtual balance/cognitive training on fall risk in older women","authors":"Beata Sokołowska, Wiktor Świderski, Edyta Smolis-Bąk, Ewa Sokołowska, Teresa Sadura-Sieklucka","doi":"10.3389/fncom.2024.1390208","DOIUrl":"https://doi.org/10.3389/fncom.2024.1390208","url":null,"abstract":"IntroductionNovel technologies based on virtual reality (VR) are creating attractive virtual environments with high ecological value, used both in basic/clinical neuroscience and modern medical practice. The study aimed to evaluate the effects of VR-based training in an elderly population.Materials and methodsThe study included 36 women over the age of 60, who were randomly divided into two groups subjected to balance-strength and balance-cognitive training. The research applied both conventional clinical tests, such as (a) the Timed Up and Go test, (b) the five-times sit-to-stand test, and (c) the posturographic exam with the Romberg test with eyes open and closed. Training in both groups was conducted for 10 sessions and embraced exercises on a bicycle ergometer and exercises using non-immersive VR created by the ActivLife platform. Machine learning methods with a <jats:italic>k</jats:italic>-nearest neighbors classifier, which are very effective and popular, were proposed to statistically evaluate the differences in training effects in the two groups.Results and conclusionThe study showed that training using VR brought beneficial improvement in clinical tests and changes in the pattern of posturographic trajectories were observed. An important finding of the research was a statistically significant reduction in the risk of falls in the study population. The use of virtual environments in exercise/training has great potential in promoting healthy aging and preventing balance loss and falls among seniors.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"27 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational modeling to study the impact of changes in Nav1.8 sodium channel on neuropathic pain 通过计算建模研究 Nav1.8 钠通道的变化对神经性疼痛的影响
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-05-09 DOI: 10.3389/fncom.2024.1327986
Peter Kan, Yong Fang Zhu, Junling Ma, Gurmit Singh
ObjectiveNav1.8 expression is restricted to sensory neurons; it was hypothesized that aberrant expression and function of this channel at the site of injury contributed to pathological pain. However, the specific contributions of Nav1.8 to neuropathic pain are not as clear as its role in inflammatory pain. The aim of this study is to understand how Nav1.8 present in peripheral sensory neurons regulate neuronal excitability and induce various electrophysiological features on neuropathic pain.MethodsTo study the effect of changes in sodium channel Nav1.8 kinetics, Hodgkin–Huxley type conductance-based models of spiking neurons were constructed using the NEURON v8.2 simulation software. We constructed a single-compartment model of neuronal soma that contained Nav1.8 channels with the ionic mechanisms adapted from some existing small DRG neuron models. We then validated and compared the model with our experimental data from in vivo recordings on soma of small dorsal root ganglion (DRG) sensory neurons in animal models of neuropathic pain (NEP).ResultsWe show that Nav1.8 is an important parameter for the generation and maintenance of abnormal neuronal electrogenesis and hyperexcitability. The typical increased excitability seen is dominated by a left shift in the steady state of activation of this channel and is further modulated by this channel’s maximum conductance and steady state of inactivation. Therefore, modified action potential shape, decreased threshold, and increased repetitive firing of sensory neurons in our neuropathic animal models may be orchestrated by these modulations on Nav1.8.ConclusionComputational modeling is a novel strategy to understand the generation of chronic pain. In this study, we highlight that changes to the channel functions of Nav1.8 within the small DRG neuron may contribute to neuropathic pain.
目的 Nav1.8 的表达仅限于感觉神经元;据推测,该通道在损伤部位的异常表达和功能会导致病理性疼痛。然而,Nav1.8 对神经病理性疼痛的具体贡献并不像它在炎症性疼痛中的作用那样明确。为了研究钠通道 Nav1.8 动力学变化的影响,我们使用 NEURON v8.2 模拟软件构建了基于霍奇金-赫胥黎型电导的尖峰神经元模型。我们构建了一个包含 Nav1.8 通道的神经元体单室模型,其离子机制改编自现有的一些小型 DRG 神经元模型。结果我们发现,Nav1.8 是产生和维持神经元异常电生和过度兴奋的一个重要参数。典型的兴奋性增高主要是由于该通道激活稳态的左移,并进一步受到该通道最大电导和失活稳态的调节。因此,在我们的神经病理性动物模型中,动作电位形状的改变、阈值的降低和感觉神经元重复性发射的增加可能是由 Nav1.8 的这些调节作用协调的。在这项研究中,我们强调了小 DRG 神经元内 Nav1.8 通道功能的变化可能会导致神经病理性疼痛。
{"title":"Computational modeling to study the impact of changes in Nav1.8 sodium channel on neuropathic pain","authors":"Peter Kan, Yong Fang Zhu, Junling Ma, Gurmit Singh","doi":"10.3389/fncom.2024.1327986","DOIUrl":"https://doi.org/10.3389/fncom.2024.1327986","url":null,"abstract":"ObjectiveNav1.8 expression is restricted to sensory neurons; it was hypothesized that aberrant expression and function of this channel at the site of injury contributed to pathological pain. However, the specific contributions of Nav1.8 to neuropathic pain are not as clear as its role in inflammatory pain. The aim of this study is to understand how Nav1.8 present in peripheral sensory neurons regulate neuronal excitability and induce various electrophysiological features on neuropathic pain.MethodsTo study the effect of changes in sodium channel Nav1.8 kinetics, Hodgkin–Huxley type conductance-based models of spiking neurons were constructed using the NEURON v8.2 simulation software. We constructed a single-compartment model of neuronal soma that contained Nav1.8 channels with the ionic mechanisms adapted from some existing small DRG neuron models. We then validated and compared the model with our experimental data from <jats:italic>in vivo</jats:italic> recordings on soma of small dorsal root ganglion (DRG) sensory neurons in animal models of neuropathic pain (NEP).ResultsWe show that Nav1.8 is an important parameter for the generation and maintenance of abnormal neuronal electrogenesis and hyperexcitability. The typical increased excitability seen is dominated by a left shift in the steady state of activation of this channel and is further modulated by this channel’s maximum conductance and steady state of inactivation. Therefore, modified action potential shape, decreased threshold, and increased repetitive firing of sensory neurons in our neuropathic animal models may be orchestrated by these modulations on Nav1.8.ConclusionComputational modeling is a novel strategy to understand the generation of chronic pain. In this study, we highlight that changes to the channel functions of Nav1.8 within the small DRG neuron may contribute to neuropathic pain.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"68 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning for automatic segmentation of vestibular schwannoma: a retrospective study from multi-center routine MRI 用于自动分割前庭分裂瘤的深度学习:一项来自多中心常规磁共振成像的回顾性研究
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-05-09 DOI: 10.3389/fncom.2024.1365727
Aaron Kujawa, Reuben Dorent, Steve Connor, Suki Thomson, Marina Ivory, Ali Vahedi, Emily Guilhem, Navodini Wijethilake, Robert Bradford, Neil Kitchen, Sotirios Bisdas, Sebastien Ourselin, Tom Vercauteren, Jonathan Shapey
Automatic segmentation of vestibular schwannoma (VS) from routine clinical MRI has potential to improve clinical workflow, facilitate treatment decisions, and assist patient management. Previous work demonstrated reliable automatic segmentation performance on datasets of standardized MRI images acquired for stereotactic surgery planning. However, diagnostic clinical datasets are generally more diverse and pose a larger challenge to automatic segmentation algorithms, especially when post-operative images are included. In this work, we show for the first time that automatic segmentation of VS on routine MRI datasets is also possible with high accuracy. We acquired and publicly release a curated multi-center routine clinical (MC-RC) dataset of 160 patients with a single sporadic VS. For each patient up to three longitudinal MRI exams with contrast-enhanced T1-weighted (ceT1w) (n = 124) and T2-weighted (T2w) (n = 363) images were included and the VS manually annotated. Segmentations were produced and verified in an iterative process: (1) initial segmentations by a specialized company; (2) review by one of three trained radiologists; and (3) validation by an expert team. Inter- and intra-observer reliability experiments were performed on a subset of the dataset. A state-of-the-art deep learning framework was used to train segmentation models for VS. Model performance was evaluated on a MC-RC hold-out testing set, another public VS datasets, and a partially public dataset. The generalizability and robustness of the VS deep learning segmentation models increased significantly when trained on the MC-RC dataset. Dice similarity coefficients (DSC) achieved by our model are comparable to those achieved by trained radiologists in the inter-observer experiment. On the MC-RC testing set, median DSCs were 86.2(9.5) for ceT1w, 89.4(7.0) for T2w, and 86.4(8.6) for combined ceT1w+T2w input images. On another public dataset acquired for Gamma Knife stereotactic radiosurgery our model achieved median DSCs of 95.3(2.9), 92.8(3.8), and 95.5(3.3), respectively. In contrast, models trained on the Gamma Knife dataset did not generalize well as illustrated by significant underperformance on the MC-RC routine MRI dataset, highlighting the importance of data variability in the development of robust VS segmentation models. The MC-RC dataset and all trained deep learning models were made available online.
从常规临床磁共振成像中自动分割前庭分裂瘤(VS)有望改善临床工作流程、促进治疗决策并协助患者管理。之前的工作表明,在为立体定向手术规划而获取的标准化磁共振成像数据集上,自动分割性能可靠。然而,临床诊断数据集通常更加多样化,对自动分割算法提出了更大的挑战,尤其是在包含术后图像的情况下。在这项工作中,我们首次展示了在常规磁共振成像数据集上自动分割 VS 的高准确性。我们获得并公开发布了一个由 160 名单个散发性 VS 患者组成的多中心常规临床(MC-RC)数据集。每位患者最多可接受三次纵向 MRI 检查,包括对比增强 T1 加权(ceT1w)(124 人)和 T2 加权(T2w)(363 人)图像,并对 VS 进行人工标注。分段的制作和验证是一个反复的过程:(1) 由一家专业公司进行初步分段;(2) 由三位训练有素的放射科医生之一进行审查;(3) 由一个专家组进行验证。在数据集的一个子集上进行了观察者之间和观察者内部的可靠性实验。最先进的深度学习框架用于训练 VS 的分割模型。在 MC-RC 暂缓测试集、另一个公开 VS 数据集和一个部分公开数据集上对模型性能进行了评估。在 MC-RC 数据集上训练的 VS 深度学习分割模型的泛化能力和鲁棒性显著提高。在观察者间实验中,我们的模型获得的骰子相似系数(DSC)与经过培训的放射科医生获得的相似系数相当。在 MC-RC 测试集中,ceT1w 的 DSC 中位数为 86.2(9.5),T2w 为 89.4(7.0),ceT1w+T2w 组合输入图像的 DSC 中位数为 86.4(8.6)。在为伽马刀立体定向放射外科手术获取的另一个公共数据集上,我们的模型分别获得了 95.3(2.9)、92.8(3.8) 和 95.5(3.3) 的中位 DSCs。相比之下,在伽马刀数据集上训练的模型并不能很好地泛化,在 MC-RC 常规 MRI 数据集上的表现就说明了这一点,这突出了数据可变性在开发稳健的 VS 分割模型中的重要性。MC-RC 数据集和所有经过训练的深度学习模型均可在线获取。
{"title":"Deep learning for automatic segmentation of vestibular schwannoma: a retrospective study from multi-center routine MRI","authors":"Aaron Kujawa, Reuben Dorent, Steve Connor, Suki Thomson, Marina Ivory, Ali Vahedi, Emily Guilhem, Navodini Wijethilake, Robert Bradford, Neil Kitchen, Sotirios Bisdas, Sebastien Ourselin, Tom Vercauteren, Jonathan Shapey","doi":"10.3389/fncom.2024.1365727","DOIUrl":"https://doi.org/10.3389/fncom.2024.1365727","url":null,"abstract":"Automatic segmentation of vestibular schwannoma (VS) from routine clinical MRI has potential to improve clinical workflow, facilitate treatment decisions, and assist patient management. Previous work demonstrated reliable automatic segmentation performance on datasets of standardized MRI images acquired for stereotactic surgery planning. However, diagnostic clinical datasets are generally more diverse and pose a larger challenge to automatic segmentation algorithms, especially when post-operative images are included. In this work, we show for the first time that automatic segmentation of VS on routine MRI datasets is also possible with high accuracy. We acquired and publicly release a curated multi-center routine clinical (MC-RC) dataset of 160 patients with a single sporadic VS. For each patient up to three longitudinal MRI exams with contrast-enhanced T1-weighted (ceT1w) (<jats:italic>n</jats:italic> = 124) and T2-weighted (T2w) (<jats:italic>n</jats:italic> = 363) images were included and the VS manually annotated. Segmentations were produced and verified in an iterative process: (1) initial segmentations by a specialized company; (2) review by one of three trained radiologists; and (3) validation by an expert team. Inter- and intra-observer reliability experiments were performed on a subset of the dataset. A state-of-the-art deep learning framework was used to train segmentation models for VS. Model performance was evaluated on a MC-RC hold-out testing set, another public VS datasets, and a partially public dataset. The generalizability and robustness of the VS deep learning segmentation models increased significantly when trained on the MC-RC dataset. Dice similarity coefficients (DSC) achieved by our model are comparable to those achieved by trained radiologists in the inter-observer experiment. On the MC-RC testing set, median DSCs were 86.2(9.5) for ceT1w, 89.4(7.0) for T2w, and 86.4(8.6) for combined ceT1w+T2w input images. On another public dataset acquired for Gamma Knife stereotactic radiosurgery our model achieved median DSCs of 95.3(2.9), 92.8(3.8), and 95.5(3.3), respectively. In contrast, models trained on the Gamma Knife dataset did not generalize well as illustrated by significant underperformance on the MC-RC routine MRI dataset, highlighting the importance of data variability in the development of robust VS segmentation models. The MC-RC dataset and all trained deep learning models were made available online.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"21 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PointAS: an attention based sampling neural network for visual perception PointAS:基于注意力的视觉感知采样神经网络
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-05-02 DOI: 10.3389/fncom.2024.1340019
Bozhi Qiu, Sheng Li, Lei Wang
Harnessing the remarkable ability of the human brain to recognize and process complex data is a significant challenge for researchers, particularly in the domain of point cloud classification—a technology that aims to replicate the neural structure of the brain for spatial recognition. The initial 3D point cloud data often suffers from noise, sparsity, and disorder, making accurate classification a formidable task, especially when extracting local information features. Therefore, in this study, we propose a novel attention-based end-to-end point cloud downsampling classification method, termed as PointAS, which is an experimental algorithm designed to be adaptable to various downstream tasks. PointAS consists of two primary modules: the adaptive sampling module and the attention module. Specifically, the attention module aggregates global features with the input point cloud data, while the adaptive module extracts local features. In the point cloud classification task, our method surpasses existing downsampling methods by a significant margin, allowing for more precise extraction of edge data points to capture overall contour features accurately. The classification accuracy of PointAS consistently exceeds 80% across various sampling ratios, with a remarkable accuracy of 75.37% even at ultra-high sampling ratios. Moreover, our method exhibits robustness in experiments, maintaining classification accuracies of 72.50% or higher under different noise disturbances. Both qualitative and quantitative experiments affirm the efficacy of our approach in the sampling classification task, providing researchers with a more accurate method to identify and classify neurons, synapses, and other structures, thereby promoting a deeper understanding of the nervous system.
利用人脑识别和处理复杂数据的非凡能力是研究人员面临的一项重大挑战,尤其是在点云分类领域--一种旨在复制大脑神经结构进行空间识别的技术。初始的三维点云数据往往存在噪声、稀疏性和无序性,这使得准确分类成为一项艰巨的任务,尤其是在提取局部信息特征时。因此,在本研究中,我们提出了一种新颖的基于注意力的端到端点云下采样分类方法,称为 PointAS,它是一种实验性算法,旨在适应各种下游任务。PointAS 由两个主要模块组成:自适应采样模块和注意力模块。具体来说,注意力模块将全局特征与输入的点云数据聚合在一起,而自适应模块则提取局部特征。在点云分类任务中,我们的方法大大超越了现有的下采样方法,可以更精确地提取边缘数据点,从而准确捕捉整体轮廓特征。在不同的采样率下,PointAS 的分类准确率始终保持在 80% 以上,即使在超高采样率下,准确率也高达 75.37%。此外,我们的方法在实验中表现出很强的鲁棒性,在不同的噪声干扰下都能保持 72.50% 或更高的分类准确率。定性和定量实验都肯定了我们的方法在采样分类任务中的功效,为研究人员识别和分类神经元、突触和其他结构提供了更准确的方法,从而促进了对神经系统的深入了解。
{"title":"PointAS: an attention based sampling neural network for visual perception","authors":"Bozhi Qiu, Sheng Li, Lei Wang","doi":"10.3389/fncom.2024.1340019","DOIUrl":"https://doi.org/10.3389/fncom.2024.1340019","url":null,"abstract":"Harnessing the remarkable ability of the human brain to recognize and process complex data is a significant challenge for researchers, particularly in the domain of point cloud classification—a technology that aims to replicate the neural structure of the brain for spatial recognition. The initial 3D point cloud data often suffers from noise, sparsity, and disorder, making accurate classification a formidable task, especially when extracting local information features. Therefore, in this study, we propose a novel attention-based end-to-end point cloud downsampling classification method, termed as PointAS, which is an experimental algorithm designed to be adaptable to various downstream tasks. PointAS consists of two primary modules: the adaptive sampling module and the attention module. Specifically, the attention module aggregates global features with the input point cloud data, while the adaptive module extracts local features. In the point cloud classification task, our method surpasses existing downsampling methods by a significant margin, allowing for more precise extraction of edge data points to capture overall contour features accurately. The classification accuracy of PointAS consistently exceeds 80% across various sampling ratios, with a remarkable accuracy of 75.37% even at ultra-high sampling ratios. Moreover, our method exhibits robustness in experiments, maintaining classification accuracies of 72.50% or higher under different noise disturbances. Both qualitative and quantitative experiments affirm the efficacy of our approach in the sampling classification task, providing researchers with a more accurate method to identify and classify neurons, synapses, and other structures, thereby promoting a deeper understanding of the nervous system.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"10 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140834094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feedback stabilization of probabilistic finite state machines based on deep Q-network 基于深度 Q 网络的概率有限状态机反馈稳定化
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-05-02 DOI: 10.3389/fncom.2024.1385047
Hui Tian, Xin Su, Yanfang Hou
BackgroundAs an important mathematical model, the finite state machine (FSM) has been used in many fields, such as manufacturing system, health care, and so on. This paper analyzes the current development status of FSMs. It is pointed out that the traditional methods are often inconvenient for analysis and design, or encounter high computational complexity problems when studying FSMs.MethodThe deep Q-network (DQN) technique, which is a model-free optimization method, is introduced to solve the stabilization problem of probabilistic finite state machines (PFSMs). In order to better understand the technique, some preliminaries, including Markov decision process, ϵ-greedy strategy, DQN, and so on, are recalled.ResultsFirst, a necessary and sufficient stabilizability condition for PFSMs is derived. Next, the feedback stabilization problem of PFSMs is transformed into an optimization problem. Finally, by using the stabilizability condition and deep Q-network, an algorithm for solving the optimization problem (equivalently, computing a state feedback stabilizer) is provided.DiscussionCompared with the traditional Q learning, DQN avoids the limited capacity problem. So our method can deal with high-dimensional complex systems efficiently. The effectiveness of our method is further demonstrated through an illustrative example.
背景 作为一种重要的数学模型,有限状态机(FSM)已被广泛应用于制造系统、医疗保健等多个领域。本文分析了 FSM 的发展现状。方法介绍了一种无模型优化方法--深度 Q 网络(DQN)技术,用于解决概率有限状态机(PFSM)的稳定问题。为了更好地理解该技术,回顾了一些前言,包括马尔可夫决策过程、ϵ 贪婪策略、DQN 等。接着,将 PFSM 的反馈稳定问题转化为优化问题。讨论与传统的 Q 学习相比,DQN 避免了容量有限的问题。因此,我们的方法可以高效地处理高维复杂系统。我们通过一个示例进一步证明了我们方法的有效性。
{"title":"Feedback stabilization of probabilistic finite state machines based on deep Q-network","authors":"Hui Tian, Xin Su, Yanfang Hou","doi":"10.3389/fncom.2024.1385047","DOIUrl":"https://doi.org/10.3389/fncom.2024.1385047","url":null,"abstract":"BackgroundAs an important mathematical model, the finite state machine (FSM) has been used in many fields, such as manufacturing system, health care, and so on. This paper analyzes the current development status of FSMs. It is pointed out that the traditional methods are often inconvenient for analysis and design, or encounter high computational complexity problems when studying FSMs.MethodThe deep Q-network (DQN) technique, which is a model-free optimization method, is introduced to solve the stabilization problem of probabilistic finite state machines (PFSMs). In order to better understand the technique, some preliminaries, including Markov decision process, ϵ-greedy strategy, DQN, and so on, are recalled.ResultsFirst, a necessary and sufficient stabilizability condition for PFSMs is derived. Next, the feedback stabilization problem of PFSMs is transformed into an optimization problem. Finally, by using the stabilizability condition and deep Q-network, an algorithm for solving the optimization problem (equivalently, computing a state feedback stabilizer) is provided.DiscussionCompared with the traditional Q learning, DQN avoids the limited capacity problem. So our method can deal with high-dimensional complex systems efficiently. The effectiveness of our method is further demonstrated through an illustrative example.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"148 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140834210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Computational Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1