首页 > 最新文献

Food Hydrocolloids for Health最新文献

英文 中文
Emulsion electrospraying and spray drying of whey protein nano and microparticles with curcumin 乳清蛋白纳米颗粒和微颗粒的姜黄素乳液电喷雾和喷雾干燥
IF 1.9 Pub Date : 2023-02-03 DOI: 10.1016/j.fhfh.2023.100122
L. Mahalakshmi, P. Choudhary, J.A. Moses, C. Anandharamakrishnan

This study describes the potential of nanoencapsulation of curcumin using the oil-in-water emulsion electrospraying technique. Whey protein was used as wall material, coconut oil was substituted as carrier material for curcumin and the emulsion was prepared at 1:200 and 1:500 core-to-wall (curcumin: whey protein) ratios through high-speed homogenization. Encapsulated micro and nanoparticles were produced by spray drying and electrospraying techniques, respectively, and the influence of both encapsulation processes and core-to-wall ratios on the physicochemical and functional stability of encapsulated curcumin was studied. At the 1:500 core-to-wall ratio, the resulting electrosprayed particles showed a smooth spherical shape with size in the nanoscale range (∼371 nm). Electrosprayed particles with a 1:500 core-to-wall ratio exhibited higher encapsulation efficiency with ∼88% retention of curcumin, around 1.08-fold higher than spray dried particles. Fourier transform infrared spectroscopy study explained the interactions of whey protein with coconut oil containing curcumin through hydrogen bonding and hydrophobic interactions. Interactions had a positive impact on the stability of encapsulated curcumin during simulated gastric and intestinal conditions. Solubility of the curcumin was enhanced in all encapsulated particles as observed through dissolution studies; in particular, electrosprayed particles showed higher dissolution behavior as compared to spray dried particles. Electrosprayed curcumin nanoparticles with a 1:500 core-to-wall ratio showed significant protection against degradation of curcumin under simulated gastric and intestinal conditions and had higher bioaccessibility (∼83%) than other formulations. Thus, the proposed study explains a promising strategy for the production of nanoencapsulated particles with enhanced stability of curcumin, and the results of this work can be extended to functional food applications.

本研究描述了利用水包油乳液电喷涂技术对姜黄素进行纳米包封的潜力。以乳清蛋白为壁材,以椰子油代替姜黄素为载体,以1:200和1:500的核壁比(姜黄素:乳清蛋白)高速均质制备乳浊液。采用喷雾干燥和电喷雾技术分别制备了微胶囊和纳米颗粒,并研究了包封工艺和芯壁比对包封姜黄素的理化性质和功能稳定性的影响。在1:500的芯壁比下,得到的电喷涂颗粒呈光滑的球形,尺寸在纳米级范围内(~ 371 nm)。电喷颗粒的芯壁比为1:500,具有更高的包封效率,姜黄素保留率约为88%,比喷雾干燥颗粒高1.08倍。傅里叶变换红外光谱研究通过氢键和疏水相互作用解释了乳清蛋白与含姜黄素的椰子油之间的相互作用。在模拟胃和肠道条件下,相互作用对胶囊化姜黄素的稳定性有积极影响。通过溶解研究发现,姜黄素在所有包封颗粒中的溶解度都得到了提高;特别是,与喷雾干燥颗粒相比,电喷雾颗粒表现出更高的溶解行为。电喷姜黄素纳米颗粒的核壁比为1:500,在模拟胃和肠道条件下显示出对姜黄素降解的显著保护作用,并且比其他配方具有更高的生物可及性(约83%)。因此,本研究为生产具有增强姜黄素稳定性的纳米胶囊颗粒提供了一种有希望的策略,并且本工作的结果可以扩展到功能食品应用。
{"title":"Emulsion electrospraying and spray drying of whey protein nano and microparticles with curcumin","authors":"L. Mahalakshmi,&nbsp;P. Choudhary,&nbsp;J.A. Moses,&nbsp;C. Anandharamakrishnan","doi":"10.1016/j.fhfh.2023.100122","DOIUrl":"10.1016/j.fhfh.2023.100122","url":null,"abstract":"<div><p>This study describes the potential of nanoencapsulation of curcumin using the oil-in-water emulsion electrospraying technique. Whey protein was used as wall material, coconut oil was substituted as carrier material for curcumin and the emulsion was prepared at 1:200 and 1:500 core-to-wall (curcumin: whey protein) ratios through high-speed homogenization. Encapsulated micro and nanoparticles were produced by spray drying and electrospraying techniques, respectively, and the influence of both encapsulation processes and core-to-wall ratios on the physicochemical and functional stability of encapsulated curcumin was studied. At the 1:500 core-to-wall ratio, the resulting electrosprayed particles showed a smooth spherical shape with size in the nanoscale range (∼371 nm). Electrosprayed particles with a 1:500 core-to-wall ratio exhibited higher encapsulation efficiency with ∼88% retention of curcumin, around 1.08-fold higher than spray dried particles. Fourier transform infrared spectroscopy study explained the interactions of whey protein with coconut oil containing curcumin through hydrogen bonding and hydrophobic interactions. Interactions had a positive impact on the stability of encapsulated curcumin during simulated gastric and intestinal conditions. Solubility of the curcumin was enhanced in all encapsulated particles as observed through dissolution studies; in particular, electrosprayed particles showed higher dissolution behavior as compared to spray dried particles. Electrosprayed curcumin nanoparticles with a 1:500 core-to-wall ratio showed significant protection against degradation of curcumin under simulated gastric and intestinal conditions and had higher bioaccessibility (∼83%) than other formulations. Thus, the proposed study explains a promising strategy for the production of nanoencapsulated particles with enhanced stability of curcumin, and the results of this work can be extended to functional food applications.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44467488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
β-lactoglobulin peptides originating during in vitro digestion improve the bioaccesibility of healthy oils emulsions by forming mixed bile salts micelles with enhanced capacity to solubilize lipolysis products 体外消化过程中产生的β-乳球蛋白肽通过形成混合胆汁盐胶束,提高了脂解产物的溶解能力,从而提高了健康油乳的生物可及性
IF 1.9 Pub Date : 2023-02-01 DOI: 10.1016/j.fhfh.2023.100121
Julieta N. Naso , Fernando A. Bellesi , Ana M.R. Pilosof

The study of lipid digestion has increased in recent years in order to elucidate how lipolysis can be controlled as this knowledge can aid to design healthier emulsified foods. Most of the works have attributed the decrease of the extent and rate of lipolysis of protein stabilized emulsions to droplet coalescence during the gastric phase causing a decrease of the interfacial area available for the reaction. Despite the crucial role of BS in lipids digestion, only few works have attributed a decrease of lipolysis to BS-emulsifiers interactions occurring both, at the interface, or in the bulk phase. The present work focuses in understanding the way in which a model milk protein as β-lactoglobulin (βlg), used as emulsifier, interacts with BS micelles under in vitro gastroduodenal conditions, modifying their capacity to solubilize the products of lipolysis and verify if this phenomenon is reflected in the kinetics of lipolysis of olive or chia oil in water emulsions.

This work shows that the presence of βlg promotes the bioaccessibility of healthy oils such as olive oil or chia oil, which are sources of bioactive fatty acids. The mechanism involved is mediated by the interaction of the BS micelles with the peptides originated from the gastroduodenal proteolysis of the protein. As a result of this interaction, mixed micelles with a much higher capacity to solubilize the lipolysis products are formed. Therefore the lipolysis can proceed at the highest rate for a longer time.

近年来,为了阐明如何控制脂质分解,对脂质消化的研究有所增加,因为这些知识有助于设计更健康的乳化食品。大多数研究将蛋白质稳定乳剂的脂解程度和速率的降低归因于胃期的液滴聚结,导致可用于反应的界面面积减少。尽管BS在脂质消化中起着至关重要的作用,但很少有研究将脂肪分解的减少归因于BS-乳化剂在界面或体相中同时发生的相互作用。本研究的重点是了解作为乳化剂的乳蛋白β-乳球蛋白(βlg)在体外胃十二指肠条件下与BS胶束相互作用的方式,从而改变其溶解脂解产物的能力,并验证这种现象是否反映在水乳液中橄榄或奇亚油的脂解动力学中。这项工作表明,βlg的存在促进了橄榄油或奇亚油等健康油的生物可及性,这些油是生物活性脂肪酸的来源。所涉及的机制是由BS胶束与源自胃十二指肠蛋白质水解的肽的相互作用介导的。由于这种相互作用,形成了具有更高溶解脂解产物能力的混合胶束。因此,脂肪分解可以在较长时间内以最高速率进行。
{"title":"β-lactoglobulin peptides originating during in vitro digestion improve the bioaccesibility of healthy oils emulsions by forming mixed bile salts micelles with enhanced capacity to solubilize lipolysis products","authors":"Julieta N. Naso ,&nbsp;Fernando A. Bellesi ,&nbsp;Ana M.R. Pilosof","doi":"10.1016/j.fhfh.2023.100121","DOIUrl":"10.1016/j.fhfh.2023.100121","url":null,"abstract":"<div><p>The study of lipid digestion has increased in recent years in order to elucidate how lipolysis can be controlled as this knowledge can aid to design healthier emulsified foods. Most of the works have attributed the decrease of the extent and rate of lipolysis of protein stabilized emulsions to droplet coalescence during the gastric phase causing a decrease of the interfacial area available for the reaction. Despite the crucial role of BS in lipids digestion, only few works have attributed a decrease of lipolysis to BS-emulsifiers interactions occurring both, at the interface, or in the bulk phase. The present work focuses in understanding the way in which a model milk protein as β-lactoglobulin (βlg), used as emulsifier, interacts with BS micelles under <em>in vitro</em> gastroduodenal conditions, modifying their capacity to solubilize the products of lipolysis and verify if this phenomenon is reflected in the kinetics of lipolysis of olive or chia oil in water emulsions.</p><p>This work shows that the presence of βlg promotes the bioaccessibility of healthy oils such as olive oil or chia oil, which are sources of bioactive fatty acids. The mechanism involved is mediated by the interaction of the BS micelles with the peptides originated from the gastroduodenal proteolysis of the protein. As a result of this interaction, mixed micelles with a much higher capacity to solubilize the lipolysis products are formed. Therefore the lipolysis can proceed at the highest rate for a longer time.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47897624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Formulation of double emulsions of mango seed extract (Mangifera indica L.) 'Ataulfo' incorporated into a mango by-product flour drink: Release kinetics, antioxidant capacity, and inhibition of cyclooxygenases 芒果籽提取物(Mangifera indica L.)‘Ataulfo’双乳液在芒果副产品面粉饮料中的配方:释放动力学、抗氧化能力和对环氧合酶的抑制
IF 1.9 Pub Date : 2023-01-22 DOI: 10.1016/j.fhfh.2023.100120
Abraham Osiris Martínez-Olivo , Víctor Manuel Zamora-Gasga , Luis Medina-Torres , Alejandro Pérez-Larios , Jorge Alberto Sánchez-Burgos

The encapsulation and release of bioactive compounds obtained from by-products are aspects of exponential boom for several decades, as it seeks to maintain or enhance their activity. A double emulsion (W1/O/W2) was developed with mango seed extract (MS) 'Ataulfo', said extract contains gallic acid and pentagalloyl glucose as major compounds (80.16%). The double emulsion was subjected to release kinetics for 3 h in phosphate buffer (pH 6.9), presenting a release constant (k) of 35,350 ± 6,031 μg/mL/min, in addition to antioxidant capacity by the DPPH and FRAP method of 168,663 ± 4,273 and 39,718 ± 1,019 mMol/g of double emulsion respectively at 120 min of kinetics, the time of 120 min was determined as the latency time (l). The release behavior corresponds to zero-order kinetics since the release of the extract remains constant until the minimum concentration is reached to exert the antioxidant capacity mentioned above. The mechanism of release of the SM extract contained in the double emulsion is governed by diffusion (Fickian behavior), this was determined thanks to the equations of the Korsmeyer-Peppas mathematical model, obtaining a regression adjustment (R2) of 0.9252 for said model and R2 of 0.8126 for zero-order kinetics. The double emulsion was added to a mango peel drink formulation, to which the antitopoisomerase activity was determined in strains of S. cerevisiae (JN394 and JN362a), however, no inhibitory activity was presented towards any strain. The cyclooxygenase inhibition (COX) assay was performed on the 120-minute released fraction and the MS extract, showing that this fraction only showed 18.97% inhibition in COX-II, however, the SM extract obtained an inhibition percentage of 38.14% in COX-II.

从副产品中获得的生物活性化合物的包封和释放是几十年来指数增长的一个方面,因为它寻求保持或增强它们的活性。以芒果籽提取物(MS)为原料制备双乳液(W1/O/W2)。“Ataulfo”,所述提取物含有没食子酸和五没食子酰葡萄糖为主要化合物(80.16%)。双乳在磷酸盐缓冲液(pH 6.9)中释放3 h,释放常数(k)为35,350±6,031 μg/mL/min, DPPH法和FRAP法的抗氧化能力分别为168,663±4,273和39,718±1,019 mMol/g。将120 min的时间定为潜伏期(l)。释放行为符合零级动力学,因为提取物的释放保持恒定,直到达到发挥上述抗氧化能力的最低浓度。双乳所含SM提取物的释放机制受扩散(菲克行为)控制,根据Korsmeyer-Peppas数学模型方程确定,该模型的回归调整(R2)为0.9252,零级动力学R2为0.8126。将双乳加入芒果果皮饮料中,测定了该双乳对酿酒葡萄球菌(JN394和JN362a)的抗拓扑异构酶活性,但对任何菌株均无抑制活性。对120分钟释放部位和MS提取物进行环氧化酶抑制(COX)实验,发现MS提取物对COX- ii的抑制率仅为18.97%,SM提取物对COX- ii的抑制率为38.14%。
{"title":"Formulation of double emulsions of mango seed extract (Mangifera indica L.) 'Ataulfo' incorporated into a mango by-product flour drink: Release kinetics, antioxidant capacity, and inhibition of cyclooxygenases","authors":"Abraham Osiris Martínez-Olivo ,&nbsp;Víctor Manuel Zamora-Gasga ,&nbsp;Luis Medina-Torres ,&nbsp;Alejandro Pérez-Larios ,&nbsp;Jorge Alberto Sánchez-Burgos","doi":"10.1016/j.fhfh.2023.100120","DOIUrl":"10.1016/j.fhfh.2023.100120","url":null,"abstract":"<div><p>The encapsulation and release of bioactive compounds obtained from by-products are aspects of exponential boom for several decades, as it seeks to maintain or enhance their activity. A double emulsion (W<sub>1</sub>/O/W<sub>2</sub>) was developed with mango seed extract (MS) 'Ataulfo', said extract contains gallic acid and pentagalloyl glucose as major compounds (80.16%). The double emulsion was subjected to release kinetics for 3 h in phosphate buffer (pH 6.9), presenting a release constant (k) of 35,350 ± 6,031 μg/mL/min, in addition to antioxidant capacity by the DPPH and FRAP method of 168,663 ± 4,273 and 39,718 ± 1,019 mMol/g of double emulsion respectively at 120 min of kinetics, the time of 120 min was determined as the latency time (l). The release behavior corresponds to zero-order kinetics since the release of the extract remains constant until the minimum concentration is reached to exert the antioxidant capacity mentioned above. The mechanism of release of the SM extract contained in the double emulsion is governed by diffusion (Fickian behavior), this was determined thanks to the equations of the Korsmeyer-Peppas mathematical model, obtaining a regression adjustment (R<sup>2</sup>) of 0.9252 for said model and R<sup>2</sup> of 0.8126 for zero-order kinetics. The double emulsion was added to a mango peel drink formulation, to which the antitopoisomerase activity was determined in strains of S. cerevisiae (JN394 and JN362a), however, no inhibitory activity was presented towards any strain. The cyclooxygenase inhibition (COX) assay was performed on the 120-minute released fraction and the MS extract, showing that this fraction only showed 18.97% inhibition in COX-II, however, the SM extract obtained an inhibition percentage of 38.14% in COX-II.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45785803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Efficacy of alginate and chickpea protein polymeric matrices in encapsulating curcumin for improved stability, sustained release and bioaccessibility 海藻酸盐和鹰嘴豆蛋白聚合物基质包封姜黄素提高稳定性、缓释性和生物可及性的效果
IF 1.9 Pub Date : 2023-01-22 DOI: 10.1016/j.fhfh.2023.100119
I. Farrah Shakoor , Geethi K. Pamunuwa , D. Nedra Karunaratne

The present study compares the ubiquitously used alginate with seldom used chickpea protein as matrices for encapsulating curcumin, in terms of stability, in vitro release and bioaccessibility. Alginate and chickpea protein particles prepared via ionic gelation and isoelectric precipitation methods, respectively, were in the submicron range showing high encapsulation efficiencies of above 90%. Encapsulated particles stored in dark refrigerated conditions displayed greater stability of curcumin. In vitro release of curcumin from both encapsulated particles exhibited pH-dependent slow controlled release. However, alginate particles were more promising due to a protective role performed at gastric pH. The release profiles of curcumin from alginate and chickpea protein particles were best described by First order and Weibull models at pH 2 respectively, while those were well described by Higuchi and Zero order models at pH 6.8 respectively. Accordingly, release of curcumin from both encapsulated particles displayed diffusional controlled release at pH 2 while that from both particles showed diffusion-swelling controlled release at pH 6.8. Bioaccessibility of curcumin from both matrices after intestinal digestion was around 50% while that of free curcumin was approximately 18%. Overall, results point to alginate having an advantage over the chickpea protein matrix for safe efficacious oral delivery of curcumin. Thus, encapsulation of curcumin in alginate may be a promising method for the engineering of curcumin incorporated food with enhanced properties.

本研究比较了普遍使用的海藻酸盐和很少使用的鹰嘴豆蛋白作为包封姜黄素的基质,从稳定性、体外释放度和生物可及性等方面进行了比较。离子凝胶法和等电沉淀法制备的海藻酸盐和鹰嘴豆蛋白颗粒在亚微米范围内,包封效率高达90%以上。在黑暗冷藏条件下储存的包封颗粒显示出更大的姜黄素稳定性。姜黄素的体外释放表现为ph依赖性慢控释。海藻酸盐和鹰嘴豆蛋白颗粒在pH值为2时的一阶和Weibull模型最能描述姜黄素的释放曲线,而在pH值为6.8时,则分别用Higuchi和零阶模型描述。因此,在pH值为2时,两种包封颗粒的姜黄素释放均表现为扩散控制释放;在pH值为6.8时,两种包封颗粒的姜黄素释放均表现为扩散-膨胀控制释放。两种基质的姜黄素经肠道消化后的生物可及性约为50%,而游离姜黄素的生物可及性约为18%。总的来说,结果表明海藻酸盐比鹰嘴豆蛋白基质具有安全有效的口服姜黄素的优势。因此,将姜黄素包埋在海藻酸盐中可能是一种很有前途的姜黄素食品工程方法。
{"title":"Efficacy of alginate and chickpea protein polymeric matrices in encapsulating curcumin for improved stability, sustained release and bioaccessibility","authors":"I. Farrah Shakoor ,&nbsp;Geethi K. Pamunuwa ,&nbsp;D. Nedra Karunaratne","doi":"10.1016/j.fhfh.2023.100119","DOIUrl":"10.1016/j.fhfh.2023.100119","url":null,"abstract":"<div><p>The present study compares the ubiquitously used alginate with seldom used chickpea protein as matrices for encapsulating curcumin, in terms of stability, <em>in vitro</em> release and bioaccessibility. Alginate and chickpea protein particles prepared via ionic gelation and isoelectric precipitation methods, respectively, were in the submicron range showing high encapsulation efficiencies of above 90%. Encapsulated particles stored in dark refrigerated conditions displayed greater stability of curcumin. <em>In vitro</em> release of curcumin from both encapsulated particles exhibited pH-dependent slow controlled release. However, alginate particles were more promising due to a protective role performed at gastric pH. The release profiles of curcumin from alginate and chickpea protein particles were best described by First order and Weibull models at pH 2 respectively, while those were well described by Higuchi and Zero order models at pH 6.8 respectively. Accordingly, release of curcumin from both encapsulated particles displayed diffusional controlled release at pH 2 while that from both particles showed diffusion-swelling controlled release at pH 6.8. Bioaccessibility of curcumin from both matrices after intestinal digestion was around 50% while that of free curcumin was approximately 18%. Overall, results point to alginate having an advantage over the chickpea protein matrix for safe efficacious oral delivery of curcumin. Thus, encapsulation of curcumin in alginate may be a promising method for the engineering of curcumin incorporated food with enhanced properties.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41746908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cruciferin improves stress resistance and simulated gastrointestinal survival of probiotic Limosilactobacillus reuteri in the model encapsulation system 十字花素在模型封装系统中提高益生菌罗伊氏乳酸杆菌的抗逆性和模拟胃肠道存活
IF 1.9 Pub Date : 2023-01-20 DOI: 10.1016/j.fhfh.2023.100118
Ali Akbari , Michael G. Gänzle , Jianping Wu

Encapsulation is a viable strategy to improve the stability and survival of probiotics during processing, storage, and consumption. Cruciferin, a major canola protein with high denaturation temperature and resistance to gastric degradation, has potential for encapsulation and protection of probiotics against harsh conditions in processing and gastrointestinal tract. Cruciferin/alginate capsules were fabricated to encapsulate probiotics, and were characterized using confocal and scanning electron microscopy (SEM). The bacterial viability was studied during storage, processing, and gastro-intestinal transit. Limosilactobacillus reuteri TMW 1.656 was encapsulated in spherical cruciferin/alginate capsules (2.2 ± 0.1 mm) prepared using an extrusion method. SEM images of the capsules showed that the bacteria were entrapped within the porous structure which was formed by the complexation of cruciferin and alginate. The confocal microscopy images confirmed that cruciferin and alginate were homogeneously distributed throughout the capsules. The shelf life of the bacteria in the presence of cruciferin and alginate increased up to 8 weeks at 4 °C, while unencapsulated (free) bacteria lost their viability after 2 weeks storage. The heat resistance of encapsulated bacteria exposed to 65 °C and 70 °C was improved by up to ∼ 4 and 2 log cycles, respectively, compared to unencapsulated bacteria. Encapsulation also protected L. reuteri against gastric low pH and enzymes; the viability was 3 logs higher when compared to unencapsulated bacteria. The capsules were degraded in simulated intestinal fluid, leading to the release of the encapsulated bacteria, whereas the wall materials increased the resistance of released bacteria to bile salts. Comparison between the viability of unencapsulated bacteria in presence of cruciferin/alginate mixtures and bacteria encapsulated in the capsules revealed that capsule formation provided physical barriers to the harsh conditions and played a key role in the protection of bacteria. This study showed that cruciferin/alginate capsules are capable to improve stability and shelf life of Limosilactobacillus reuteri.

封装是一种可行的策略,可以提高益生菌在加工、储存和消费过程中的稳定性和存活率。十字花素是一种主要的油菜蛋白,具有高变性温度和抗胃降解性,具有封装益生菌和保护益生菌免受加工和胃肠道恶劣条件影响的潜力。制备了十字花素/海藻酸盐胶囊包埋益生菌,并用共聚焦和扫描电子显微镜(SEM)对其进行了表征。研究了细菌在储存、加工和胃肠道运输过程中的生存能力。将路氏乳杆菌TMW 1.656包封在使用挤出法制备的球形十字花素/海藻酸盐胶囊(2.2±0.1mm)中。胶囊的SEM图像显示,细菌被截留在十字花素和藻酸盐络合形成的多孔结构中。共聚焦显微镜图像证实十字花素和海藻酸盐均匀分布在整个胶囊中。在十字花素和藻酸盐存在的情况下,细菌的保质期在4°C下增加了8周,而未包封(游离)细菌在储存2周后失去了生存能力。与未封装的细菌相比,暴露在65°C和70°C下的封装细菌的耐热性分别提高了~4和2个对数周期。封装还保护路氏乳杆菌免受胃低pH值和酶的影响;与未包封的细菌相比,活力高出3个对数。胶囊在模拟肠液中降解,导致封装的细菌释放,而壁材料增加了释放的细菌对胆盐的抵抗力。在十字花素/海藻酸盐混合物存在下,未包封的细菌与包封在胶囊中的细菌的生存能力之间的比较表明,胶囊的形成为恶劣条件提供了物理屏障,并在保护细菌方面发挥了关键作用。本研究表明,十字花素/海藻酸盐胶囊能够提高路氏乳杆菌的稳定性和保质期。
{"title":"Cruciferin improves stress resistance and simulated gastrointestinal survival of probiotic Limosilactobacillus reuteri in the model encapsulation system","authors":"Ali Akbari ,&nbsp;Michael G. Gänzle ,&nbsp;Jianping Wu","doi":"10.1016/j.fhfh.2023.100118","DOIUrl":"https://doi.org/10.1016/j.fhfh.2023.100118","url":null,"abstract":"<div><p>Encapsulation is a viable strategy to improve the stability and survival of probiotics during processing, storage, and consumption. Cruciferin, a major canola protein with high denaturation temperature and resistance to gastric degradation, has potential for encapsulation and protection of probiotics against harsh conditions in processing and gastrointestinal tract. Cruciferin/alginate capsules were fabricated to encapsulate probiotics, and were characterized using confocal and scanning electron microscopy (SEM). The bacterial viability was studied during storage, processing, and gastro-intestinal transit. <em>Limosilactobacillus reuteri</em> TMW 1.656 was encapsulated in spherical cruciferin/alginate capsules (2.2 ± 0.1 mm) prepared using an extrusion method. SEM images of the capsules showed that the bacteria were entrapped within the porous structure which was formed by the complexation of cruciferin and alginate. The confocal microscopy images confirmed that cruciferin and alginate were homogeneously distributed throughout the capsules. The shelf life of the bacteria in the presence of cruciferin and alginate increased up to 8 weeks at 4 °C, while unencapsulated (free) bacteria lost their viability after 2 weeks storage. The heat resistance of encapsulated bacteria exposed to 65 °C and 70 °C was improved by up to ∼ 4 and 2 log cycles, respectively, compared to unencapsulated bacteria. Encapsulation also protected <em>L. reuteri</em> against gastric low pH and enzymes; the viability was 3 logs higher when compared to unencapsulated bacteria. The capsules were degraded in simulated intestinal fluid, leading to the release of the encapsulated bacteria, whereas the wall materials increased the resistance of released bacteria to bile salts. Comparison between the viability of unencapsulated bacteria in presence of cruciferin/alginate mixtures and bacteria encapsulated in the capsules revealed that capsule formation provided physical barriers to the harsh conditions and played a key role in the protection of bacteria. This study showed that cruciferin/alginate capsules are capable to improve stability and shelf life of <em>Limosilactobacillus reuteri.</em></p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49736752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Reduction of FODMAPs and amylase-trypsin inhibitors in wheat: A review 小麦中FODMAPs和淀粉酶-胰蛋白酶抑制剂的减少:综述
IF 1.9 Pub Date : 2023-01-10 DOI: 10.1016/j.fhfh.2023.100117
Prince G. Boakye, Akua Y. Okyere, George A. Annor

Consumption of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) can promote gut health in individuals with a healthy gastrointestinal tract. However, FODMAPs, as well as amylase-trypsin inhibitors (ATIs), have been identified as potential triggers of intestinal symptoms in irritable bowel syndrome (IBS) and non-celiac wheat sensitivity (NCWS) patients. Wheat is a major staple worldwide, and hence, accounts for a large proportion of the intake of FODMAPs and ATIs. Thus, this paper aims to provide an overview of the strategies utilized in reducing the levels of FODMAPs and ATIs in wheat.

食用可发酵的低聚、二糖、单糖和多元醇(FODMAP)可以促进胃肠道健康的人的肠道健康。然而,FODMAP和淀粉酶-胰蛋白酶抑制剂(ATIs)已被确定为肠易激综合征(IBS)和非乳糜泻小麦敏感性(NCWS)患者肠道症状的潜在诱因。小麦是全世界的主要主食,因此在FODMAP和ATIs的摄入量中占很大比例。因此,本文旨在概述降低小麦中FODMAPs和ATIs水平的策略。
{"title":"Reduction of FODMAPs and amylase-trypsin inhibitors in wheat: A review","authors":"Prince G. Boakye,&nbsp;Akua Y. Okyere,&nbsp;George A. Annor","doi":"10.1016/j.fhfh.2023.100117","DOIUrl":"https://doi.org/10.1016/j.fhfh.2023.100117","url":null,"abstract":"<div><p>Consumption of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) can promote gut health in individuals with a healthy gastrointestinal tract. However, FODMAPs, as well as amylase-trypsin inhibitors (ATIs), have been identified as potential triggers of intestinal symptoms in irritable bowel syndrome (IBS) and non-celiac wheat sensitivity (NCWS) patients. Wheat is a major staple worldwide, and hence, accounts for a large proportion of the intake of FODMAPs and ATIs. Thus, this paper aims to provide an overview of the strategies utilized in reducing the levels of FODMAPs and ATIs in wheat.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49736751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Co-ingestion with γ-cyclodextrin improves bioavailability of α-linolenic acid in Perilla frutescens seed oil 与γ-环糊精共食可提高紫苏籽油中α-亚麻酸的生物利用度
IF 1.9 Pub Date : 2023-01-10 DOI: 10.1016/j.fhfh.2023.100116
Keisuke Yoshikiyo , Miho Takahashi , Yu Narumiya , Mikito Honda , Keita Iwasaki , Mika Ishigaki , Edward G. Nagato , Hemanth Noothalapati , Hidehisa Shimizu , Kaeko Murota , Tatsuyuki Yamamoto

The present study aimed to determine the effects of ingesting perilla oil derived from the seeds of Perilla frutescens as an inclusion complex with γ-cyclodextrin (γ-CD) in a six-week study, and to elucidate the role of γ-CD in the assimilation of perilla oil. Plasma α-linolenic acid (18:3n-3) levels were significantly higher in rats fed a diet containing this inclusion complex compared to those fed the same amount of perilla oil without γ-CD, indicating that γ-CD enhances perilla oil bioavailability. An in vitro analysis of lipolysis revealed that perilla oil was more resistant to porcine pancreatic lipase than soybean oil, a commonly used lipid source in animal diets. However, adding γ-CD accelerated perilla oil lipolysis, which may explain the elevated 18:3n-3 plasma levels in rats fed the inclusion complex. These findings suggest a more efficient way to increase physiological levels of 18:3n-3 and longer n-3 fatty acids when ingesting perilla oil.

本研究以紫苏籽为原料,以γ-环糊精(γ-CD)包合物的形式摄入紫苏油,研究了γ-CD在紫苏油同化过程中的作用。与不添加γ-CD的大鼠相比,添加该包合物的大鼠血浆α-亚麻酸(18:3n-3)水平显著升高,表明γ-CD提高了紫苏油的生物利用度。一项体外脂肪分解分析表明,紫苏油比大豆油更能抵抗猪胰腺脂肪酶,大豆油是动物饲料中常用的脂肪来源。然而,添加γ-CD加速了紫苏油的脂肪分解,这可能解释了喂食包合物的大鼠血浆中18:3n-3水平升高的原因。这些发现表明,在摄入紫苏油时,有一种更有效的方法可以提高18:3n-3和更长n-3脂肪酸的生理水平。
{"title":"Co-ingestion with γ-cyclodextrin improves bioavailability of α-linolenic acid in Perilla frutescens seed oil","authors":"Keisuke Yoshikiyo ,&nbsp;Miho Takahashi ,&nbsp;Yu Narumiya ,&nbsp;Mikito Honda ,&nbsp;Keita Iwasaki ,&nbsp;Mika Ishigaki ,&nbsp;Edward G. Nagato ,&nbsp;Hemanth Noothalapati ,&nbsp;Hidehisa Shimizu ,&nbsp;Kaeko Murota ,&nbsp;Tatsuyuki Yamamoto","doi":"10.1016/j.fhfh.2023.100116","DOIUrl":"10.1016/j.fhfh.2023.100116","url":null,"abstract":"<div><p>The present study aimed to determine the effects of ingesting perilla oil derived from the seeds of <em>Perilla frutescens</em> as an inclusion complex with γ-cyclodextrin (γ-CD) in a six-week study, and to elucidate the role of γ-CD in the assimilation of perilla oil. Plasma α-linolenic acid (18:3n-3) levels were significantly higher in rats fed a diet containing this inclusion complex compared to those fed the same amount of perilla oil without γ-CD, indicating that γ-CD enhances perilla oil bioavailability. An <em>in vitro</em> analysis of lipolysis revealed that perilla oil was more resistant to porcine pancreatic lipase than soybean oil, a commonly used lipid source in animal diets. However, adding γ-CD accelerated perilla oil lipolysis, which may explain the elevated 18:3n-3 plasma levels in rats fed the inclusion complex. These findings suggest a more efficient way to increase physiological levels of 18:3n-3 and longer n-3 fatty acids when ingesting perilla oil.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46205271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Analysis of hydrocolloid excipients for controlled delivery of high-value microencapsulated prickly pear extracts 用于高价值微胶囊刺梨提取物控制递送的水胶体赋形剂分析
IF 1.9 Pub Date : 2023-01-06 DOI: 10.1016/j.fhfh.2023.100115
Ana Fernández-Repetto , Andrea Gómez-Maqueo , Tomás García-Cayuela , Daniel Guajardo-Flores , M. Pilar Cano

Prickly pears (Opuntia ficus-indica) are potential sources of functional ingredients because they are rich in betalains and phenolic compounds. However, mentioned bioactives may degrade during storage when exposed to air, light, and heat which could limit their application. To increase the stability and bioaccessibility of prickly pear extracts, we compared the ultrasound-assisted freeze-dried microencapsulation of seven excipient mixtures. The physical and physico-chemical properties (humidity, hygroscopicity, thermal analysis and morphology) and the qualitative and quantitative analysis of betalains and phenolic compounds (measured by high performance liquid chromatography) were analysed in each microparticle formulation. Stability-improving factors such as low humidity and hygroscopicity were observed in all microparticles. However, microparticle morphology was influenced by the excipient formulation. Encapsulation efficiency was higher than 60% for betalains and phenolic acids, however, flavonoids encapsulation efficiency was 14–35%. Based on the previous, the three best microparticles were selected: 100% maltodextrin (E2); 50% maltodextrin, 25% microcrystalline cellulose, 15% hydroxyl‑propyl-methyl cellulose, and 10% xanthan gum (E5); and 100% β-cyclodextrin (E7). A static in vitro gastrointestinal digestion (INFOGEST method) was performed with these microparticles where the quantitative analysis of the bioactive compounds (HPLC) and their bioaccessibility was assessed. The bioaccessibility of bioactive compounds in encapsulated prickly pear extracts was improved when compared to the control. Microparticles containing maltodextrin and microcrystalline cellulose (E2) had the highest bioaccessibility and showed potential for the future formulation of functional foods.

刺梨(Opuntia ficus-indica)富含甜菜素和酚类化合物,是功能成分的潜在来源。然而,上述生物活性物质在储存过程中暴露在空气、光和热下可能会降解,从而限制了它们的应用。为了提高刺梨提取物的稳定性和生物可及性,我们比较了7种辅料混合物的超声辅助冷冻干燥微胶囊化。分析了每个微粒制剂的物理和物理化学性质(湿度、吸湿性、热分析和形态)以及甜菜碱和酚类化合物的定性和定量分析(用高效液相色谱法测定)。在所有微颗粒中均观察到低湿度和吸湿性等提高稳定性的因素。然而,微粒形态受赋形剂配方的影响。甜菜素和酚酸的包封率均在60%以上,而黄酮类化合物的包封率为14 ~ 35%。在此基础上,筛选出3种最佳微颗粒:100%麦芽糖糊精(E2);50%麦芽糊精,25%微晶纤维素,15%羟丙基甲基纤维素,10%黄原胶(E5);和100% β-环糊精(E7)。采用静态体外胃肠道消化法(INFOGEST法)对这些微颗粒进行了体外胃肠道消化,并对其生物活性化合物进行了HPLC定量分析和生物可及性评估。与对照相比,包封的刺梨提取物中生物活性物质的生物可及性有所提高。含有麦芽糖糊精和微晶纤维素(E2)的微颗粒具有最高的生物可及性,在未来的功能食品配方中具有潜力。
{"title":"Analysis of hydrocolloid excipients for controlled delivery of high-value microencapsulated prickly pear extracts","authors":"Ana Fernández-Repetto ,&nbsp;Andrea Gómez-Maqueo ,&nbsp;Tomás García-Cayuela ,&nbsp;Daniel Guajardo-Flores ,&nbsp;M. Pilar Cano","doi":"10.1016/j.fhfh.2023.100115","DOIUrl":"10.1016/j.fhfh.2023.100115","url":null,"abstract":"<div><p>Prickly pears (<em>Opuntia ficus-indica</em>) are potential sources of functional ingredients because they are rich in betalains and phenolic compounds. However, mentioned bioactives may degrade during storage when exposed to air, light, and heat which could limit their application. To increase the stability and bioaccessibility of prickly pear extracts, we compared the ultrasound-assisted freeze-dried microencapsulation of seven excipient mixtures. The physical and physico-chemical properties (humidity, hygroscopicity, thermal analysis and morphology) and the qualitative and quantitative analysis of betalains and phenolic compounds (measured by high performance liquid chromatography) were analysed in each microparticle formulation. Stability-improving factors such as low humidity and hygroscopicity were observed in all microparticles. However, microparticle morphology was influenced by the excipient formulation. Encapsulation efficiency was higher than 60% for betalains and phenolic acids, however, flavonoids encapsulation efficiency was 14–35%. Based on the previous, the three best microparticles were selected: 100% maltodextrin (E2); 50% maltodextrin, 25% microcrystalline cellulose, 15% hydroxyl‑propyl-methyl cellulose, and 10% xanthan gum (E5); and 100% β-cyclodextrin (E7). A static in vitro gastrointestinal digestion (INFOGEST method) was performed with these microparticles where the quantitative analysis of the bioactive compounds (HPLC) and their bioaccessibility was assessed. The bioaccessibility of bioactive compounds in encapsulated prickly pear extracts was improved when compared to the control. Microparticles containing maltodextrin and microcrystalline cellulose (E2) had the highest bioaccessibility and showed potential for the future formulation of functional foods.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46901078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fabrication and characterization of a bilayered system enabling sustained release of bioflavonoids derived from mandarin biomass 柑橘生物质生物类黄酮缓释双层体系的制备与表征
IF 1.9 Pub Date : 2022-12-22 DOI: 10.1016/j.fhfh.2022.100114
Niharika Kaushal, Minni Singh

Food-grade hydrogels, those prepared with Generally Recognized as Safe (GRAS) polymers, are promising delivery systems. In this work, alginate hydrogels were studied for their ability to uphold flavonoids laden poly-lactic-co-glycolic acid (PLGA) nanoparticles, and their subsequent release pattern was observed through in vitro gastrointestinal environments. Flavonoids were derived from mandarin peels, and consisted of polymethoxyflavones, chiefly tangeretin and nobiletin, and flavanones, chiefly naringenin. Incorporating these into nanoparticles prepared from GRAS classified PLGA, hereinafter referred to as flavonoids-PLGA nanoparticles, offered the first layer of protection, which were then embedded into alginate hydrogels, offering the second layer of protection. This bilayered system was developed to ensure guarded passage of the bioactives through the severe gastric environment, which would otherwise lead to presystemic metabolism of the flavonoids, rendering them ineffective. The gels were characterised and a 6.0% alginate hydrogel was considered optimal as it offered a dense network, as confirmed by a field emission scanning electron microscope (FE-SEM) image, and a low porosity, which ensured retention of the nanoparticles. Gel rheology revealed the shear thinning behavior of hydrogels, and high resistance to deformation was observed for 6% hydrogel when subjected to a load of 500N. Subjecting the ensemble to gastrointestinal environments showed a negligible 4.0% release of flavonoids in the first 2 hours of the gastric phase, followed by a sustained release through the next 10 hours in the intestinal environment, as confirmed by mass spectrometry (MS) profiles. Confocal laser scanning microscope (CLSM) images of the hydrogel clearly revealed the pH-responsive swelling and release of the nanoparticles from the hydrogel in the intestinal phase. It is envisaged that these, and other similar findings, would eventually manifest into ‘functional hydrogels’ delivery systems that bear the ability to incorporate nutraceuticals whilst retaining their functionality, as viable products in the near future.

食品级水凝胶是由公认安全(GRAS)聚合物制备的,是很有前途的递送系统。本研究研究了海藻酸盐水凝胶对含黄酮类化合物的聚乳酸-羟基乙酸(PLGA)纳米颗粒的支持能力,并通过体外胃肠道环境观察了其随后的释放模式。从柑桔皮中提取黄酮类化合物,主要由多甲氧基黄酮类化合物和黄酮类化合物组成,主要由橘皮素和枳实素组成。将其纳入由GRAS分类的PLGA制备的纳米颗粒(以下简称类黄酮-PLGA纳米颗粒)中,提供第一层保护,然后将其嵌入海藻酸盐水凝胶中,提供第二层保护。这种双层系统的开发是为了确保生物活性物质通过恶劣的胃环境的安全通道,否则会导致黄酮类化合物的全身前代谢,使其无效。对凝胶进行了表征,6.0%海藻酸盐水凝胶被认为是最佳的,因为它提供了密集的网络,正如场发射扫描电镜(FE-SEM)图像所证实的那样,而且孔隙率低,确保了纳米颗粒的保留。凝胶流变学揭示了水凝胶的剪切变薄行为,在500N载荷下,6%的水凝胶具有较高的抗变形能力。经质谱分析(MS)证实,在胃肠道环境中,在胃相的前2小时,类黄酮的释放可忽略不计,为4.0%,随后在肠道环境中持续释放10小时。水凝胶的共聚焦激光扫描显微镜(CLSM)图像清楚地显示了ph响应性肿胀和纳米颗粒在肠期从水凝胶释放。据设想,这些和其他类似的发现最终将体现在“功能性水凝胶”输送系统中,该系统能够在保留其功能的同时纳入营养保健品,并在不久的将来作为可行的产品。
{"title":"Fabrication and characterization of a bilayered system enabling sustained release of bioflavonoids derived from mandarin biomass","authors":"Niharika Kaushal,&nbsp;Minni Singh","doi":"10.1016/j.fhfh.2022.100114","DOIUrl":"10.1016/j.fhfh.2022.100114","url":null,"abstract":"<div><p>Food-grade hydrogels, those prepared with Generally Recognized as Safe (GRAS) polymers, are promising delivery systems. In this work, alginate hydrogels were studied for their ability to uphold flavonoids laden poly-lactic-co-glycolic acid (PLGA) nanoparticles, and their subsequent release pattern was observed through <em>in vitro</em> gastrointestinal environments. Flavonoids were derived from mandarin peels, and consisted of polymethoxyflavones, chiefly tangeretin and nobiletin, and flavanones, chiefly naringenin. Incorporating these into nanoparticles prepared from GRAS classified PLGA, hereinafter referred to as flavonoids-PLGA nanoparticles, offered the first layer of protection, which were then embedded into alginate hydrogels, offering the second layer of protection. This bilayered system was developed to ensure guarded passage of the bioactives through the severe gastric environment, which would otherwise lead to presystemic metabolism of the flavonoids, rendering them ineffective. The gels were characterised and a 6.0% alginate hydrogel was considered optimal as it offered a dense network, as confirmed by a field emission scanning electron microscope (FE-SEM) image, and a low porosity, which ensured retention of the nanoparticles. Gel rheology revealed the shear thinning behavior of hydrogels, and high resistance to deformation was observed for 6% hydrogel when subjected to a load of 500N. Subjecting the ensemble to gastrointestinal environments showed a negligible 4.0% release of flavonoids in the first 2 hours of the gastric phase, followed by a sustained release through the next 10 hours in the intestinal environment, as confirmed by mass spectrometry (MS) profiles. Confocal laser scanning microscope (CLSM) images of the hydrogel clearly revealed the pH-responsive swelling and release of the nanoparticles from the hydrogel in the intestinal phase. It is envisaged that these, and other similar findings, would eventually manifest into ‘functional hydrogels’ delivery systems that bear the ability to incorporate nutraceuticals whilst retaining their functionality, as viable products in the near future.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43946749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Shellac/caseinate as a composite nanocarrier for improved bioavailability of quercetin 紫胶/酪蛋白酸酯复合纳米载体提高槲皮素的生物利用度
IF 1.9 Pub Date : 2022-12-20 DOI: 10.1016/j.fhfh.2022.100113
Shikha Shiromani , M.M. Patil , Ilaiyaraja Nallamuthu , Rajamanickam R , Dongzagin Singsit , T. Anand

In the present study, quercetin (a flavonoid) was encapsulated using biodegradable composite polymers of sodium caseinate and shellac for its improved bioavailability. The quercetin-loaded shellac-caseinate composite nanoparticles (QSNPs) were prepared by anti-solvent precipitation method. Under the optimal combinations of process factors (sodium caseinate 2.5%, shellac 2% and pH 6.8,) the nanocomplexes had the sizes, PDI, zeta potential and encapsulation efficiency of 222 ± 0.19 nm, 0.11, -33.6 mV and 79%, respectively. The optimised nanocolloids were characterised using SEM and AFM microscopes for morphological features. The in vitro release study in simulated gastric and intestinal fluids showed a sustained release of the quercetin from the nanostructures. In rats, the oral administration of single equivalent dosage of quercetin (50 mg/kg b.wt) showed 18.6-fold increase in the relative bioavailability for QSNPs compared to suspension form. These results suggest that the composites of shellac/caseinate matrices can be promising carrier for the oral delivery of hydrophobic phytocompounds with enhanced therapeutic properties in various foods and pharmaceutical applications.

为了提高槲皮素的生物利用度,本研究将槲皮素(一种黄酮类化合物)用酪蛋白酸钠和紫胶的可生物降解复合聚合物进行包封。采用反溶剂沉淀法制备了槲皮素负载的紫胶-酪蛋白酸酯复合纳米颗粒(qsnp)。在最佳工艺条件(酪蛋白酸钠2.5%、紫胶2%、pH 6.8)下,纳米配合物的粒径、PDI、zeta电位和包封效率分别为222±0.19 nm、0.11、-33.6 mV和79%。利用扫描电镜(SEM)和原子力显微镜(AFM)对优化后的纳米胶体进行了形貌表征。体外模拟胃液和肠液释放研究显示槲皮素从纳米结构中持续释放。在大鼠中,单次等效剂量口服槲皮素(50 mg/kg b.wt)的qsnp相对生物利用度比悬吊形式增加18.6倍。这些结果表明,紫胶/酪蛋白酸酯基质复合材料可以作为疏水性植物化合物的口服载体,在各种食品和药物应用中具有增强的治疗性能。
{"title":"Shellac/caseinate as a composite nanocarrier for improved bioavailability of quercetin","authors":"Shikha Shiromani ,&nbsp;M.M. Patil ,&nbsp;Ilaiyaraja Nallamuthu ,&nbsp;Rajamanickam R ,&nbsp;Dongzagin Singsit ,&nbsp;T. Anand","doi":"10.1016/j.fhfh.2022.100113","DOIUrl":"10.1016/j.fhfh.2022.100113","url":null,"abstract":"<div><p>In the present study, quercetin (a flavonoid) was encapsulated using biodegradable composite polymers of sodium caseinate and shellac for its improved bioavailability. The quercetin-loaded shellac-caseinate composite nanoparticles (QSNPs) were prepared by anti-solvent precipitation method. Under the optimal combinations of process factors (sodium caseinate 2.5%, shellac 2% and pH 6.8,) the nanocomplexes had the sizes, PDI, zeta potential and encapsulation efficiency of 222 ± 0.19 nm, 0.11, -33.6 mV and 79%, respectively. The optimised nanocolloids were characterised using SEM and AFM microscopes for morphological features. The <em>in vitro</em> release study in simulated gastric and intestinal fluids showed a sustained release of the quercetin from the nanostructures. In rats, the oral administration of single equivalent dosage of quercetin (50 mg/kg b.wt) showed 18.6-fold increase in the relative bioavailability for QSNPs compared to suspension form. These results suggest that the composites of shellac/caseinate matrices can be promising carrier for the oral delivery of hydrophobic phytocompounds with enhanced therapeutic properties in various foods and pharmaceutical applications.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46147122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Food Hydrocolloids for Health
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1