首页 > 最新文献

Frontiers in Computational Neuroscience最新文献

英文 中文
Grid codes vs. multi-scale, multi-field place codes for space 网格代码与多尺度、多场空间位置代码的比较
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-04-19 DOI: 10.3389/fncom.2024.1276292
Robin Dietrich, Nicolai Waniek, Martin Stemmler, Alois Knoll
IntroductionRecent work on bats flying over long distances has revealed that single hippocampal cells have multiple place fields of different sizes. At the network level, a multi-scale, multi-field place cell code outperforms classical single-scale, single-field place codes, yet the performance boundaries of such a code remain an open question. In particular, it is unknown how general multi-field codes compare to a highly regular grid code, in which cells form distinct modules with different scales.MethodsIn this work, we address the coding properties of theoretical spatial coding models with rigorous analyses of comprehensive simulations. Starting from a multi-scale, multi-field network, we performed evolutionary optimization. The resulting multi-field networks sometimes retained the multi-scale property at the single-cell level but most often converged to a single scale, with all place fields in a given cell having the same size. We compared the results against a single-scale single-field code and a one-dimensional grid code, focusing on two main characteristics: the performance of the code itself and the dynamics of the network generating it.ResultsOur simulation experiments revealed that, under normal conditions, a regular grid code outperforms all other codes with respect to decoding accuracy, achieving a given precision with fewer neurons and fields. In contrast, multi-field codes are more robust against noise and lesions, such as random drop-out of neurons, given that the significantly higher number of fields provides redundancy. Contrary to our expectations, the network dynamics of all models, from the original multi-scale models before optimization to the multi-field models that resulted from optimization, did not maintain activity bumps at their original locations when a position-specific external input was removed.DiscussionOptimized multi-field codes appear to strike a compromise between a place code and a grid code that reflects a trade-off between accurate positional encoding and robustness. Surprisingly, the recurrent neural network models we implemented and optimized for either multi- or single-scale, multi-field codes did not intrinsically produce a persistent “memory” of attractor states. These models, therefore, were not continuous attractor networks.
导言:最近对长距离飞行的蝙蝠进行的研究发现,单个海马细胞具有多个不同大小的位置场。在网络水平上,多尺度、多场的位置细胞代码优于经典的单尺度、单场位置代码,但这种代码的性能边界仍是一个未决问题。特别是,一般的多场编码与高度规则的网格编码相比如何,我们还不得而知,在网格编码中,单元形成了不同尺度的不同模块。方法在这项工作中,我们通过对综合模拟的严格分析,解决了理论空间编码模型的编码特性问题。从多尺度、多场网络开始,我们进行了进化优化。由此产生的多场网络有时在单细胞水平上保留了多尺度特性,但最常见的情况是趋同于单一尺度,即给定细胞中的所有位置场都具有相同的大小。我们将结果与单尺度单字段代码和一维网格代码进行了比较,重点关注两个主要特征:代码本身的性能和生成代码的网络的动态。结果我们的模拟实验表明,在正常情况下,常规网格代码的解码精度优于所有其他代码,它能以较少的神经元和字段达到一定的精度。相比之下,多场编码对噪声和神经元随机脱落等病变具有更强的鲁棒性,因为场的数量大大增加提供了冗余。与我们的预期相反,从优化前的原始多尺度模型到优化后的多场模型,当特定位置的外部输入被移除时,所有模型的网络动力学都没有在其原始位置保持活动突起。令人惊讶的是,我们为多尺度或单尺度多场编码实现并优化的递归神经网络模型并没有从本质上产生持久的吸引子状态 "记忆"。因此,这些模型并非连续吸引子网络。
{"title":"Grid codes vs. multi-scale, multi-field place codes for space","authors":"Robin Dietrich, Nicolai Waniek, Martin Stemmler, Alois Knoll","doi":"10.3389/fncom.2024.1276292","DOIUrl":"https://doi.org/10.3389/fncom.2024.1276292","url":null,"abstract":"IntroductionRecent work on bats flying over long distances has revealed that single hippocampal cells have multiple place fields of different sizes. At the network level, a multi-scale, multi-field place cell code outperforms classical single-scale, single-field place codes, yet the performance boundaries of such a code remain an open question. In particular, it is unknown how general multi-field codes compare to a highly regular grid code, in which cells form distinct modules with different scales.MethodsIn this work, we address the coding properties of theoretical spatial coding models with rigorous analyses of comprehensive simulations. Starting from a multi-scale, multi-field network, we performed evolutionary optimization. The resulting multi-field networks sometimes retained the multi-scale property at the single-cell level but most often converged to a single scale, with all place fields in a given cell having the same size. We compared the results against a single-scale single-field code and a one-dimensional grid code, focusing on two main characteristics: the performance of the code itself and the dynamics of the network generating it.ResultsOur simulation experiments revealed that, under normal conditions, a regular grid code outperforms all other codes with respect to decoding accuracy, achieving a given precision with fewer neurons and fields. In contrast, multi-field codes are more robust against noise and lesions, such as random drop-out of neurons, given that the significantly higher number of fields provides redundancy. Contrary to our expectations, the network dynamics of all models, from the original multi-scale models before optimization to the multi-field models that resulted from optimization, did not maintain activity bumps at their original locations when a position-specific external input was removed.DiscussionOptimized multi-field codes appear to strike a compromise between a place code and a grid code that reflects a trade-off between accurate positional encoding and robustness. Surprisingly, the recurrent neural network models we implemented and optimized for either multi- or single-scale, multi-field codes did not intrinsically produce a persistent “memory” of attractor states. These models, therefore, were not continuous attractor networks.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"10 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140627809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of emotion distribution of images based on weighted K-nearest neighbor-attention mechanism 基于加权 K 近邻关注机制的图像情感分布预测
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-04-17 DOI: 10.3389/fncom.2024.1350916
Kai Cheng
Existing methods for classifying image emotions often overlook the subjective impact emotions evoke in observers, focusing primarily on emotion categories. However, this approach falls short in meeting practical needs as it neglects the nuanced emotional responses captured within an image. This study proposes a novel approach employing the weighted closest neighbor algorithm to predict the discrete distribution of emotion in abstract paintings. Initially, emotional features are extracted from the images and assigned varying K-values. Subsequently, an encoder-decoder architecture is utilized to derive sentiment features from abstract paintings, augmented by a pre-trained model to enhance classification model generalization and convergence speed. By incorporating a blank attention mechanism into the decoder and integrating it with the encoder's output sequence, the semantics of abstract painting images are learned, facilitating precise and sensible emotional understanding. Experimental results demonstrate that the classification algorithm, utilizing the attention mechanism, achieves a higher accuracy of 80.7% compared to current methods. This innovative approach successfully addresses the intricate challenge of discerning emotions in abstract paintings, underscoring the significance of considering subjective emotional responses in image classification. The integration of advanced techniques such as weighted closest neighbor algorithm and attention mechanisms holds promise for enhancing the comprehension and classification of emotional content in visual art.
现有的图像情绪分类方法往往忽视情绪对观察者的主观影响,而主要关注情绪类别。然而,这种方法忽略了图像中细微的情感反应,无法满足实际需要。本研究提出了一种采用加权近邻算法预测抽象绘画中情感离散分布的新方法。首先,从图像中提取情感特征并赋予不同的 K 值。随后,利用编码器-解码器架构从抽象绘画中提取情感特征,并通过预训练模型增强分类模型的泛化和收敛速度。通过在解码器中加入空白关注机制,并将其与编码器的输出序列相结合,可以学习抽象绘画图像的语义,从而促进精确、合理的情感理解。实验结果表明,与现有方法相比,利用注意力机制的分类算法的准确率高达 80.7%。这一创新方法成功地解决了辨别抽象画中情感这一复杂难题,强调了在图像分类中考虑主观情感反应的重要性。加权近邻算法和注意力机制等先进技术的整合有望提高对视觉艺术中情感内容的理解和分类。
{"title":"Prediction of emotion distribution of images based on weighted K-nearest neighbor-attention mechanism","authors":"Kai Cheng","doi":"10.3389/fncom.2024.1350916","DOIUrl":"https://doi.org/10.3389/fncom.2024.1350916","url":null,"abstract":"Existing methods for classifying image emotions often overlook the subjective impact emotions evoke in observers, focusing primarily on emotion categories. However, this approach falls short in meeting practical needs as it neglects the nuanced emotional responses captured within an image. This study proposes a novel approach employing the weighted closest neighbor algorithm to predict the discrete distribution of emotion in abstract paintings. Initially, emotional features are extracted from the images and assigned varying <jats:italic>K</jats:italic>-values. Subsequently, an encoder-decoder architecture is utilized to derive sentiment features from abstract paintings, augmented by a pre-trained model to enhance classification model generalization and convergence speed. By incorporating a blank attention mechanism into the decoder and integrating it with the encoder's output sequence, the semantics of abstract painting images are learned, facilitating precise and sensible emotional understanding. Experimental results demonstrate that the classification algorithm, utilizing the attention mechanism, achieves a higher accuracy of 80.7% compared to current methods. This innovative approach successfully addresses the intricate challenge of discerning emotions in abstract paintings, underscoring the significance of considering subjective emotional responses in image classification. The integration of advanced techniques such as weighted closest neighbor algorithm and attention mechanisms holds promise for enhancing the comprehension and classification of emotional content in visual art.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"109 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140613294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
U-shaped convolutional transformer GAN with multi-resolution consistency loss for restoring brain functional time-series and dementia diagnosis 具有多分辨率一致性损失的 U 型卷积变换器 GAN 用于还原大脑功能时间序列和痴呆症诊断
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-04-17 DOI: 10.3389/fncom.2024.1387004
Qiankun Zuo, Ruiheng Li, Binghua Shi, Jin Hong, Yanfei Zhu, Xuhang Chen, Yixian Wu, Jia Guo
IntroductionThe blood oxygen level-dependent (BOLD) signal derived from functional neuroimaging is commonly used in brain network analysis and dementia diagnosis. Missing the BOLD signal may lead to bad performance and misinterpretation of findings when analyzing neurological disease. Few studies have focused on the restoration of brain functional time-series data.MethodsIn this paper, a novel U-shaped convolutional transformer GAN (UCT-GAN) model is proposed to restore the missing brain functional time-series data. The proposed model leverages the power of generative adversarial networks (GANs) while incorporating a U-shaped architecture to effectively capture hierarchical features in the restoration process. Besides, the multi-level temporal-correlated attention and the convolutional sampling in the transformer-based generator are devised to capture the global and local temporal features for the missing time series and associate their long-range relationship with the other brain regions. Furthermore, by introducing multi-resolution consistency loss, the proposed model can promote the learning of diverse temporal patterns and maintain consistency across different temporal resolutions, thus effectively restoring complex brain functional dynamics.ResultsWe theoretically tested our model on the public Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and our experiments demonstrate that the proposed model outperforms existing methods in terms of both quantitative metrics and qualitative assessments. The model's ability to preserve the underlying topological structure of the brain functional networks during restoration is a particularly notable achievement.ConclusionOverall, the proposed model offers a promising solution for restoring brain functional time-series and contributes to the advancement of neuroscience research by providing enhanced tools for disease analysis and interpretation.
导言从功能神经成像中获得的血氧水平依赖性(BOLD)信号常用于脑网络分析和痴呆诊断。在分析神经系统疾病时,BOLD 信号的缺失可能会导致不良表现和结果误读。本文提出了一种新型 U 形卷积变换器 GAN(UCT-GAN)模型,用于恢复缺失的脑功能时间序列数据。该模型充分利用了生成式对抗网络(GAN)的强大功能,同时结合了 U 型结构,从而在还原过程中有效捕捉分层特征。此外,基于变压器的生成器中还设计了多级时间相关注意和卷积采样,以捕捉缺失时间序列的全局和局部时间特征,并将其与其他脑区的长程关系联系起来。此外,通过引入多分辨率一致性损失,所提出的模型可以促进对不同时间模式的学习,并在不同时间分辨率之间保持一致性,从而有效地恢复复杂的大脑功能动态。结果我们在公开的阿尔茨海默病神经影像倡议(ADNI)数据集上对我们的模型进行了理论测试,实验证明所提出的模型在定量指标和定性评估方面都优于现有方法。总之,所提出的模型为恢复大脑功能时间序列提供了一种很有前景的解决方案,并通过为疾病分析和解释提供增强工具,为神经科学研究的进步做出了贡献。
{"title":"U-shaped convolutional transformer GAN with multi-resolution consistency loss for restoring brain functional time-series and dementia diagnosis","authors":"Qiankun Zuo, Ruiheng Li, Binghua Shi, Jin Hong, Yanfei Zhu, Xuhang Chen, Yixian Wu, Jia Guo","doi":"10.3389/fncom.2024.1387004","DOIUrl":"https://doi.org/10.3389/fncom.2024.1387004","url":null,"abstract":"IntroductionThe blood oxygen level-dependent (BOLD) signal derived from functional neuroimaging is commonly used in brain network analysis and dementia diagnosis. Missing the BOLD signal may lead to bad performance and misinterpretation of findings when analyzing neurological disease. Few studies have focused on the restoration of brain functional time-series data.MethodsIn this paper, a novel <jats:italic>U</jats:italic>-shaped convolutional transformer GAN (UCT-GAN) model is proposed to restore the missing brain functional time-series data. The proposed model leverages the power of generative adversarial networks (GANs) while incorporating a <jats:italic>U</jats:italic>-shaped architecture to effectively capture hierarchical features in the restoration process. Besides, the multi-level temporal-correlated attention and the convolutional sampling in the transformer-based generator are devised to capture the global and local temporal features for the missing time series and associate their long-range relationship with the other brain regions. Furthermore, by introducing multi-resolution consistency loss, the proposed model can promote the learning of diverse temporal patterns and maintain consistency across different temporal resolutions, thus effectively restoring complex brain functional dynamics.ResultsWe theoretically tested our model on the public Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and our experiments demonstrate that the proposed model outperforms existing methods in terms of both quantitative metrics and qualitative assessments. The model's ability to preserve the underlying topological structure of the brain functional networks during restoration is a particularly notable achievement.ConclusionOverall, the proposed model offers a promising solution for restoring brain functional time-series and contributes to the advancement of neuroscience research by providing enhanced tools for disease analysis and interpretation.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"49 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140613436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforcement learning-based SDN routing scheme empowered by causality detection and GNN 基于因果关系检测和 GNN 的强化学习 SDN 路由方案
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-04-12 DOI: 10.3389/fncom.2024.1393025
Yuanhao He, Geyang Xiao, Jun Zhu, Tao Zou, Yuan Liang
In recent years, with the rapid development of network applications and the increasing demand for high-quality network service, quality-of-service (QoS) routing has emerged as a critical network technology. The application of machine learning techniques, particularly reinforcement learning and graph neural network, has garnered significant attention in addressing this problem. However, existing reinforcement learning methods lack research on the causal impact of agent actions on the interactive environment, and graph neural network fail to effectively represent link features, which are pivotal for routing optimization. Therefore, this study quantifies the causal influence between the intelligent agent and the interactive environment based on causal inference techniques, aiming to guide the intelligent agent in improving the efficiency of exploring the action space. Simultaneously, graph neural network is employed to embed node and link features, and a reward function is designed that comprehensively considers network performance metrics and causality relevance. A centralized reinforcement learning method is proposed to effectively achieve QoS-aware routing in Software-Defined Networking (SDN). Finally, experiments are conducted in a network simulation environment, and metrics such as packet loss, delay, and throughput all outperform the baseline.
近年来,随着网络应用的迅猛发展和人们对高质量网络服务需求的不断增长,服务质量(QoS)路由已成为一项关键的网络技术。机器学习技术,尤其是强化学习和图神经网络的应用,在解决这一问题方面引起了广泛关注。然而,现有的强化学习方法缺乏对代理行为对交互环境的因果影响的研究,图神经网络也不能有效地表示链路特征,而链路特征对路由优化至关重要。因此,本研究基于因果推理技术量化智能代理与交互环境之间的因果影响,旨在引导智能代理提高探索行动空间的效率。同时,采用图神经网络嵌入节点和链接特征,并设计了综合考虑网络性能指标和因果相关性的奖励函数。提出了一种集中强化学习方法,以有效实现软件定义网络(SDN)中的 QoS 感知路由。最后,在网络仿真环境中进行了实验,结果表明丢包、延迟和吞吐量等指标均优于基线。
{"title":"Reinforcement learning-based SDN routing scheme empowered by causality detection and GNN","authors":"Yuanhao He, Geyang Xiao, Jun Zhu, Tao Zou, Yuan Liang","doi":"10.3389/fncom.2024.1393025","DOIUrl":"https://doi.org/10.3389/fncom.2024.1393025","url":null,"abstract":"In recent years, with the rapid development of network applications and the increasing demand for high-quality network service, quality-of-service (QoS) routing has emerged as a critical network technology. The application of machine learning techniques, particularly reinforcement learning and graph neural network, has garnered significant attention in addressing this problem. However, existing reinforcement learning methods lack research on the causal impact of agent actions on the interactive environment, and graph neural network fail to effectively represent link features, which are pivotal for routing optimization. Therefore, this study quantifies the causal influence between the intelligent agent and the interactive environment based on causal inference techniques, aiming to guide the intelligent agent in improving the efficiency of exploring the action space. Simultaneously, graph neural network is employed to embed node and link features, and a reward function is designed that comprehensively considers network performance metrics and causality relevance. A centralized reinforcement learning method is proposed to effectively achieve QoS-aware routing in Software-Defined Networking (SDN). Finally, experiments are conducted in a network simulation environment, and metrics such as packet loss, delay, and throughput all outperform the baseline.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"8 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140810083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive coding with spiking neurons and feedforward gist signaling 利用尖峰神经元和前馈要点信号进行预测编码
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-04-12 DOI: 10.3389/fncom.2024.1338280
Kwangjun Lee, Shirin Dora, Jorge F. Mejias, Sander M. Bohte, Cyriel M. A. Pennartz
Predictive coding (PC) is an influential theory in neuroscience, which suggests the existence of a cortical architecture that is constantly generating and updating predictive representations of sensory inputs. Owing to its hierarchical and generative nature, PC has inspired many computational models of perception in the literature. However, the biological plausibility of existing models has not been sufficiently explored due to their use of artificial neurons that approximate neural activity with firing rates in the continuous time domain and propagate signals synchronously. Therefore, we developed a spiking neural network for predictive coding (SNN-PC), in which neurons communicate using event-driven and asynchronous spikes. Adopting the hierarchical structure and Hebbian learning algorithms from previous PC neural network models, SNN-PC introduces two novel features: (1) a fast feedforward sweep from the input to higher areas, which generates a spatially reduced and abstract representation of input (i.e., a neural code for the gist of a scene) and provides a neurobiological alternative to an arbitrary choice of priors; and (2) a separation of positive and negative error-computing neurons, which counters the biological implausibility of a bi-directional error neuron with a very high baseline firing rate. After training with the MNIST handwritten digit dataset, SNN-PC developed hierarchical internal representations and was able to reconstruct samples it had not seen during training. SNN-PC suggests biologically plausible mechanisms by which the brain may perform perceptual inference and learning in an unsupervised manner. In addition, it may be used in neuromorphic applications that can utilize its energy-efficient, event-driven, local learning, and parallel information processing nature.
预测编码(PC)是神经科学领域颇具影响力的一种理论,它认为大脑皮层存在一种不断生成和更新感官输入预测表征的结构。由于其层次性和生成性,PC 激发了文献中的许多感知计算模型。然而,由于现有模型使用的是人工神经元,这些神经元以连续时域的发射率近似神经活动,并同步传播信号,因此这些模型的生物学合理性尚未得到充分探讨。因此,我们开发了预测编码尖峰神经网络(SNN-PC),其中神经元使用事件驱动和异步尖峰进行通信。SNN-PC 采用了之前 PC 神经网络模型的分层结构和希比安学习算法,并引入了两个新特性:(1) 从输入到高级区域的快速前馈扫频,可生成空间缩小的抽象输入表示(即场景要点的神经代码),为任意选择先验提供了一种神经生物学替代方案;(2) 正负误差计算神经元的分离,解决了具有极高基线发射率的双向误差神经元在生物学上的不可信性。在使用 MNIST 手写数字数据集进行训练后,SNN-PC 开发出了分层内部表征,并能重建它在训练期间未见过的样本。SNN-PC 提出了大脑以无监督方式进行感知推理和学习的生物学机制。此外,它还可用于神经形态应用,利用其节能、事件驱动、局部学习和并行信息处理的特性。
{"title":"Predictive coding with spiking neurons and feedforward gist signaling","authors":"Kwangjun Lee, Shirin Dora, Jorge F. Mejias, Sander M. Bohte, Cyriel M. A. Pennartz","doi":"10.3389/fncom.2024.1338280","DOIUrl":"https://doi.org/10.3389/fncom.2024.1338280","url":null,"abstract":"Predictive coding (PC) is an influential theory in neuroscience, which suggests the existence of a cortical architecture that is constantly generating and updating predictive representations of sensory inputs. Owing to its hierarchical and generative nature, PC has inspired many computational models of perception in the literature. However, the biological plausibility of existing models has not been sufficiently explored due to their use of artificial neurons that approximate neural activity with firing rates in the continuous time domain and propagate signals synchronously. Therefore, we developed a spiking neural network for predictive coding (SNN-PC), in which neurons communicate using event-driven and asynchronous spikes. Adopting the hierarchical structure and Hebbian learning algorithms from previous PC neural network models, SNN-PC introduces two novel features: (1) a fast feedforward sweep from the input to higher areas, which generates a spatially reduced and abstract representation of input (i.e., a neural code for the gist of a scene) and provides a neurobiological alternative to an arbitrary choice of priors; and (2) a separation of positive and negative error-computing neurons, which counters the biological implausibility of a bi-directional error neuron with a very high baseline firing rate. After training with the MNIST handwritten digit dataset, SNN-PC developed hierarchical internal representations and was able to reconstruct samples it had not seen during training. SNN-PC suggests biologically plausible mechanisms by which the brain may perform perceptual inference and learning in an unsupervised manner. In addition, it may be used in neuromorphic applications that can utilize its energy-efficient, event-driven, local learning, and parallel information processing nature.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel approach for ASD recognition based on graph attention networks 基于图注意力网络的新型 ASD 识别方法
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-04-10 DOI: 10.3389/fncom.2024.1388083
Canhua Wang, Zhiyong Xiao, Yilu Xu, Qi Zhang, Jingfang Chen
Early detection and diagnosis of Autism Spectrum Disorder (ASD) can significantly improve the quality of life for affected individuals. Identifying ASD based on brain functional connectivity (FC) poses a challenge due to the high heterogeneity of subjects’ fMRI data in different sites. Meanwhile, deep learning algorithms show efficacy in ASD identification but lack interpretability. In this paper, a novel approach for ASD recognition is proposed based on graph attention networks. Specifically, we treat the region of interest (ROI) of the subjects as node, conduct wavelet decomposition of the BOLD signal in each ROI, extract wavelet features, and utilize them along with the mean and variance of the BOLD signal as node features, and the optimized FC matrix as the adjacency matrix, respectively. We then employ the self-attention mechanism to capture long-range dependencies among features. To enhance interpretability, the node-selection pooling layers are designed to determine the importance of ROI for prediction. The proposed framework are applied to fMRI data of children (younger than 12 years old) from the Autism Brain Imaging Data Exchange datasets. Promising results demonstrate superior performance compared to recent similar studies. The obtained ROI detection results exhibit high correspondence with previous studies and offer good interpretability.
自闭症谱系障碍(ASD)的早期检测和诊断可大大改善患者的生活质量。由于受试者不同部位的 fMRI 数据具有高度异质性,因此基于大脑功能连接(FC)来识别 ASD 是一项挑战。与此同时,深度学习算法在 ASD 识别中显示出功效,但缺乏可解释性。本文提出了一种基于图注意力网络的新型 ASD 识别方法。具体来说,我们将受试者的兴趣区域(ROI)作为节点,对每个ROI中的BOLD信号进行小波分解,提取小波特征,并将其与BOLD信号的均值和方差分别作为节点特征和优化后的FC矩阵作为邻接矩阵。然后,我们利用自注意机制来捕捉特征之间的长程依赖关系。为了增强可解释性,我们设计了节点选择池层,以确定 ROI 对预测的重要性。我们将提出的框架应用于自闭症脑成像数据交换数据集中的儿童(12 岁以下)fMRI 数据。与最近的类似研究相比,有希望的结果显示出更优越的性能。所获得的 ROI 检测结果与之前的研究具有很高的对应性,并提供了良好的可解释性。
{"title":"A novel approach for ASD recognition based on graph attention networks","authors":"Canhua Wang, Zhiyong Xiao, Yilu Xu, Qi Zhang, Jingfang Chen","doi":"10.3389/fncom.2024.1388083","DOIUrl":"https://doi.org/10.3389/fncom.2024.1388083","url":null,"abstract":"Early detection and diagnosis of Autism Spectrum Disorder (ASD) can significantly improve the quality of life for affected individuals. Identifying ASD based on brain functional connectivity (FC) poses a challenge due to the high heterogeneity of subjects’ fMRI data in different sites. Meanwhile, deep learning algorithms show efficacy in ASD identification but lack interpretability. In this paper, a novel approach for ASD recognition is proposed based on graph attention networks. Specifically, we treat the region of interest (ROI) of the subjects as node, conduct wavelet decomposition of the BOLD signal in each ROI, extract wavelet features, and utilize them along with the mean and variance of the BOLD signal as node features, and the optimized FC matrix as the adjacency matrix, respectively. We then employ the self-attention mechanism to capture long-range dependencies among features. To enhance interpretability, the node-selection pooling layers are designed to determine the importance of ROI for prediction. The proposed framework are applied to fMRI data of children (younger than 12 years old) from the Autism Brain Imaging Data Exchange datasets. Promising results demonstrate superior performance compared to recent similar studies. The obtained ROI detection results exhibit high correspondence with previous studies and offer good interpretability.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"10 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding of facial features in face perception: insights from deep convolutional neural networks 理解人脸感知中的面部特征:深度卷积神经网络的启示
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-04-09 DOI: 10.3389/fncom.2024.1209082
Qianqian Zhang, Yueyi Zhang, Ning Liu, Xiaoyan Sun
IntroductionFace recognition has been a longstanding subject of interest in the fields of cognitive neuroscience and computer vision research. One key focus has been to understand the relative importance of different facial features in identifying individuals. Previous studies in humans have demonstrated the crucial role of eyebrows in face recognition, potentially even surpassing the importance of the eyes. However, eyebrows are not only vital for face recognition but also play a significant role in recognizing facial expressions and intentions, which might occur simultaneously and influence the face recognition process.MethodsTo address these challenges, our current study aimed to leverage the power of deep convolutional neural networks (DCNNs), an artificial face recognition system, which can be specifically tailored for face recognition tasks. In this study, we investigated the relative importance of various facial features in face recognition by selectively blocking feature information from the input to the DCNN. Additionally, we conducted experiments in which we systematically blurred the information related to eyebrows to varying degrees.ResultsOur findings aligned with previous human research, revealing that eyebrows are the most critical feature for face recognition, followed by eyes, mouth, and nose, in that order. The results demonstrated that the presence of eyebrows was more crucial than their specific high-frequency details, such as edges and textures, compared to other facial features, where the details also played a significant role. Furthermore, our results revealed that, unlike other facial features, the activation map indicated that the significance of eyebrows areas could not be readily adjusted to compensate for the absence of eyebrow information. This finding explains why masking eyebrows led to more significant deficits in face recognition performance. Additionally, we observed a synergistic relationship among facial features, providing evidence for holistic processing of faces within the DCNN.DiscussionOverall, our study sheds light on the underlying mechanisms of face recognition and underscores the potential of using DCNNs as valuable tools for further exploration in this field.
导言:人脸识别是认知神经科学和计算机视觉研究领域长期关注的课题。其中一个重点是了解不同面部特征在识别个人时的相对重要性。以前对人类的研究表明,眉毛在人脸识别中起着至关重要的作用,其重要性甚至可能超过眼睛。然而,眉毛不仅对人脸识别至关重要,而且在识别面部表情和意图方面也起着重要作用,而面部表情和意图可能同时出现并影响人脸识别过程。在这项研究中,我们通过选择性地屏蔽 DCNN 输入中的特征信息,研究了各种面部特征在人脸识别中的相对重要性。结果我们的研究结果与之前的人类研究结果一致,眉毛是人脸识别中最关键的特征,其次依次是眼睛、嘴巴和鼻子。结果表明,与其他面部特征相比,眉毛的存在比其特定的高频细节(如边缘和纹理)更为关键,而在其他面部特征中,细节也发挥着重要作用。此外,我们的结果还显示,与其他面部特征不同,激活图显示眉毛区域的重要性不能轻易调整以弥补眉毛信息的缺失。这一发现解释了为什么遮蔽眉毛会导致更严重的人脸识别能力缺陷。总之,我们的研究揭示了人脸识别的内在机制,并强调了使用 DCNN 作为该领域进一步探索的宝贵工具的潜力。
{"title":"Understanding of facial features in face perception: insights from deep convolutional neural networks","authors":"Qianqian Zhang, Yueyi Zhang, Ning Liu, Xiaoyan Sun","doi":"10.3389/fncom.2024.1209082","DOIUrl":"https://doi.org/10.3389/fncom.2024.1209082","url":null,"abstract":"IntroductionFace recognition has been a longstanding subject of interest in the fields of cognitive neuroscience and computer vision research. One key focus has been to understand the relative importance of different facial features in identifying individuals. Previous studies in humans have demonstrated the crucial role of eyebrows in face recognition, potentially even surpassing the importance of the eyes. However, eyebrows are not only vital for face recognition but also play a significant role in recognizing facial expressions and intentions, which might occur simultaneously and influence the face recognition process.MethodsTo address these challenges, our current study aimed to leverage the power of deep convolutional neural networks (DCNNs), an artificial face recognition system, which can be specifically tailored for face recognition tasks. In this study, we investigated the relative importance of various facial features in face recognition by selectively blocking feature information from the input to the DCNN. Additionally, we conducted experiments in which we systematically blurred the information related to eyebrows to varying degrees.ResultsOur findings aligned with previous human research, revealing that eyebrows are the most critical feature for face recognition, followed by eyes, mouth, and nose, in that order. The results demonstrated that the presence of eyebrows was more crucial than their specific high-frequency details, such as edges and textures, compared to other facial features, where the details also played a significant role. Furthermore, our results revealed that, unlike other facial features, the activation map indicated that the significance of eyebrows areas could not be readily adjusted to compensate for the absence of eyebrow information. This finding explains why masking eyebrows led to more significant deficits in face recognition performance. Additionally, we observed a synergistic relationship among facial features, providing evidence for holistic processing of faces within the DCNN.DiscussionOverall, our study sheds light on the underlying mechanisms of face recognition and underscores the potential of using DCNNs as valuable tools for further exploration in this field.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"3 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain tumor segmentation using neuro-technology enabled intelligence-cascaded U-Net model 利用神经技术的智能级联 U-Net 模型进行脑肿瘤分割
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-04-03 DOI: 10.3389/fncom.2024.1391025
Haewon Byeon, Mohannad Al-Kubaisi, Ashit Kumar Dutta, Faisal Alghayadh, Mukesh Soni, Manisha Bhende, Venkata Chunduri, K. Suresh Babu, Rubal Jeet
According to experts in neurology, brain tumours pose a serious risk to human health. The clinical identification and treatment of brain tumours rely heavily on accurate segmentation. The varied sizes, forms, and locations of brain tumours make accurate automated segmentation a formidable obstacle in the field of neuroscience. U-Net, with its computational intelligence and concise design, has lately been the go-to model for fixing medical picture segmentation issues. Problems with restricted local receptive fields, lost spatial information, and inadequate contextual information are still plaguing artificial intelligence. A convolutional neural network (CNN) and a Mel-spectrogram are the basis of this cough recognition technique. First, we combine the voice in a variety of intricate settings and improve the audio data. After that, we preprocess the data to make sure its length is consistent and create a Mel-spectrogram out of it. A novel model for brain tumor segmentation (BTS), Intelligence Cascade U-Net (ICU-Net), is proposed to address these issues. It is built on dynamic convolution and uses a non-local attention mechanism. In order to reconstruct more detailed spatial information on brain tumours, the principal design is a two-stage cascade of 3DU-Net. The paper’s objective is to identify the best learnable parameters that will maximize the likelihood of the data. After the network’s ability to gather long-distance dependencies for AI, Expectation–Maximization is applied to the cascade network’s lateral connections, enabling it to leverage contextual data more effectively. Lastly, to enhance the network’s ability to capture local characteristics, dynamic convolutions with local adaptive capabilities are used in place of the cascade network’s standard convolutions. We compared our results to those of other typical methods and ran extensive testing utilising the publicly available BraTS 2019/2020 datasets. The suggested method performs well on tasks involving BTS, according to the experimental data. The Dice scores for tumor core (TC), complete tumor, and enhanced tumor segmentation BraTS 2019/2020 validation sets are 0.897/0.903, 0.826/0.828, and 0.781/0.786, respectively, indicating high performance in BTS.
神经学专家指出,脑肿瘤对人类健康构成严重威胁。脑肿瘤的临床识别和治疗在很大程度上依赖于精确的分割。脑肿瘤的大小、形态和位置各不相同,因此准确的自动分割是神经科学领域的一个巨大障碍。U-Net 凭借其计算智能和简洁的设计,近来已成为解决医学图像分割问题的首选模型。局部感受野受限、空间信息丢失和上下文信息不足等问题仍然困扰着人工智能。卷积神经网络(CNN)和梅尔谱图是这一咳嗽识别技术的基础。首先,我们在各种复杂的设置中组合语音,并改进音频数据。然后,我们对数据进行预处理,确保其长度一致,并从中创建一个梅尔频谱图。为解决这些问题,我们提出了一种用于脑肿瘤分割(BTS)的新型模型--智能级联 U 网(ICU-Net)。它建立在动态卷积的基础上,并使用非局部关注机制。为了重建更详细的脑肿瘤空间信息,主要设计了一个两级级联的 3DU-Net 。本文的目标是找出最佳可学习参数,使数据的可能性最大化。在网络具备收集人工智能远距离依赖关系的能力后,期望最大化被应用于级联网络的横向联系,使其能够更有效地利用上下文数据。最后,为了增强网络捕捉局部特征的能力,我们使用了具有局部自适应能力的动态卷积来替代级联网络的标准卷积。我们将结果与其他典型方法进行了比较,并利用公开的 BraTS 2019/2020 数据集进行了广泛测试。根据实验数据,建议的方法在涉及 BTS 的任务中表现良好。肿瘤核心(TC)、完整肿瘤和增强肿瘤分割 BraTS 2019/2020 验证集的 Dice 分数分别为 0.897/0.903、0.826/0.828 和 0.781/0.786,表明该方法在 BTS 中表现优异。
{"title":"Brain tumor segmentation using neuro-technology enabled intelligence-cascaded U-Net model","authors":"Haewon Byeon, Mohannad Al-Kubaisi, Ashit Kumar Dutta, Faisal Alghayadh, Mukesh Soni, Manisha Bhende, Venkata Chunduri, K. Suresh Babu, Rubal Jeet","doi":"10.3389/fncom.2024.1391025","DOIUrl":"https://doi.org/10.3389/fncom.2024.1391025","url":null,"abstract":"According to experts in neurology, brain tumours pose a serious risk to human health. The clinical identification and treatment of brain tumours rely heavily on accurate segmentation. The varied sizes, forms, and locations of brain tumours make accurate automated segmentation a formidable obstacle in the field of neuroscience. U-Net, with its computational intelligence and concise design, has lately been the go-to model for fixing medical picture segmentation issues. Problems with restricted local receptive fields, lost spatial information, and inadequate contextual information are still plaguing artificial intelligence. A convolutional neural network (CNN) and a Mel-spectrogram are the basis of this cough recognition technique. First, we combine the voice in a variety of intricate settings and improve the audio data. After that, we preprocess the data to make sure its length is consistent and create a Mel-spectrogram out of it. A novel model for brain tumor segmentation (BTS), Intelligence Cascade U-Net (ICU-Net), is proposed to address these issues. It is built on dynamic convolution and uses a non-local attention mechanism. In order to reconstruct more detailed spatial information on brain tumours, the principal design is a two-stage cascade of 3DU-Net. The paper’s objective is to identify the best learnable parameters that will maximize the likelihood of the data. After the network’s ability to gather long-distance dependencies for AI, Expectation–Maximization is applied to the cascade network’s lateral connections, enabling it to leverage contextual data more effectively. Lastly, to enhance the network’s ability to capture local characteristics, dynamic convolutions with local adaptive capabilities are used in place of the cascade network’s standard convolutions. We compared our results to those of other typical methods and ran extensive testing utilising the publicly available BraTS 2019/2020 datasets. The suggested method performs well on tasks involving BTS, according to the experimental data. The Dice scores for tumor core (TC), complete tumor, and enhanced tumor segmentation BraTS 2019/2020 validation sets are 0.897/0.903, 0.826/0.828, and 0.781/0.786, respectively, indicating high performance in BTS.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"16 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The emergence of enhanced intelligence in a brain-inspired cognitive architecture 大脑启发认知架构中增强智能的出现
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-04-02 DOI: 10.3389/fncom.2024.1367712
Howard Schneider
The Causal Cognitive Architecture is a brain-inspired cognitive architecture developed from the hypothesis that the navigation circuits in the ancestors of mammals duplicated to eventually form the neocortex. Thus, millions of neocortical minicolumns are functionally modeled in the architecture as millions of “navigation maps.” An investigation of a cognitive architecture based on these navigation maps has previously shown that modest changes in the architecture allow the ready emergence of human cognitive abilities such as grounded, full causal decision-making, full analogical reasoning, and near-full compositional language abilities. In this study, additional biologically plausible modest changes to the architecture are considered and show the emergence of super-human planning abilities. The architecture should be considered as a viable alternative pathway toward the development of more advanced artificial intelligence, as well as to give insight into the emergence of natural human intelligence.
因果认知架构是一种受大脑启发的认知架构,它是根据哺乳动物祖先的导航回路复制最终形成新皮层的假说发展而来的。因此,在该架构中,数百万个新皮层小脑柱在功能上被模拟为数百万个 "导航图"。对基于这些导航图的认知架构的研究表明,架构的适度改变可使人类的认知能力随时出现,例如有根据的、完整的因果决策、完整的类比推理和近乎完整的组合语言能力。在本研究中,我们考虑了对该架构进行更多生物学上合理的适度改变,并展示了超人类规划能力的出现。该架构应被视为开发更先进人工智能的另一条可行途径,同时也能为人类自然智能的出现提供启示。
{"title":"The emergence of enhanced intelligence in a brain-inspired cognitive architecture","authors":"Howard Schneider","doi":"10.3389/fncom.2024.1367712","DOIUrl":"https://doi.org/10.3389/fncom.2024.1367712","url":null,"abstract":"The Causal Cognitive Architecture is a brain-inspired cognitive architecture developed from the hypothesis that the navigation circuits in the ancestors of mammals duplicated to eventually form the neocortex. Thus, millions of neocortical minicolumns are functionally modeled in the architecture as millions of “navigation maps.” An investigation of a cognitive architecture based on these navigation maps has previously shown that modest changes in the architecture allow the ready emergence of human cognitive abilities such as grounded, full causal decision-making, full analogical reasoning, and near-full compositional language abilities. In this study, additional biologically plausible modest changes to the architecture are considered and show the emergence of super-human planning abilities. The architecture should be considered as a viable alternative pathway toward the development of more advanced artificial intelligence, as well as to give insight into the emergence of natural human intelligence.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"20 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Smith–Magenis syndrome cases through an experimental evaluation of machine learning methods 通过对机器学习方法的实验评估识别史密斯-马盖尼综合征病例
IF 3.2 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-03-22 DOI: 10.3389/fncom.2024.1357607
Raúl Fernández-Ruiz, Esther Núñez-Vidal, Irene Hidalgo-delaguía, Elena Garayzábal-Heinze, Agustín Álvarez-Marquina, Rafael Martínez-Olalla, Daniel Palacios-Alonso
This research work introduces a novel, nonintrusive method for the automatic identification of Smith–Magenis syndrome, traditionally studied through genetic markers. The method utilizes cepstral peak prominence and various machine learning techniques, relying on a single metric computed by the research group. The performance of these techniques is evaluated across two case studies, each employing a unique data preprocessing approach. A proprietary data “windowing” technique is also developed to derive a more representative dataset. To address class imbalance in the dataset, the synthetic minority oversampling technique (SMOTE) is applied for data augmentation. The application of these preprocessing techniques has yielded promising results from a limited initial dataset. The study concludes that the k-nearest neighbors and linear discriminant analysis perform best, and that cepstral peak prominence is a promising measure for identifying Smith–Magenis syndrome.
这项研究工作介绍了一种新颖的非侵入式方法,用于自动识别传统上通过遗传标记研究的史密斯-马盖尼综合征。该方法利用了倒频谱峰突出和各种机器学习技术,并依赖于研究小组计算的单一指标。在两个案例研究中对这些技术的性能进行了评估,每个案例研究都采用了独特的数据预处理方法。此外,还开发了一种专有的数据 "窗口 "技术,以获得更具代表性的数据集。为解决数据集中的类不平衡问题,采用了合成少数群体超采样技术(SMOTE)进行数据扩增。这些预处理技术的应用从有限的初始数据集中获得了可喜的结果。研究得出的结论是,k-近邻和线性判别分析的效果最好,而倒频谱峰突出度是识别史密斯-马盖尼综合征的一种有前途的测量方法。
{"title":"Identification of Smith–Magenis syndrome cases through an experimental evaluation of machine learning methods","authors":"Raúl Fernández-Ruiz, Esther Núñez-Vidal, Irene Hidalgo-delaguía, Elena Garayzábal-Heinze, Agustín Álvarez-Marquina, Rafael Martínez-Olalla, Daniel Palacios-Alonso","doi":"10.3389/fncom.2024.1357607","DOIUrl":"https://doi.org/10.3389/fncom.2024.1357607","url":null,"abstract":"This research work introduces a novel, nonintrusive method for the automatic identification of Smith–Magenis syndrome, traditionally studied through genetic markers. The method utilizes cepstral peak prominence and various machine learning techniques, relying on a single metric computed by the research group. The performance of these techniques is evaluated across two case studies, each employing a unique data preprocessing approach. A proprietary data “windowing” technique is also developed to derive a more representative dataset. To address class imbalance in the dataset, the synthetic minority oversampling technique (SMOTE) is applied for data augmentation. The application of these preprocessing techniques has yielded promising results from a limited initial dataset. The study concludes that the k-nearest neighbors and linear discriminant analysis perform best, and that cepstral peak prominence is a promising measure for identifying Smith–Magenis syndrome.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"137 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140198474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Computational Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1