首页 > 最新文献

Food Hydrocolloids for Health最新文献

英文 中文
Pomegranate peel powder and extract improved weight control, lipid metabolism and gut microbiota in hamsters fed with standard american diets
IF 4.6 Q1 CHEMISTRY, APPLIED Pub Date : 2025-01-16 DOI: 10.1016/j.fhfh.2025.100196
Xingzhu Wu , Wallace Yokoyama , Yuqing Tan , Glenn Bartley , Ling Chen , James Pan , Priscila Alves Buongiorno , Jose Berrios , Tara McHugh , Zhongli Pan
Pomegranate peel waste is a byproduct of juice processing and 1.6 million tons are produced globally each year. Pomegranate peels have a high dietary fiber content and unique polyphenol profile suggesting it may have health benefits. This study aimed to investigate the hypocholesterolemic and anti-obesity effects of pomegranate peel powder (PPP) and water extract (PPE) in Golden Syrian hamsters fed with high-fat (39 % fat calorie, HF) diets. Hamsters were fed either the HF, or the HF diet supplemented with 2.5 % or 5 % PPE (LE and HE, respectively), or 5 % or 10 % PPP (low-peel (LP) and high-peel (HP), respectively. After 4 weeks of feeding, hamsters gained 16.10- 33.82 g of weight and the feeding efficacy ranged from 0.10 to 0.18. The HP group had the lowest weight gain and feed efficacy while others were not significantly different. The HP group had significantly lower liver-to-body weight ratio (3.10 ± 0.08 % vs 3.65 ± 0.09 %), fasting blood glucose (68.11 ± 5.27 vs 82.94 ± 6.49 mg/dL), and hepatic lipid content (6.31 ± 0.26 vs 7.49 ± 0.22 g/100 g liver) compared to the HF group. PPP ingestion significantly increased LDL but decreased triglycerides. PPP and PPE feeding resulted in microbiota phyla Firmicutes-to-Bacteroidetes ratio characteristic of leaner phenotypes. HMG-CoAR and LDLR expression were reduced, suggesting that decreased uptake of LDL was not sufficient to lower plasma LDL, even with reduced cholesterol synthesis.
{"title":"Pomegranate peel powder and extract improved weight control, lipid metabolism and gut microbiota in hamsters fed with standard american diets","authors":"Xingzhu Wu ,&nbsp;Wallace Yokoyama ,&nbsp;Yuqing Tan ,&nbsp;Glenn Bartley ,&nbsp;Ling Chen ,&nbsp;James Pan ,&nbsp;Priscila Alves Buongiorno ,&nbsp;Jose Berrios ,&nbsp;Tara McHugh ,&nbsp;Zhongli Pan","doi":"10.1016/j.fhfh.2025.100196","DOIUrl":"10.1016/j.fhfh.2025.100196","url":null,"abstract":"<div><div>Pomegranate peel waste is a byproduct of juice processing and 1.6 million tons are produced globally each year. Pomegranate peels have a high dietary fiber content and unique polyphenol profile suggesting it may have health benefits. This study aimed to investigate the hypocholesterolemic and anti-obesity effects of pomegranate peel powder (PPP) and water extract (PPE) in Golden Syrian hamsters fed with high-fat (39 % fat calorie, HF) diets. Hamsters were fed either the HF, or the HF diet supplemented with 2.5 % or 5 % PPE (LE and HE, respectively), or 5 % or 10 % PPP (low-peel (LP) and high-peel (HP), respectively. After 4 weeks of feeding, hamsters gained 16.10- 33.82 g of weight and the feeding efficacy ranged from 0.10 to 0.18. The HP group had the lowest weight gain and feed efficacy while others were not significantly different. The HP group had significantly lower liver-to-body weight ratio (3.10 ± 0.08 % vs 3.65 ± 0.09 %), fasting blood glucose (68.11 ± 5.27 vs 82.94 ± 6.49 mg/dL), and hepatic lipid content (6.31 ± 0.26 vs 7.49 ± 0.22 g/100 g liver) compared to the HF group. PPP ingestion significantly increased LDL but decreased triglycerides. PPP and PPE feeding resulted in microbiota phyla <em>Firmicutes</em>-<em>to</em>-<em>Bacteroidetes</em> ratio characteristic of leaner phenotypes. HMG-CoAR and LDLR expression were reduced, suggesting that decreased uptake of LDL was not sufficient to lower plasma LDL, even with reduced cholesterol synthesis.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"7 ","pages":"Article 100196"},"PeriodicalIF":4.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encapsulation of anthocyanins from purple corn cob via antisolvent precipitation: Effect of pH and zein/gum arabic ratio on the antioxidant activity, particle size and thermal stability
IF 4.6 Q1 CHEMISTRY, APPLIED Pub Date : 2025-01-16 DOI: 10.1016/j.fhfh.2025.100197
Johan Mendoza , Omar Peñuñuri-Miranda , María d.C. Valdez-Cárdenas , Carmen O. Melendez-Pizarro , Daniel Lardizabal-Gutiérrez , Francisco Paraguay-Delgado , Armando Quintero-Ramos
This study evaluates the effects of pH levels and Zein/Gum Arabic (Z/GA) ratios on key encapsulation parameters of an anthocyanin-rich extract (ARE) derived from purple corn cob, using the antisolvent precipitation method. Parameters analyzed include encapsulation efficiencies for anthocyanins (%AEE) and polyphenols (%PEE), nanoparticle size, polydispersity index, ζ-potential, and thermal stability at 80 and 180 °C. Particles without GA showed poor stability and low %AEE, particularly at lower pH. Conversely, the addition of GA significantly enhanced encapsulation efficiency, especially under acidic conditions (pH 2–4), and improved the particle size uniformity. At Z/GA ratio of 1:1, GA played a crucial role in stabilizing nanoparticles, effectively preventing aggregation even when the net particle charge was near to zero. Characterization by SEM, FTIR and TGA confirmed the morphological, structural, and thermal properties of the encapsulated particles. Thermal stability tests demonstrated that encapsulated anthocyanins exhibited significantly improved resistance to thermal degradation, with half-life extended up to threefold compared to unencapsulated counterparts. These results highlight the potential of encapsulating ARE from purple corn cob in Z/GA matrices as a method to preserve anthocyanins functionality, improve their thermal stability during food processing, and enhance application in food systems. Additionally, this approach offers a sustainable alternative, adding value to agricultural by-products and promoting waste valorization in the food industry. However, further research on scalability, cost-effectiveness, and application in food processing systems are needed.
{"title":"Encapsulation of anthocyanins from purple corn cob via antisolvent precipitation: Effect of pH and zein/gum arabic ratio on the antioxidant activity, particle size and thermal stability","authors":"Johan Mendoza ,&nbsp;Omar Peñuñuri-Miranda ,&nbsp;María d.C. Valdez-Cárdenas ,&nbsp;Carmen O. Melendez-Pizarro ,&nbsp;Daniel Lardizabal-Gutiérrez ,&nbsp;Francisco Paraguay-Delgado ,&nbsp;Armando Quintero-Ramos","doi":"10.1016/j.fhfh.2025.100197","DOIUrl":"10.1016/j.fhfh.2025.100197","url":null,"abstract":"<div><div>This study evaluates the effects of pH levels and Zein/Gum Arabic (Z/GA) ratios on key encapsulation parameters of an anthocyanin-rich extract (ARE) derived from purple corn cob, using the antisolvent precipitation method. Parameters analyzed include encapsulation efficiencies for anthocyanins (%AEE) and polyphenols (%PEE), nanoparticle size, polydispersity index, ζ-potential, and thermal stability at 80 and 180 °C. Particles without GA showed poor stability and low %AEE, particularly at lower pH. Conversely, the addition of GA significantly enhanced encapsulation efficiency, especially under acidic conditions (pH 2–4), and improved the particle size uniformity. At Z/GA ratio of 1:1, GA played a crucial role in stabilizing nanoparticles, effectively preventing aggregation even when the net particle charge was near to zero. Characterization by SEM, FTIR and TGA confirmed the morphological, structural, and thermal properties of the encapsulated particles. Thermal stability tests demonstrated that encapsulated anthocyanins exhibited significantly improved resistance to thermal degradation, with half-life extended up to threefold compared to unencapsulated counterparts. These results highlight the potential of encapsulating ARE from purple corn cob in Z/GA matrices as a method to preserve anthocyanins functionality, improve their thermal stability during food processing, and enhance application in food systems. Additionally, this approach offers a sustainable alternative, adding value to agricultural by-products and promoting waste valorization in the food industry. However, further research on scalability, cost-effectiveness, and application in food processing systems are needed.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"7 ","pages":"Article 100197"},"PeriodicalIF":4.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emulsion electrospinning of lemongrass essential Oil-Loaded Ferula haussknechtii gum/ Polyethylene oxide as bioactive coating
IF 4.6 Q1 CHEMISTRY, APPLIED Pub Date : 2025-01-07 DOI: 10.1016/j.fhfh.2025.100195
Saeedeh Jafari, Abdollah Hematian Sourki, Safoora Pashangeh
This study aimed to develop a novel, degradable antimicrobial bioactive coating by combining Ferula haussknechtii gum and polyethylene oxide with lemongrass essential oil (LGEO) using the emulsion electrospinning technique. The LGEO emulsion in the F. haussknechtii gum/polyethylene oxide solution was prepared via ultrasonic method, and its physicochemical properties, including pH, electrical conductivity, density, and apparent viscosity, were systematically evaluated. The microstructural morphology of the electrospun coating was analyzed using scanning electron microscopy (SEM). The antimicrobial properties and antioxidant potential of the active electrospun coating were also assessed. The resulting electrospun fibers had an average diameter of 0.56 μm and contained over 36 bioactive compounds, exhibiting radical scavenging activity of approximately 74.51 %. The LGEO was incorporated into the bioactive coating at concentrations of 3, 6, and 9 % (v/v). The antimicrobial efficacy of the electrospun coating was tested against Gram-positive Gram-negative, and Aspergillus niger. The highest antimicrobial activity was observed with the electrospun coating containing 9 % LGEO. The results revealed that increasing the LGEO concentration in the emulsion resulted in decreased pH, apparent viscosity, and density, while electrical conductivity increased. SEM analysis confirmed the formation of uniform, bead-free electrospun fibers across all LGEO concentrations. FTIR analysis validated the successful incorporation of emulsified LGEO into the electrospun fibers. These findings demonstrate that the inclusion of LGEO in bioactive edible coatings can significantly enhance antimicrobial protection, particularly for minimally processed foods, while potentially extending shelf life by reducing microbial contamination.
{"title":"Emulsion electrospinning of lemongrass essential Oil-Loaded Ferula haussknechtii gum/ Polyethylene oxide as bioactive coating","authors":"Saeedeh Jafari,&nbsp;Abdollah Hematian Sourki,&nbsp;Safoora Pashangeh","doi":"10.1016/j.fhfh.2025.100195","DOIUrl":"10.1016/j.fhfh.2025.100195","url":null,"abstract":"<div><div>This study aimed to develop a novel, degradable antimicrobial bioactive coating by combining <em>Ferula haussknechtii</em> gum and polyethylene oxide with lemongrass essential oil (LGEO) using the emulsion electrospinning technique. The LGEO emulsion in the <em>F. haussknechtii</em> gum/polyethylene oxide solution was prepared via ultrasonic method, and its physicochemical properties, including pH, electrical conductivity, density, and apparent viscosity, were systematically evaluated. The microstructural morphology of the electrospun coating was analyzed using scanning electron microscopy (SEM). The antimicrobial properties and antioxidant potential of the active electrospun coating were also assessed. The resulting electrospun fibers had an average diameter of 0.56 μm and contained over 36 bioactive compounds, exhibiting radical scavenging activity of approximately 74.51 %. The LGEO was incorporated into the bioactive coating at concentrations of 3, 6, and 9 % (v/v). The antimicrobial efficacy of the electrospun coating was tested against Gram-positive Gram-negative<em>,</em> and <em>Aspergillus niger</em>. The highest antimicrobial activity was observed with the electrospun coating containing 9 % LGEO. The results revealed that increasing the LGEO concentration in the emulsion resulted in decreased pH, apparent viscosity, and density, while electrical conductivity increased. SEM analysis confirmed the formation of uniform, bead-free electrospun fibers across all LGEO concentrations. FTIR analysis validated the successful incorporation of emulsified LGEO into the electrospun fibers. These findings demonstrate that the inclusion of LGEO in bioactive edible coatings can significantly enhance antimicrobial protection, particularly for minimally processed foods, while potentially extending shelf life by reducing microbial contamination.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"7 ","pages":"Article 100195"},"PeriodicalIF":4.6,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rheological properties and visual cohesiveness of soy protein-based formulations without thickening agents in dysphagic management
IF 4.6 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-20 DOI: 10.1016/j.fhfh.2024.100193
Varanya Techasukthavorn , Jirarat Anuntagool
Thickened fluids, or dysphagic drinks, are commonly prescribed for individuals with swallowing difficulties. They help slow down food bolus in the swallowing process, reducing the risk of choking and aspiration. The main goal of this study was to create a set of high-protein supplement drinks varying in caloric density level. Besides, the study aimed to examine both shear and extensional rheological properties along with visual cohesiveness. Soy protein-based formulations A to F were developed with caloric densities: 1, 1.2, 1.5, 2, 2.5, and 3 kcal/mL, respectively. Each formulation was assessed through the International Dysphagia Diet Standardisation Initiative (IDDSI) flow test, shear and extensional rheological behavior, and visual cohesiveness. All samples exhibited shear-thinning behavior with viscosity increased with higher caloric density. Formulations A and B were classified as low-viscosity liquids, while formulations C, D, E, and F were suitable for extensional flow measurements with extensional properties improving as density increased. Visual cohesiveness, assessed through elongation shape and flow behavior, enhances with formulation concentration. Formulations A and B may require the addition of thickening agents to serve as thickened nutritional supplements for dysphagia management. Formulations C, D, and E were mildly to moderately thick, whereas formulation F, characterized by extremely thick with very high yield stress, may cause multiple swallows. These findings highlight the potential for developing higher-calorie supplements without thickeners as a practical strategy to enhance energy and protein intake in individuals with dysphagia. To ensure safe swallowing, future research should validate these results using in-vitro throat models and clinical studies.
{"title":"Rheological properties and visual cohesiveness of soy protein-based formulations without thickening agents in dysphagic management","authors":"Varanya Techasukthavorn ,&nbsp;Jirarat Anuntagool","doi":"10.1016/j.fhfh.2024.100193","DOIUrl":"10.1016/j.fhfh.2024.100193","url":null,"abstract":"<div><div>Thickened fluids, or dysphagic drinks, are commonly prescribed for individuals with swallowing difficulties. They help slow down food bolus in the swallowing process, reducing the risk of choking and aspiration. The main goal of this study was to create a set of high-protein supplement drinks varying in caloric density level. Besides, the study aimed to examine both shear and extensional rheological properties along with visual cohesiveness. Soy protein-based formulations A to F were developed with caloric densities: 1, 1.2, 1.5, 2, 2.5, and 3 kcal/mL, respectively. Each formulation was assessed through the International Dysphagia Diet Standardisation Initiative (IDDSI) flow test, shear and extensional rheological behavior, and visual cohesiveness. All samples exhibited shear-thinning behavior with viscosity increased with higher caloric density. Formulations A and B were classified as low-viscosity liquids, while formulations C, D, E, and F were suitable for extensional flow measurements with extensional properties improving as density increased. Visual cohesiveness, assessed through elongation shape and flow behavior, enhances with formulation concentration. Formulations A and B may require the addition of thickening agents to serve as thickened nutritional supplements for dysphagia management. Formulations C, D, and E were mildly to moderately thick, whereas formulation F, characterized by extremely thick with very high yield stress, may cause multiple swallows. These findings highlight the potential for developing higher-calorie supplements without thickeners as a practical strategy to enhance energy and protein intake in individuals with dysphagia. To ensure safe swallowing, future research should validate these results using in-vitro throat models and clinical studies.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"7 ","pages":"Article 100193"},"PeriodicalIF":4.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increase in blood-transferable linear and cyclic dipeptides in human plasma following ingestion of elastin hydrolysate 摄入弹性蛋白水解物后,血浆中可血液转移的线状和环状二肽增加
IF 4.6 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-01 DOI: 10.1016/j.fhfh.2024.100188
Yu Iwasaki , Mikako Sato , Yoshinori Katakura , Yukihiro Sugawara , Yasutaka Shigemura
In this study, we analyzed the absorption of linear and cyclic dipeptides containing Gly, Pro, Ala, and Val by human blood following the ingestion of elastin hydrolysate. As in previous studies, Pro-Gly was transferred into blood at the highest concentration (Cmax; 14.63 nmol/mL). Moreover, this is the first study to show that Gly-Pro, Pro-Ala, Gly-Ala, cyclo(Gly-Pro), cyclo(Pro-Ala), cyclo(Pro-Val) and cyclo(Gly-Ala) also increase in blood after the ingestion of elastin hydrolysate. The contents of these cyclic dipeptides, which amounts in elastin hydrolysate is verry small, suggested that elastin digestives may be cyclized during digestion and absorption by human blood following the ingestion of elastin hydrolysate. This study suggested that these blood-transferrable linear and cyclic dipeptides could be candidates for elastin-derived bioactive peptides, and this finding consequently led to the further experiments that has been required for clarifying the bioactivities and mechanisms of beneficial effects of elastin hydrolysate.
在这项研究中,我们分析了在摄入弹性蛋白水解物后,人体血液对含有Gly, Pro, Ala和Val的线性和环状二肽的吸收。与先前的研究一样,Pro-Gly以最高浓度(Cmax;14.63 nmol /毫升)。此外,该研究首次表明,摄入弹性蛋白水解物后,血液中Gly-Pro、Pro-Ala、Gly-Ala、cyclo(Gly-Pro)、cyclo(Pro-Ala)、cyclo(Pro-Val)和cyclo(Gly-Ala)也会增加。这些环二肽在弹性蛋白水解物中的含量非常少,这表明弹性蛋白消化物在摄入弹性蛋白水解物后,可能在消化和吸收过程中被血液环化。这项研究表明,这些血液可转移的线性和环状二肽可能是弹性蛋白衍生的生物活性肽的候选物,这一发现导致了进一步的实验,以阐明弹性蛋白水解物的生物活性和有益作用的机制。
{"title":"Increase in blood-transferable linear and cyclic dipeptides in human plasma following ingestion of elastin hydrolysate","authors":"Yu Iwasaki ,&nbsp;Mikako Sato ,&nbsp;Yoshinori Katakura ,&nbsp;Yukihiro Sugawara ,&nbsp;Yasutaka Shigemura","doi":"10.1016/j.fhfh.2024.100188","DOIUrl":"10.1016/j.fhfh.2024.100188","url":null,"abstract":"<div><div>In this study, we analyzed the absorption of linear and cyclic dipeptides containing Gly, Pro, Ala, and Val by human blood following the ingestion of elastin hydrolysate. As in previous studies, Pro-Gly was transferred into blood at the highest concentration (Cmax; 14.63 nmol/mL). Moreover, this is the first study to show that Gly-Pro, Pro-Ala, Gly-Ala, cyclo(Gly-Pro), cyclo(Pro-Ala), cyclo(Pro-Val) and cyclo(Gly-Ala) also increase in blood after the ingestion of elastin hydrolysate. The contents of these cyclic dipeptides, which amounts in elastin hydrolysate is verry small, suggested that elastin digestives may be cyclized during digestion and absorption by human blood following the ingestion of elastin hydrolysate. This study suggested that these blood-transferrable linear and cyclic dipeptides could be candidates for elastin-derived bioactive peptides, and this finding consequently led to the further experiments that has been required for clarifying the bioactivities and mechanisms of beneficial effects of elastin hydrolysate.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100188"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142745075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alginate-based microencapsulation enhances antinociceptive and anti-inflammatory activities of Phyllanthus amarus and Phyllanthus muellerianus
IF 4.6 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-01 DOI: 10.1016/j.fhfh.2024.100190
Joy J. Adeyemi , Abayomi M. Ajayi , Tolulope O. Ajala
Phyllantus amarus and P. muellerianus are herbs reported to possess anti-inflammatory activity. Antinociceptive and anti-inflammatory activities of alginate-based microsphere loaded with extracts of P. amarus and P. muellerianus was here reported. The extract-loaded microspheres were prepared using the ionotropic gelation method. The particle size, swelling index, entrapment efficiency, and FTIR spectroscopy were determined. Antinociceptive and anti-inflammatory activities of extract-loaded microspheres were evaluated in hotplate-induced nociception in mice and carrageenan-induced rat paw oedema, respectively. The physicohemical results showed rigid, free-flowing and spherical microspheres, with particle sizes ranging from 985.977±13.65 to 1232±12.99 µm and entrapment efficiencies of 20.9 ± 0.341 to 45.0 ± 0.002 %. Polymer-drug interaction revealed bands indicating aromatics, alcohols and alkenes. The extract-loaded microspheres showed improved antinociceptive and anti-inflammatory activities when compared to the extracts alone. The sodium alginate-based microspheres loaded with Phyllanthus amarus and Phyllanthus muellerianus extracts showed acceptable physicochemical properties and had improved antinociceptive and anti-inflammatory activity compared to the extracts alone.
{"title":"Alginate-based microencapsulation enhances antinociceptive and anti-inflammatory activities of Phyllanthus amarus and Phyllanthus muellerianus","authors":"Joy J. Adeyemi ,&nbsp;Abayomi M. Ajayi ,&nbsp;Tolulope O. Ajala","doi":"10.1016/j.fhfh.2024.100190","DOIUrl":"10.1016/j.fhfh.2024.100190","url":null,"abstract":"<div><div><em>Phyllantus amarus</em> and <em>P. muellerianus</em> are herbs reported to possess anti-inflammatory activity. Antinociceptive and anti-inflammatory activities of alginate-based microsphere loaded with extracts of <em>P. amarus</em> and <em>P. muellerianus</em> was here reported. The extract-loaded microspheres were prepared using the ionotropic gelation method. The particle size, swelling index, entrapment efficiency, and FTIR spectroscopy were determined. Antinociceptive and anti-inflammatory activities of extract-loaded microspheres were evaluated in hotplate-induced nociception in mice and carrageenan-induced rat paw oedema, respectively. The physicohemical results showed rigid, free-flowing and spherical microspheres, with particle sizes ranging from 985.977±13.65 to 1232±12.99 µm and entrapment efficiencies of 20.9 ± 0.341 to 45.0 ± 0.002 %. Polymer-drug interaction revealed bands indicating aromatics, alcohols and alkenes. The extract-loaded microspheres showed improved antinociceptive and anti-inflammatory activities when compared to the extracts alone. The sodium alginate-based microspheres loaded with <em>Phyllanthus amarus</em> and <em>Phyllanthus muellerianus</em> extracts showed acceptable physicochemical properties and had improved antinociceptive and anti-inflammatory activity compared to the extracts alone.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100190"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143101117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“Enhancing quinoa (Chenopodium quinoa Willd) protein extraction: Alkaline solubilization coupled to isoelectric precipitation effects on structure, digestibility and antinutrients”
IF 4.6 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-01 DOI: 10.1016/j.fhfh.2024.100191
Maria Lilibeth Manzanilla-Valdez , Christine Boesch , Cristina Martinez-Villaluenga , Sarita Montaño , Alan Javier Hernández-Álvarez
Quinoa (Chenopodium quinoa Willd) has gained popularity as a plant-based protein source due to its high protein content and complete amino acid profile. However, protein extraction methods such as alkaline solubilization coupled to isoelectric precipitation (ASIP), can affect protein structure, digestibility, nutritional quality, and the composition of antinutritional factors. This study aimed to assess the effects of ASIP on the secondary structure, protein quality and antinutritional factors (ANFs) composition from three quinoa varieties. The results showed that quinoa protein isolates exhibited a decrease in random coil structures, while β-turns and β-sheets increased, as indicated by FTIR analysis. In vitro protein digestibility improved after protein extraction, ranging from 82.12% to 84.50%. The amino acid score ranged from 0.67 – 0.88, with Yellow quinoa protein concentrate exhibiting the highest value. Black quinoa protein isolate showed the lowest total oxalate content (105.00 mg/100g), while Red quinoa protein concentrate presented higher levels of phytic acid (2.0 g/100 g), saponins (150.0 mg/g), and total phenolic compounds (161.5 mg GAE/100g). Notably, gluten content decreased in all samples following protein extraction. Despite the presence of certain ANFs in quinoa protein isolates/concentrates, the protein quality of quinoa isolates and concentrates was not adversely affected. In conclusion, the extraction process reduced several ANFs, including lectins, oxalates, and gluten, while enhancing the overall protein quality.
{"title":"“Enhancing quinoa (Chenopodium quinoa Willd) protein extraction: Alkaline solubilization coupled to isoelectric precipitation effects on structure, digestibility and antinutrients”","authors":"Maria Lilibeth Manzanilla-Valdez ,&nbsp;Christine Boesch ,&nbsp;Cristina Martinez-Villaluenga ,&nbsp;Sarita Montaño ,&nbsp;Alan Javier Hernández-Álvarez","doi":"10.1016/j.fhfh.2024.100191","DOIUrl":"10.1016/j.fhfh.2024.100191","url":null,"abstract":"<div><div>Quinoa (<em>Chenopodium quinoa</em> Willd) has gained popularity as a plant-based protein source due to its high protein content and complete amino acid profile. However, protein extraction methods such as alkaline solubilization coupled to isoelectric precipitation (ASIP), can affect protein structure, digestibility, nutritional quality, and the composition of antinutritional factors. This study aimed to assess the effects of ASIP on the secondary structure, protein quality and antinutritional factors (ANFs) composition from three quinoa varieties. The results showed that quinoa protein isolates exhibited a decrease in random coil structures, while β-turns and β-sheets increased, as indicated by FTIR analysis. <em>In vitro</em> protein digestibility improved after protein extraction, ranging from 82.12% to 84.50%. The amino acid score ranged from 0.67 – 0.88, with Yellow quinoa protein concentrate exhibiting the highest value. Black quinoa protein isolate showed the lowest total oxalate content (105.00 mg/100g), while Red quinoa protein concentrate presented higher levels of phytic acid (2.0 g/100 g), saponins (150.0 mg/g), and total phenolic compounds (161.5 mg GAE/100g). Notably, gluten content decreased in all samples following protein extraction. Despite the presence of certain ANFs in quinoa protein isolates/concentrates, the protein quality of quinoa isolates and concentrates was not adversely affected. In conclusion, the extraction process reduced several ANFs, including lectins, oxalates, and gluten, while enhancing the overall protein quality.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100191"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143101116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Casein and acryl amide complexation and bio-adhesive polymeric nano micelles influence on vortioxetine dissolution, penetration enhancement and in vivo absorption 酪蛋白与丙烯酰胺络合及生物黏附聚合物纳米胶束对沃替西汀溶出、渗透增强及体内吸收的影响
IF 4.6 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-01 DOI: 10.1016/j.fhfh.2024.100189
Samaa Abdullah , Nabil A. Alhakamy , Hatim S. AlKhatib , Rana Abu Huwaij , Hadil Alahdal , Abeer A. Altamimi
Vortioxetine (VTX) is a new atypical antidepressant used to treat major depression and other mental disorders. Due to its low water solubility, oral absorption, and fast metabolism, VTX has been commercially manufactured and sold as a hydrobromide. Long-term VTX hydrobromide therapy is frequently associated with respiratory irritation and digestive dysfunction. Two techniques were developed for dissolution, swelling, adherence, and penetration enhancements. The techniques were the VTX and casein (CAS) complexation using the maximum loading capacity, and VTX-polymeric nano micelle using the “Sandwich Technique”. This study includes the maximum VTX-CAS binding capacity determination, VTX-CAS complex preparation, polymeric nano micelle encapsulating VTX-CAS complex optimizations, physiochemical characterisations, solubility assessment, VTX release analysis, swelling analysis and mucus-penetrating study of the VTX-CAS complex and VTX polymeric nano micelle in comparison to the VTX raw material. The optimum VTX-polymeric nano micelle dissolution, swelling, adherence, and penetration enhancements were supported by the results of 91.10±16.34 nm, +19 mV zeta-potential, structural arrangements, and enhanced amorphic character with the morphology and size distribution (50–100 nm). The VTX-polymeric nano micelle could serve as an oral alternative to the VTX hydrobromide therapy based on the results of the biocompatibility and in vivo absorption studies for the VTX-polymeric nano micellar system.
沃替西汀(VTX)是一种新型非典型抗抑郁药,用于治疗重度抑郁症和其他精神障碍。由于其水溶性低、口服吸收和代谢快,VTX已作为氢溴化物进行商业化生产和销售。长期VTX氢溴化物治疗常伴有呼吸刺激和消化功能障碍。开发了两种用于溶解、肿胀、粘附和渗透增强的技术。采用最大负载容量的VTX与酪蛋白(CAS)络合技术和“三明治技术”的VTX聚合物纳米胶束技术。本研究包括最大VTX- cas结合能力的确定、VTX- cas复合物的制备、封装VTX- cas复合物的聚合物纳米胶束的优化、理化表征、溶解度评估、VTX释放分析、溶胀分析和VTX聚合物纳米胶束与VTX原料的黏液穿透性研究。91.10±16.34 nm、+19 mV zeta电位、结构排列、形貌和尺寸分布(50-100 nm)的非晶性增强等结果支持了最佳的vtx -聚合物纳米胶束溶解、溶胀、粘附和渗透增强。基于对VTX聚合物纳米胶束体系的生物相容性和体内吸收研究结果,VTX聚合物纳米胶束可以作为VTX氢溴化物治疗的口服替代品。
{"title":"Casein and acryl amide complexation and bio-adhesive polymeric nano micelles influence on vortioxetine dissolution, penetration enhancement and in vivo absorption","authors":"Samaa Abdullah ,&nbsp;Nabil A. Alhakamy ,&nbsp;Hatim S. AlKhatib ,&nbsp;Rana Abu Huwaij ,&nbsp;Hadil Alahdal ,&nbsp;Abeer A. Altamimi","doi":"10.1016/j.fhfh.2024.100189","DOIUrl":"10.1016/j.fhfh.2024.100189","url":null,"abstract":"<div><div>Vortioxetine (VTX) is a new atypical antidepressant used to treat major depression and other mental disorders. Due to its low water solubility, oral absorption, and fast metabolism, VTX has been commercially manufactured and sold as a hydrobromide. Long-term VTX hydrobromide therapy is frequently associated with respiratory irritation and digestive dysfunction. Two techniques were developed for dissolution, swelling, adherence, and penetration enhancements. The techniques were the VTX and casein (CAS) complexation using the maximum loading capacity, and VTX-polymeric nano micelle using the “Sandwich Technique”. This study includes the maximum VTX-CAS binding capacity determination, VTX-CAS complex preparation, polymeric nano micelle encapsulating VTX-CAS complex optimizations, physiochemical characterisations, solubility assessment, VTX release analysis, swelling analysis and mucus-penetrating study of the VTX-CAS complex and VTX polymeric nano micelle in comparison to the VTX raw material. The optimum VTX-polymeric nano micelle dissolution, swelling, adherence, and penetration enhancements were supported by the results of 91.10±16.34 nm, +19 mV zeta-potential, structural arrangements, and enhanced amorphic character with the morphology and size distribution (50–100 nm). The VTX-polymeric nano micelle could serve as an oral alternative to the VTX hydrobromide therapy based on the results of the biocompatibility and <em>in vivo</em> absorption studies for the VTX-polymeric nano micellar system.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100189"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional properties and toxicological analysis of nanocellulose-based aerogels loaded with polyphenols from Hyeronima macrocarpa berries 纳米纤维素气凝胶的功能特性和毒理学分析--载入了从红豆杉浆果中提取的多酚
IF 4.6 Q1 CHEMISTRY, APPLIED Pub Date : 2024-11-17 DOI: 10.1016/j.fhfh.2024.100187
Andrés Felipe Alzate-Arbeláez , Farid B. Cortés , Benjamín A. Rojano
In this study, the nutraceutical properties of ethanolic extract of Hyeronima macrocarpa fruits, immobilized on nanocellulose-based aerogels (NCAG) synthesized from the seeds were studied. Specifically, bioactives with antioxidant properties of the pulp were determined, NCAG and homologs of acetate (NCAG-A) and sulfate (NCAG-S) were obtained, and characterized from the seed, the aerogels loaded with antioxidants were studied to determine the anti-radical activity, digestion patterns, protein oxidation inhibition, and toxicological properties. The berries presented a high anthocyanin content of 1317.4 mg C3G/100 g FW and ORAC value ​​of 12,732 µmol Trolox/100 g FW, which make an important source of antioxidants. The seeds presented cellulose content of 61.4 % with a NC yield of 38.4 %. NCAG and their surface homologs were successfully synthesized and characterized by FTIR, DLS, and TEM finding the characteristic bands of the main functional groups, NC presented particle sizes ranging from 64 to 141 nm, BET analysis showed surface areas of 71.1, 102.3, and 183.5 m2/g for NCAG-A, NCAG, and NCAG-S, respectively, and pore sizes of 36–38 nm called mesopores. NCAG presented the highest capacity to trap reactive oxygen species (106.8 mg catechin Eq./g., 86.5 % OH• trapped, respectively). All samples showed the capacity to delay the oxidation of a protein system in a dose-dependent manner, with IC50 values ​​of 70 mg/L (NCAG), 176.3 mg/L (NCAG-A), and 255.6 mg/L (NCAG-S). In vitro digestion showed that NCAG-S was more efficient in delivering anthocyanins under gastric conditions (bioaccessibility of 59.3 %), and NCAG under duodenal conditions (bioaccessibility of 88.2 %). The differences found in samples for the different functional assays can be explained by the various types of interactions generated between the antioxidant molecules and aerogels, in the various media where the analyses are carried out. The results indicate nanocellulose-based aerogels, synthesized from lignocellulosic residues of H. macrocarpa seeds, proved to be porous matrices capable of carrying bioactive substances, and presented interesting properties for the delivery and conservation of antioxidant molecules such as anthocyanins and other polyphenols, achieving an in vitro protective effect against the oxidation of biomolecules.
在这项研究中,研究了固定在由种子合成的纳米纤维素气凝胶(NCAG)上的大芒果(Hyeronima macrocarpa)果实乙醇提取物的营养保健特性。具体而言,确定了果肉中具有抗氧化特性的生物活性物质,从种子中获得了 NCAG 以及醋酸盐(NCAG-A)和硫酸盐(NCAG-S)的同源物,并对载入抗氧化剂的气凝胶进行了研究,以确定其抗自由基活性、消化模式、蛋白质氧化抑制和毒理学特性。浆果的花青素含量高达 1317.4 毫克 C3G/100 克(净重),ORAC 值为 12,732 微摩尔 Trolox/100 克(净重),是抗氧化剂的重要来源。种子的纤维素含量为 61.4%,NC 产量为 38.4%。成功合成了 NCAG 及其表面同系物,并通过傅立叶变换红外光谱(FTIR)、荧光定量光学显微镜(DLS)和电子显微镜(TEM)对其进行了表征,发现了主要官能团的特征带,NC 的粒径范围为 64 至 141 nm,BET 分析表明 NCAG-A、NCAG 和 NCAG-S 的表面积分别为 71.1、102.3 和 183.5 m2/g,孔径为 36-38 nm,称为中孔。NCAG 的活性氧捕获能力最高(分别为 106.8 毫克儿茶素当量/克和 86.5 % OH-捕获)。所有样品都能以剂量依赖的方式延迟蛋白质系统的氧化,IC50 值分别为 70 毫克/升(NCAG)、176.3 毫克/升(NCAG-A)和 255.6 毫克/升(NCAG-S)。体外消化显示,在胃部条件下,NCAG-S 能更有效地传递花青素(生物利用率为 59.3%),而在十二指肠条件下,NCAG 能更有效地传递花青素(生物利用率为 88.2%)。在不同功能测试中发现的样品差异可以解释为抗氧化剂分子与气凝胶之间在进行分析的不同介质中产生的各种相互作用。研究结果表明,用大戟科植物种子的木质纤维素残留物合成的纳米纤维素气凝胶是一种多孔基质,能够携带生物活性物质,并具有输送和保存抗氧化分子(如花青素和其他多酚)的有趣特性,在体外对生物大分子的氧化具有保护作用。
{"title":"Functional properties and toxicological analysis of nanocellulose-based aerogels loaded with polyphenols from Hyeronima macrocarpa berries","authors":"Andrés Felipe Alzate-Arbeláez ,&nbsp;Farid B. Cortés ,&nbsp;Benjamín A. Rojano","doi":"10.1016/j.fhfh.2024.100187","DOIUrl":"10.1016/j.fhfh.2024.100187","url":null,"abstract":"<div><div>In this study, the nutraceutical properties of ethanolic extract of <em>Hyeronima macrocarpa</em> fruits, immobilized on nanocellulose-based aerogels (NCAG) synthesized from the seeds were studied. Specifically, bioactives with antioxidant properties of the pulp were determined, NCAG and homologs of acetate (NCAG-A) and sulfate (NCAG-S) were obtained, and characterized from the seed, the aerogels loaded with antioxidants were studied to determine the anti-radical activity, digestion patterns, protein oxidation inhibition, and toxicological properties. The berries presented a high anthocyanin content of 1317.4 mg C3G/100 g FW and ORAC value ​​of 12,732 µmol Trolox/100 g FW, which make an important source of antioxidants. The seeds presented cellulose content of 61.4 % with a NC yield of 38.4 %. NCAG and their surface homologs were successfully synthesized and characterized by FTIR, DLS, and TEM finding the characteristic bands of the main functional groups, NC presented particle sizes ranging from 64 to 141 nm, BET analysis showed surface areas of 71.1, 102.3, and 183.5 m<sup>2</sup>/g for NCAG-A, NCAG, and NCAG-S, respectively, and pore sizes of 36–38 nm called mesopores. NCAG presented the highest capacity to trap reactive oxygen species (106.8 mg catechin Eq./g., 86.5 % OH• trapped, respectively). All samples showed the capacity to delay the oxidation of a protein system in a dose-dependent manner, with IC<sub>50</sub> values ​​of 70 mg/L (NCAG), 176.3 mg/L (NCAG-A), and 255.6 mg/L (NCAG-S). <em>In vitro</em> digestion showed that NCAG-S was more efficient in delivering anthocyanins under gastric conditions (bioaccessibility of 59.3 %), and NCAG under duodenal conditions (bioaccessibility of 88.2 %). The differences found in samples for the different functional assays can be explained by the various types of interactions generated between the antioxidant molecules and aerogels, in the various media where the analyses are carried out. The results indicate nanocellulose-based aerogels, synthesized from lignocellulosic residues of <em>H. macrocarpa</em> seeds, proved to be porous matrices capable of carrying bioactive substances, and presented interesting properties for the delivery and conservation of antioxidant molecules such as anthocyanins and other polyphenols, achieving an <em>in vitro</em> protective effect against the oxidation of biomolecules.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100187"},"PeriodicalIF":4.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encapsulation of yarrow phenolic compounds in lupin protein nanoemulsions increases stability during gastrointestinal transit and delivery in the colon 将西洋蓍草酚类化合物封装在羽扇豆蛋白纳米乳液中可提高胃肠道转运和结肠输送过程中的稳定性
IF 4.6 Q1 CHEMISTRY, APPLIED Pub Date : 2024-11-09 DOI: 10.1016/j.fhfh.2024.100186
María de las Nieves Siles-Sánchez , Laura Jaime , Milena Corredig , Susana Santoyo , Elena Arranz
This study aimed to assess the behaviour of phenolic compounds from yarrow extract encapsulated in nanoemulsions during in vitro gastrointestinal digestion. Oil-in-water nanoemulsions were developed using grape seed oil and lupin protein (LPI) as oil phase and emulsifier, respectively. The use of 6 % LPI including 1 mg/mL of yarrow extract resulted in nanoemulsions with a homogeneous particle size distribution (200 nm) and an encapsulation efficiency of 85.6 %. During in vitro gastrointestinal digestion, most of the phenolics remained encapsulated, being protected from degradation. The in vitro bioavailability of the encapsulated phenolics was measured using a cell co-culture model (Caco-2/HT-29MTX). In this regard, nanoemulsions did not increase the bioavailability of yarrow phenolics, instead, they promoted their access to the colon. Finally, the antiproliferative activity was determined in Caco-2 cells, observing that the apical fraction inhibited cancer cells, indicating the bioefficacy of the non-absorbed phenolics. Thus, this study underscores the potential of LPI-stabilized nanoemulsions as a vehicle for protecting and delivering yarrow phenolics to the colon.
本研究旨在评估包裹在纳米乳液中的西洋蓍草提取物中的酚类化合物在体外胃肠道消化过程中的表现。研究人员使用葡萄籽油和羽扇豆蛋白(LPI)分别作为油相和乳化剂,开发了水包油纳米乳剂。使用含有 1 毫克/毫升西洋蓍草提取物的 6 % LPI 可制成粒度分布均匀(200 纳米)的纳米乳剂,封装效率达 85.6 %。在体外胃肠道消化过程中,大部分酚类物质仍被包裹,免受降解。利用细胞共培养模型(Caco-2/HT-29MTX)测量了封装酚类物质的体外生物利用率。在这方面,纳米乳剂并没有增加西洋蓍草酚的生物利用率,相反,它们促进了西洋蓍草酚进入结肠。最后,测定了 Caco-2 细胞的抗增殖活性,观察到顶端部分对癌细胞有抑制作用,这表明未被吸收的酚类具有生物功效。因此,这项研究强调了 LPI 稳定纳米乳液作为一种保护蓍草酚并将其输送到结肠的载体的潜力。
{"title":"Encapsulation of yarrow phenolic compounds in lupin protein nanoemulsions increases stability during gastrointestinal transit and delivery in the colon","authors":"María de las Nieves Siles-Sánchez ,&nbsp;Laura Jaime ,&nbsp;Milena Corredig ,&nbsp;Susana Santoyo ,&nbsp;Elena Arranz","doi":"10.1016/j.fhfh.2024.100186","DOIUrl":"10.1016/j.fhfh.2024.100186","url":null,"abstract":"<div><div>This study aimed to assess the behaviour of phenolic compounds from yarrow extract encapsulated in nanoemulsions during <em>in vitro</em> gastrointestinal digestion. Oil-in-water nanoemulsions were developed using grape seed oil and lupin protein (LPI) as oil phase and emulsifier, respectively. The use of 6 % LPI including 1 mg/mL of yarrow extract resulted in nanoemulsions with a homogeneous particle size distribution (200 nm) and an encapsulation efficiency of 85.6 %. During <em>in vitro</em> gastrointestinal digestion, most of the phenolics remained encapsulated, being protected from degradation. The <em>in vitro</em> bioavailability of the encapsulated phenolics was measured using a cell co-culture model (Caco-2/HT-29MTX). In this regard, nanoemulsions did not increase the bioavailability of yarrow phenolics, instead, they promoted their access to the colon. Finally, the antiproliferative activity was determined in Caco-2 cells, observing that the apical fraction inhibited cancer cells, indicating the bioefficacy of the non-absorbed phenolics. Thus, this study underscores the potential of LPI-stabilized nanoemulsions as a vehicle for protecting and delivering yarrow phenolics to the colon.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100186"},"PeriodicalIF":4.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Food Hydrocolloids for Health
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1