首页 > 最新文献

Food Hydrocolloids for Health最新文献

英文 中文
Using pure Fucoidan and radiolabeled Fucoidan (99mTc-Fucoidan) as a new agent for inflammation diagnosis and therapy 使用纯岩藻糖聚糖和放射性标记岩藻糖聚糖(99mtc -岩藻糖聚糖)作为炎症诊断和治疗的新药物
IF 1.9 Q1 CHEMISTRY, APPLIED Pub Date : 2022-12-01 DOI: 10.1016/j.fhfh.2021.100049
Bianca Costa , Luana Barbosa Corrêa , Patrícia MachadoRodrigues e Silva , Yago Amigo Pinho Jannini de Sá , Fernanda Verdini Guimarães , Luciana Magalhães Rebelo Alencar , Rafael Loureiro Simões , Edward Helal-Neto , Eduardo Ricci-Junior , Maria das Graças Muller de Oliveira Henriques , Elaine Cruz Rosas , Ralph Santos-Oliveira

Inflammation is a phenomenon responsible for the perturbation of homeostasis in several levels, with many sources, such as infection, injury, and exposure to contaminants. The necessity of new products that are effective in treating inflammation processes as can selectively imaging an inflammation site is a global issue. In this study, we have evaluated the applicability of Fucoidan as a therapeutic and imaging agent. We have assessed the Fucoidan in two inflammation models for therapeutic purposes: arthritis and lungs (LPS). In the case of use as an imaging agent, we evaluated the radiolabeled Fucoidan with 99mTc in inflamed lungs (LPS). The results demonstrated that Fucoidan has a therapeutic anti-inflammatory effect, especially in the lung model (LPS). Additionally, the imaging application demonstrated that radiolabeled Fucoidan (99mTc-Fucoidan) has an important chemoattraction for inflammation sites with very high bioaccumulation, which permits to think in an imaging application.

炎症是一种在多个层面上扰乱体内平衡的现象,其来源有许多,如感染、损伤和暴露于污染物。需要有效治疗炎症过程的新产品,因为可以选择性地成像炎症部位是一个全球性的问题。在这项研究中,我们评估了岩藻糖聚糖作为治疗和显像剂的适用性。我们已经评估了岩藻聚糖在两种炎症模型中的治疗目的:关节炎和肺(LPS)。在使用显像剂的情况下,我们评估了99mTc在炎症肺(LPS)中的放射性标记岩藻糖聚糖。结果表明岩藻多糖具有治疗性抗炎作用,特别是对肺模型(LPS)。此外,成像应用表明,放射性标记的岩藻多糖(99mtc -岩藻多糖)对具有很高生物积累的炎症部位具有重要的化学吸引力,这允许在成像应用中进行思考。
{"title":"Using pure Fucoidan and radiolabeled Fucoidan (99mTc-Fucoidan) as a new agent for inflammation diagnosis and therapy","authors":"Bianca Costa ,&nbsp;Luana Barbosa Corrêa ,&nbsp;Patrícia MachadoRodrigues e Silva ,&nbsp;Yago Amigo Pinho Jannini de Sá ,&nbsp;Fernanda Verdini Guimarães ,&nbsp;Luciana Magalhães Rebelo Alencar ,&nbsp;Rafael Loureiro Simões ,&nbsp;Edward Helal-Neto ,&nbsp;Eduardo Ricci-Junior ,&nbsp;Maria das Graças Muller de Oliveira Henriques ,&nbsp;Elaine Cruz Rosas ,&nbsp;Ralph Santos-Oliveira","doi":"10.1016/j.fhfh.2021.100049","DOIUrl":"https://doi.org/10.1016/j.fhfh.2021.100049","url":null,"abstract":"<div><p>Inflammation is a phenomenon responsible for the perturbation of homeostasis in several levels, with many sources, such as infection, injury, and exposure to contaminants. The necessity of new products that are effective in treating inflammation processes as can selectively imaging an inflammation site is a global issue. In this study, we have evaluated the applicability of Fucoidan as a therapeutic and imaging agent. We have assessed the Fucoidan in two inflammation models for therapeutic purposes: arthritis and lungs (LPS). In the case of use as an imaging agent, we evaluated the radiolabeled Fucoidan with 99mTc in inflamed lungs (LPS). The results demonstrated that Fucoidan has a therapeutic anti-inflammatory effect, especially in the lung model (LPS). Additionally, the imaging application demonstrated that radiolabeled Fucoidan (99mTc-Fucoidan) has an important chemoattraction for inflammation sites with very high bioaccumulation, which permits to think in an imaging application.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"2 ","pages":"Article 100049"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025921000418/pdfft?md5=e854c97104d3df20c7fe14a4e555473b&pid=1-s2.0-S2667025921000418-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91979105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Banana leathers as influenced by polysaccharide matrix and probiotic bacteria 多糖基质和益生菌对香蕉革革的影响
IF 1.9 Q1 CHEMISTRY, APPLIED Pub Date : 2022-12-01 DOI: 10.1016/j.fhfh.2022.100081
Carolina Madazio Niro , Jackson Andson de Medeiros , Joana Dias Bresolin , Ana Paula Dionísio , Mateus Kawata Salgaço , Katia Sivieri , Henriette M.C. Azeredo

Concerns abouth diet-health relationships have led many people to include healthier snacks in their diets, including those with functional (including probiotic) properties. This study was focused on development of probiotic-loaded banana leathers. Two probiotic bacteria (the spore-forming Bacillus coagulans and the conventional non-spore-forming Lactobacillus acidophilus) and two polymeric matrices (digestible cassava starch and non-digestible bacterial cellulose - BC) have been used. The presence of probiotic bacteria (mainly L. acidophilus) reduced the tensile strength, elastic modulus and shear force of the leathers, while the BC-based leathers were stronger, stiffer and more resistant to shear stress than the starch-based ones. While a high probiotic viability was kept on fruit leathers loaded with B. coagulans during drying and room-temperature storage, those loaded with L. acidophilus suffered high viability losses upon drying, which was ascribed to osmotic stress. The nature of the biopolymeric matrix has not significantly influence the bacterial viability losses along processing and storage, or the final viable cell count released into the intestine (as assessed using an INFOGEST static in vitro simulated digestion model). The banana leathers loaded with B. coagulans were well accepted, irrespectively of being produced from BC or starch, although some negative comments on the texture and flavor of the BC-based ones have been more frequent than with the starch-based ones.

对饮食与健康关系的担忧导致许多人在饮食中加入更健康的零食,包括那些具有功能性(包括益生菌)特性的零食。本研究的重点是益生菌香蕉革的开发。使用了两种益生菌(形成孢子的凝结芽孢杆菌和传统的不形成孢子的嗜酸乳杆菌)和两种聚合基质(可消化的木薯淀粉和不可消化的细菌纤维素- BC)。益生菌(主要是嗜酸乳杆菌)的存在降低了皮革的拉伸强度、弹性模量和剪切力,而bc基皮革比淀粉基皮革更强、更硬、更耐剪切应力。在干燥和室温贮藏过程中,含有凝固芽孢杆菌的果皮保持了较高的益生菌活力,而含有嗜酸乳杆菌的果皮在干燥过程中由于渗透胁迫而失去了较高的益生菌活力。生物聚合物基质的性质对处理和储存过程中的细菌活力损失或最终释放到肠道中的活细胞计数没有显著影响(使用INFOGEST静态体外模拟消化模型进行评估)。含有B.凝固物的香蕉皮被广泛接受,无论是由BC还是淀粉生产,尽管对BC基香蕉皮的质地和味道的负面评论比淀粉基香蕉皮更频繁。
{"title":"Banana leathers as influenced by polysaccharide matrix and probiotic bacteria","authors":"Carolina Madazio Niro ,&nbsp;Jackson Andson de Medeiros ,&nbsp;Joana Dias Bresolin ,&nbsp;Ana Paula Dionísio ,&nbsp;Mateus Kawata Salgaço ,&nbsp;Katia Sivieri ,&nbsp;Henriette M.C. Azeredo","doi":"10.1016/j.fhfh.2022.100081","DOIUrl":"10.1016/j.fhfh.2022.100081","url":null,"abstract":"<div><p>Concerns abouth diet-health relationships have led many people to include healthier snacks in their diets, including those with functional (including probiotic) properties. This study was focused on development of probiotic-loaded banana leathers. Two probiotic bacteria (the spore-forming <em>Bacillus coagulans</em> and the conventional non-spore-forming <em>Lactobacillus acidophilus</em>) and two polymeric matrices (digestible cassava starch and non-digestible bacterial cellulose - BC) have been used. The presence of probiotic bacteria (mainly L. <em>acidophilus</em>) reduced the tensile strength, elastic modulus and shear force of the leathers, while the BC-based leathers were stronger, stiffer and more resistant to shear stress than the starch-based ones. While a high probiotic viability was kept on fruit leathers loaded with <em>B. coagulans</em> during drying and room-temperature storage, those loaded with L. <em>acidophilus</em> suffered high viability losses upon drying, which was ascribed to osmotic stress. The nature of the biopolymeric matrix has not significantly influence the bacterial viability losses along processing and storage, or the final viable cell count released into the intestine (as assessed using an INFOGEST static in vitro simulated digestion model). The banana leathers loaded with <em>B. coagulans</em> were well accepted, irrespectively of being produced from BC or starch, although some negative comments on the texture and flavor of the BC-based ones have been more frequent than with the starch-based ones.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"2 ","pages":"Article 100081"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025922000280/pdfft?md5=a9feaeb0454a935520c277b2da352074&pid=1-s2.0-S2667025922000280-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48377024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Encapsulation of sacha inchi oil in complex coacervates formed by carboxymethylcellulose and lactoferrin for controlled release of β-carotene 香樟油在羧甲基纤维素和乳铁蛋白形成的复合凝聚层中的包埋控制β-胡萝卜素的释放
IF 1.9 Q1 CHEMISTRY, APPLIED Pub Date : 2022-12-01 DOI: 10.1016/j.fhfh.2021.100047
Ahmad El Ghazzaqui Barbosa , Augusto Bene Tomé Constantino , Lívia Pinto Heckert Bastos , Edwin Elard Garcia-Rojas

This research studied the formation of complex coacervates formed by carboxymethylcellulose (CMC) and lactoferrin (Lf) as wall materials for encapsulation of β-carotene present in sacha inchi oil (SIO). According to zeta-potential and turbidimetric analyses, the optimum conditions for the formation of CMC:Lf complex coacervates were pH 5.0 and a 1:14 ratio. Isothermal titration calorimetry showed that the complexes were formed in two stages: first, the interaction was driven by electrostatic attraction, and second, electrostatic and other interactions (such as hydrogen bonding) or structural conformations were present. The capsules formed with CMC:Lf complex coacervates had a spherical appearance with a well-defined core and were able to encapsulate 97% of SIO. The presence of SIO, CMC, and Lf in the capsules was confirmed by Fourier transform infrared analysis. The in vitro gastrointestinal digestion of capsules showed that 84.31% of β-carotene present in SIO was released in the intestine, with high bioaccessibility (67%). Additionally, Fickian diffusion was the mechanism observed for β-carotene release in the food model. Thus, it is possible to conclude that CMC:Lf complex coacervates are good wall material for encapsulating and protecting β-carotene for food fortification.

本研究以羧甲基纤维素(CMC)和乳铁蛋白(Lf)为壁材,对核桃油(sacha inchi oil, SIO)中β-胡萝卜素进行包封,形成复合凝聚体。经zeta电位和浊度分析,CMC:Lf络合物凝聚形成的最佳条件为pH 5.0和1:14比。等温滴定量热法表明,配合物的形成分两个阶段:第一阶段是静电吸引驱动相互作用,第二阶段是静电和其他相互作用(如氢键)或结构构象并存。CMC:Lf复合凝聚体形成的胶囊具有球形外观,核心明确,能够包封97%的SIO。傅里叶红外分析证实了胶囊中SIO、CMC和Lf的存在。体外胃肠消化实验表明,SIO中β-胡萝卜素的84.31%在肠内释放,具有较高的生物可及性(67%)。此外,在食物模型中观察到菲克扩散是β-胡萝卜素释放的机制。因此,CMC:Lf复合凝聚体是一种包封和保护β-胡萝卜素用于食品强化的良好壁材。
{"title":"Encapsulation of sacha inchi oil in complex coacervates formed by carboxymethylcellulose and lactoferrin for controlled release of β-carotene","authors":"Ahmad El Ghazzaqui Barbosa ,&nbsp;Augusto Bene Tomé Constantino ,&nbsp;Lívia Pinto Heckert Bastos ,&nbsp;Edwin Elard Garcia-Rojas","doi":"10.1016/j.fhfh.2021.100047","DOIUrl":"10.1016/j.fhfh.2021.100047","url":null,"abstract":"<div><p>This research studied the formation of complex coacervates formed by carboxymethylcellulose (CMC) and lactoferrin (Lf) as wall materials for encapsulation of β-carotene present in sacha inchi oil (SIO). According to zeta-potential and turbidimetric analyses, the optimum conditions for the formation of CMC:Lf complex coacervates were pH 5.0 and a 1:14 ratio. Isothermal titration calorimetry showed that the complexes were formed in two stages: first, the interaction was driven by electrostatic attraction, and second, electrostatic and other interactions (such as hydrogen bonding) or structural conformations were present. The capsules formed with CMC:Lf complex coacervates had a spherical appearance with a well-defined core and were able to encapsulate 97% of SIO. The presence of SIO, CMC, and Lf in the capsules was confirmed by Fourier transform infrared analysis. The <em>in vitro</em> gastrointestinal digestion of capsules showed that 84.31% of β-carotene present in SIO was released in the intestine, with high bioaccessibility (67%). Additionally, Fickian diffusion was the mechanism observed for β-carotene release in the food model. Thus, it is possible to conclude that CMC:Lf complex coacervates are good wall material for encapsulating and protecting β-carotene for food fortification.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"2 ","pages":"Article 100047"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266702592100039X/pdfft?md5=21ec8a1d90eb7b401810e7d9999c886e&pid=1-s2.0-S266702592100039X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45672399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Oleogels: Promising alternatives to solid fats for food applications 油凝胶:固体脂肪在食品应用中的有前途的替代品
IF 1.9 Q1 CHEMISTRY, APPLIED Pub Date : 2022-12-01 DOI: 10.1016/j.fhfh.2022.100058
Shaziya Manzoor, F.A. Masoodi, Farah Naqash, Rubiya Rashid

Increased concerns over intake of harmful transfats and saturated fats in the diet pose a new challenge to the scientific community, to come up with viable alternatives replacing detrimental fats without affecting organoleptic properties of the food product. Out of various strategies aimed to reduce/replace transfats and saturated fats in foods, oleogels are reported to be an innovative structured fat system used for industrial applications due to their nutritional and environmental benefits. This review will focus on the formulation methods and chemistry of oleogels, along with their recent food applications particularly in bioactive delivery and in other sectors complying with their need. An insight into the mechanism of gelation and various components of oleogels will be deliberated upon. Moreover, modified oleogels with improved technical and functional properties manufactured by use of several emerging technologies like ultrasound will also be reviewed.

人们对饮食中有害反式脂肪和饱和脂肪摄入的担忧日益增加,这给科学界提出了新的挑战,即在不影响食品感官特性的情况下,找到可行的替代品来取代有害脂肪。在旨在减少/替代食品中的反式脂肪和饱和脂肪的各种策略中,油凝胶由于其营养和环境效益而被报道为一种用于工业应用的创新结构脂肪系统。本文将重点介绍油凝胶的配方方法和化学性质,以及它们最近在食品中的应用,特别是在生物活性输送和其他符合其需求的领域。深入了解凝胶的机制和油凝胶的各种成分将被审议。此外,还将介绍利用超声等新兴技术制备的具有改进技术和功能特性的改性油凝胶。
{"title":"Oleogels: Promising alternatives to solid fats for food applications","authors":"Shaziya Manzoor,&nbsp;F.A. Masoodi,&nbsp;Farah Naqash,&nbsp;Rubiya Rashid","doi":"10.1016/j.fhfh.2022.100058","DOIUrl":"10.1016/j.fhfh.2022.100058","url":null,"abstract":"<div><p>Increased concerns over intake of harmful transfats and saturated fats in the diet pose a new challenge to the scientific community, to come up with viable alternatives replacing detrimental fats without affecting organoleptic properties of the food product. Out of various strategies aimed to reduce/replace transfats and saturated fats in foods, oleogels are reported to be an innovative structured fat system used for industrial applications due to their nutritional and environmental benefits. This review will focus on the formulation methods and chemistry of oleogels, along with their recent food applications particularly in bioactive delivery and in other sectors complying with their need. An insight into the mechanism of gelation and various components of oleogels will be deliberated upon. Moreover, modified oleogels with improved technical and functional properties manufactured by use of several emerging technologies like ultrasound will also be reviewed.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"2 ","pages":"Article 100058"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025922000061/pdfft?md5=6a44766b6c8b0540097a28ed72ba80bd&pid=1-s2.0-S2667025922000061-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48679158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 57
Food colloid-based delivery systems for tackling age-related macular degeneration by enhancing carotenoid bioavailability: A review 通过提高类胡萝卜素的生物利用度来治疗老年性黄斑变性的食物胶体为基础的输送系统:综述
IF 1.9 Q1 CHEMISTRY, APPLIED Pub Date : 2022-12-01 DOI: 10.1016/j.fhfh.2022.100093
Erin Kuo , David Julian McClements

Over the past century, there has been a large increase in the life expectancy of people around the globe, which means there has been a rise in diseases of the elderly. Age-related macular degeneration (AMD) is a sight-threatening condition of the eye characterized by a loss of central vision. Research suggests that macular pigment carotenoids, such as lutein and zeaxanthin, may inhibit the onset of this disease by protecting the eye from damaging light and oxidation. These carotenoids are chemically reactive hydrophobic molecules with a low water-solubility, chemical stability, and bioavailability. Consequently, many carotenoid-rich foods and supplements are not absorbed by the human body and do not exhibit their beneficial effects on eye health. In this article, we review the prevalence and characteristics of AMD, the sources of macular pigment carotenoids in foods, the factors limiting their bioavailability, and analytical approaches available to study their bioavailability and bioactivity. We then discuss different strategies for increasing the concentration of bioavailable macular pigment carotenoids in the human diet, including dietary sources, supplements, functional foods, and excipient foods, with an emphasis on colloidal systems that can be used for this purpose.

在过去的一个世纪里,全球人口的预期寿命大幅增加,这意味着老年人的疾病有所增加。老年性黄斑变性(AMD)是一种以中心视力丧失为特征的眼睛视力威胁疾病。研究表明,黄斑色素类胡萝卜素,如叶黄素和玉米黄质,可能通过保护眼睛免受有害的光和氧化而抑制这种疾病的发生。这些类胡萝卜素是化学反应性疏水分子,具有低水溶性、化学稳定性和生物利用度。因此,许多富含类胡萝卜素的食物和补充剂不能被人体吸收,也不能显示出它们对眼睛健康的有益作用。本文综述了黄斑变性的发病率和特点、食品中黄斑色素类胡萝卜素的来源、限制其生物利用度的因素以及研究其生物利用度和生物活性的分析方法。然后,我们讨论了增加人类饮食中生物可利用黄斑色素类胡萝卜素浓度的不同策略,包括饮食来源、补充剂、功能性食品和辅料食品,重点介绍了可用于此目的的胶体系统。
{"title":"Food colloid-based delivery systems for tackling age-related macular degeneration by enhancing carotenoid bioavailability: A review","authors":"Erin Kuo ,&nbsp;David Julian McClements","doi":"10.1016/j.fhfh.2022.100093","DOIUrl":"10.1016/j.fhfh.2022.100093","url":null,"abstract":"<div><p>Over the past century, there has been a large increase in the life expectancy of people around the globe, which means there has been a rise in diseases of the elderly. Age-related macular degeneration (AMD) is a sight-threatening condition of the eye characterized by a loss of central vision. Research suggests that macular pigment carotenoids, such as lutein and zeaxanthin, may inhibit the onset of this disease by protecting the eye from damaging light and oxidation. These carotenoids are chemically reactive hydrophobic molecules with a low water-solubility, chemical stability, and bioavailability. Consequently, many carotenoid-rich foods and supplements are not absorbed by the human body and do not exhibit their beneficial effects on eye health. In this article, we review the prevalence and characteristics of AMD, the sources of macular pigment carotenoids in foods, the factors limiting their bioavailability, and analytical approaches available to study their bioavailability and bioactivity. We then discuss different strategies for increasing the concentration of bioavailable macular pigment carotenoids in the human diet, including dietary sources, supplements, functional foods, and excipient foods, with an emphasis on colloidal systems that can be used for this purpose.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"2 ","pages":"Article 100093"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025922000401/pdfft?md5=d1b126d9927ef6f5a1ed0d2d698e8bc7&pid=1-s2.0-S2667025922000401-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49318490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Citrus pectin based complexes for the tetracycline delivery 柑橘果胶为基础的四环素递送配合物
IF 1.9 Q1 CHEMISTRY, APPLIED Pub Date : 2022-12-01 DOI: 10.1016/j.fhfh.2022.100100
Y.V. Chekunkov, S.T. Minzanova, A.V. Khabibullina, D.M. Arkhipova, L.G. Mironova, A.D. Voloshina, A.R. Khamatgalimov, V.A. Milyukov

This research studied the formation of sodium polygalacturonate complexes with the antimicrobial drug "Tetracycline". The formation was confirmed by IR, UV and NMR spectroscopy. It was shown that the complexes were formed by electrostatic attraction and hydrogen bonding. The complexes demonstrated a high degree of drug binding to the polysaccharide matrix with the maximum content of tetracycline (6.68 wt %). The study of the antimicrobial activity of obtained compounds against S. aureus, B. cereus, E. coli showed no decrease in the antimicrobial effect compared to source tetracycline. Thus, the future research towards the new design compounds based on studied complexes could make contribution to a new generation of drugs based on pectin biopolymers.

本研究研究了聚半乳糖酸钠与抗菌药物“四环素”的配合物的形成。通过红外光谱、紫外光谱和核磁共振光谱证实了该物质的形成。结果表明,配合物是由静电吸引和氢键作用形成的。该复合物与多糖基质结合程度高,四环素含量最高(6.68 wt %)。所得化合物对金黄色葡萄球菌、蜡样芽孢杆菌和大肠杆菌的抑菌活性研究表明,与四环素源相比,其抑菌效果没有下降。因此,未来基于所研究的配合物的新设计化合物的研究可以为新一代基于果胶生物聚合物的药物做出贡献。
{"title":"Citrus pectin based complexes for the tetracycline delivery","authors":"Y.V. Chekunkov,&nbsp;S.T. Minzanova,&nbsp;A.V. Khabibullina,&nbsp;D.M. Arkhipova,&nbsp;L.G. Mironova,&nbsp;A.D. Voloshina,&nbsp;A.R. Khamatgalimov,&nbsp;V.A. Milyukov","doi":"10.1016/j.fhfh.2022.100100","DOIUrl":"10.1016/j.fhfh.2022.100100","url":null,"abstract":"<div><p>This research studied the formation of sodium polygalacturonate complexes with the antimicrobial drug \"Tetracycline\". The formation was confirmed by IR, UV and NMR spectroscopy. It was shown that the complexes were formed by electrostatic attraction and hydrogen bonding. The complexes demonstrated a high degree of drug binding to the polysaccharide matrix with the maximum content of tetracycline (6.68 wt %). The study of the antimicrobial activity of obtained compounds against <em>S. aureus, B. cereus, E. coli</em> showed no decrease in the antimicrobial effect compared to source tetracycline. Thus, the future research towards the new design compounds based on studied complexes could make contribution to a new generation of drugs based on pectin biopolymers.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"2 ","pages":"Article 100100"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025922000474/pdfft?md5=cf6948805648618f2ad019a2a3317330&pid=1-s2.0-S2667025922000474-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43234354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encapsulation of black cumin seed (Nigella sativa) oil by using inverse gelation method 反凝胶法包封黑孜然籽油
IF 1.9 Q1 CHEMISTRY, APPLIED Pub Date : 2022-12-01 DOI: 10.1016/j.fhfh.2022.100089
Recep Palamutoğlu, Cemal Kasnak, Buket Özen

Black cumin seed oil (BCO) is an important oil source in the food industry. Alginate capsules with aqueous cores can be made by reversing the gelation technique with alginate and CaCl2. The research aims to investigate the physicochemical properties of the capsules as well as to analyze the storage stability of BCO emulsions (emulgators; polyglycerol polyricinoleate (A) and sorbitan monooleate (B)) coated using the inverse gelation method. The peroxide value in group A increased rapidly on the first day and then declined without any significant difference between the third and sixth days (p > 0.05). The peroxide value of group B increased significantly (p < 0.05) on the first day and then declined like in the other groups. BCO (7.42 ± 0.16) had the lowest p-anisidine value at the beginning with the initial p-anisidine value of encapsulated BCO groups A and B (21.74 ± 0.84 and 11.48 ± 1.31, respectively) having significantly higher (p < 0.05). The reverse gelation technique utilized in this study raised the p-anisidine value while lowering the peroxide value of the seed oil. The shelf life of black seed oil can be increased by using this technique in the industry.

黑孜然籽油(BCO)是食品工业中重要的油源。用海藻酸盐和CaCl2逆转凝胶技术可制得带水芯的海藻酸盐胶囊。本研究旨在研究BCO胶囊的物理化学性质,并分析BCO乳剂(乳化剂)的储存稳定性;聚甘油聚蓖麻油酸酯(A)和山梨糖单油酸酯(B))用反凝胶法包被。A组的过氧化值在第1天迅速上升,然后下降,第3天和第6天无显著差异(p >0.05)。B组过氧化值显著升高(p <0.05),随后与其他组一样下降。BCO初始p-茴香胺值最低(7.42±0.16),A组和B组的p-茴香胺初始值分别为21.74±0.84和11.48±1.31,显著高于对照组(p <0.05)。本研究采用的反凝胶技术提高了对茴香胺值,同时降低了种子油的过氧化值。在工业上应用该技术可延长黑籽油的保质期。
{"title":"Encapsulation of black cumin seed (Nigella sativa) oil by using inverse gelation method","authors":"Recep Palamutoğlu,&nbsp;Cemal Kasnak,&nbsp;Buket Özen","doi":"10.1016/j.fhfh.2022.100089","DOIUrl":"10.1016/j.fhfh.2022.100089","url":null,"abstract":"<div><p>Black cumin seed oil (BCO) is an important oil source in the food industry. Alginate capsules with aqueous cores can be made by reversing the gelation technique with alginate and CaCl<sub>2</sub>. The research aims to investigate the physicochemical properties of the capsules as well as to analyze the storage stability of BCO emulsions (emulgators; polyglycerol polyricinoleate (A) and sorbitan monooleate (B)) coated using the inverse gelation method. The peroxide value in group A increased rapidly on the first day and then declined without any significant difference between the third and sixth days (<em>p</em> &gt; 0.05). The peroxide value of group B increased significantly (<em>p</em> &lt; 0.05) on the first day and then declined like in the other groups. BCO (7.42 ± 0.16) had the lowest p-anisidine value at the beginning with the initial p-anisidine value of encapsulated BCO groups A and B (21.74 ± 0.84 and 11.48 ± 1.31, respectively) having significantly higher (<em>p</em> &lt; 0.05). The reverse gelation technique utilized in this study raised the p-anisidine value while lowering the peroxide value of the seed oil. The shelf life of black seed oil can be increased by using this technique in the industry.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"2 ","pages":"Article 100089"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266702592200036X/pdfft?md5=4019947294b54c76b4f5adc34cb5b8e2&pid=1-s2.0-S266702592200036X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43686084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Development and characterization of griseofulvin loaded nanostructured lipid carrier gel for treating dermatophytosis 灰黄霉素纳米结构脂质载体凝胶治疗皮肤病的研制与表征
IF 1.9 Q1 CHEMISTRY, APPLIED Pub Date : 2022-12-01 DOI: 10.1016/j.fhfh.2022.100074
Neelam Datt , Rajasekhar Reddy Poonuru , Pankaj K. Yadav

The present investigations were aimed at formulating topical gel containing nanostructured lipid carriers (NLCs) of griseofulvin and assess its effectiveness on superficial infections. The drug solubility studies were executed using various lipids and surfactants like Glyceryl monostearate, Oleic acid, Pluronic F 68, and Tween 80, and the concentrations of lipids, surfactants, and emulsifier were optimized using Box-Behnken design (BBD). Microemulsions were made utilizing sonication. The prepared batches (F1 to F15) were analyzed and observed that the optimized batch (F12), containing 0.2% w/w drug, 2% GMS, 2% Pluronic F68 and Tween 80 (in the ratio of 1:1) showed a particle size of 209 nm, zeta potential of -44.12 mV, entrapment level of 85.24% along with a drug release of 92.12%. Carbopol 940, 1.5% was used to make the topical gel. The results of biochemical studies reflected that griseofulvin-loaded-nanogel produced a more significant decrease in lipid peroxidation as compared to the standard drug. The in-vitro cytotoxicity studies showed better safety of nanogel in human keratinocyte cells (HaCaT). The results of antifungal activity showed complete clinical and mycological cure in a duration of 21 days against superficial infections like Tenia pedis and also ringworm in Wistar rats while using T.rubrum and M.canis fungal strains. These preclinical investigations have proved that the nanogels have a better potential in treating the aforementioned superficial infections providing an effective alternative for currently existing products.

本研究旨在制备含有灰黄霉素纳米结构脂质载体(nlc)的局部凝胶,并评估其对浅表感染的有效性。采用单硬脂酸甘油、油酸、Pluronic f68和Tween 80等多种脂类和表面活性剂进行药物溶解度研究,并采用Box-Behnken设计(BBD)对脂类、表面活性剂和乳化剂的浓度进行优化。利用超声法制备微乳液。对制备的批(F1 ~ F15)进行分析,发现最佳批(F12)的粒径为209 nm, zeta电位为-44.12 mV,包封率为85.24%,释药率为92.12%。F12为0.2% w/w药物、2% GMS、2% Pluronic F68和Tween 80(比例为1:1)。卡波波尔940,1.5%制备外用凝胶。生化研究结果表明,与标准药物相比,负载灰黄蛋白的纳米凝胶产生了更显著的脂质过氧化降低。体外细胞毒性研究表明纳米凝胶在人角质形成细胞(HaCaT)中的安全性较好。抗真菌活性的结果表明,在21天的时间内,使用红毛霉和狗毛霉菌株对Wistar大鼠的足癣和癣等浅表感染有完全的临床和真菌学治愈。这些临床前研究证明纳米凝胶在治疗上述表面感染方面具有更好的潜力,为现有产品提供了有效的替代方案。
{"title":"Development and characterization of griseofulvin loaded nanostructured lipid carrier gel for treating dermatophytosis","authors":"Neelam Datt ,&nbsp;Rajasekhar Reddy Poonuru ,&nbsp;Pankaj K. Yadav","doi":"10.1016/j.fhfh.2022.100074","DOIUrl":"10.1016/j.fhfh.2022.100074","url":null,"abstract":"<div><p>The present investigations were aimed at formulating topical gel containing nanostructured lipid carriers (NLCs) of griseofulvin and assess its effectiveness on superficial infections. The drug solubility studies were executed using various lipids and surfactants like Glyceryl monostearate, Oleic acid, Pluronic F 68, and Tween 80, and the concentrations of lipids, surfactants, and emulsifier were optimized using Box-Behnken design (BBD). Microemulsions were made utilizing sonication. The prepared batches (F1 to F15) were analyzed and observed that the optimized batch (F12), containing 0.2% w/w drug, 2% GMS, 2% Pluronic F68 and Tween 80 (in the ratio of 1:1) showed a particle size of 209 nm, zeta potential of -44.12 mV, entrapment level of 85.24% along with a drug release of 92.12%. Carbopol 940, 1.5% was used to make the topical gel. The results of biochemical studies reflected that griseofulvin-loaded-nanogel produced a more significant decrease in lipid peroxidation as compared to the standard drug. The in-vitro cytotoxicity studies showed better safety of nanogel in human keratinocyte cells (HaCaT). The results of antifungal activity showed complete clinical and mycological cure in a duration of 21 days against superficial infections like Tenia pedis and also ringworm in Wistar rats while using T.rubrum and M.canis fungal strains. These preclinical investigations have proved that the nanogels have a better potential in treating the aforementioned superficial infections providing an effective alternative for currently existing products.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"2 ","pages":"Article 100074"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025922000218/pdfft?md5=8701a17eb5f184623c536fbbdfa430ac&pid=1-s2.0-S2667025922000218-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44764271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Synthesis of N, N, N-trimethyl chitosan-based nanospheres for the prolonged release of curcumin N, N, N-三甲基壳聚糖纳米微球的合成及其对姜黄素缓释的影响
IF 1.9 Q1 CHEMISTRY, APPLIED Pub Date : 2022-12-01 DOI: 10.1016/j.fhfh.2022.100092
Xueqin Zhao , Chao Lu , Songlin Yang , Rui Ni , Tianqing Peng , Jin Zhang

It is critical to develop a hydrophilic drug carrier with positive charge on the surface to enhance the bioavailability of curcumin to overcome the tissue barrier, e.g., blood brain barrier. In this paper, a quaternized chitosan derivative, N,N,N-Trimethyl Chitosan (TMC) was produced which is a cationic polysaccharide. Nuclear magnetic resonance (1H-NMR) and Infrared Spectroscopy (FTIR) have been used to verify the synthesis of TMC. A simple nanoemulsion process has been developed to produce TMC-based nanosphere to load curcumin. A high encapsulation efficiency (over 90%) can be observed. The average particle size of nanospheres made of TMC with 2.5 mg/mL and 4.0 mg/ mL is estimated at 555.3±117.7 nm and 771.2±123.2 nm, respectively. The effect of the concentrations of TMC on the release profile has been investigated. It is found that nanospheres made of a higher concentration of TMC, 4.0 mg/mL, could lead to an extended release of curcumin, and the first-order release kinetics can be observed when release time increases from 0 to 265 h. The release kinetics of curcumin loaded in TMC nanospheres is also influenced by pH value. In addition, the cytotoxicity study shows that no toxic effect can be found when cells are treated with synthetic TMC. The relative cell viability of mouse cardiac endothelial cells treated with curcumin loaded TMC nanospheres is higher than that when cells treated with curcumin alone.

为了提高姜黄素的生物利用度,克服组织屏障,如血脑屏障,开发一种表面带正电荷的亲水性药物载体至关重要。本文制备了一种季铵化壳聚糖衍生物N,N,N-三甲基壳聚糖(TMC),它是一种阳离子多糖。利用核磁共振(1H-NMR)和红外光谱(FTIR)对TMC的合成进行了验证。研究了一种简单的纳米乳法制备负载姜黄素的纳米球。可观察到高封装效率(90%以上)。2.5 mg/mL和4.0 mg/mL的TMC制备的纳米球的平均粒径分别为555.3±117.7 nm和771.2±123.2 nm。研究了TMC浓度对其释放曲线的影响。结果表明,当TMC的浓度达到4.0 mg/mL时,姜黄素的释放时间延长,且随着释放时间的增加,姜黄素的释放动力学呈一级释放,且其释放动力学也受pH值的影响。此外,细胞毒性研究表明,用合成TMC处理细胞时,没有发现毒性作用。姜黄素负载TMC纳米球处理的小鼠心脏内皮细胞的相对细胞活力高于单独姜黄素处理的细胞。
{"title":"Synthesis of N, N, N-trimethyl chitosan-based nanospheres for the prolonged release of curcumin","authors":"Xueqin Zhao ,&nbsp;Chao Lu ,&nbsp;Songlin Yang ,&nbsp;Rui Ni ,&nbsp;Tianqing Peng ,&nbsp;Jin Zhang","doi":"10.1016/j.fhfh.2022.100092","DOIUrl":"10.1016/j.fhfh.2022.100092","url":null,"abstract":"<div><p>It is critical to develop a hydrophilic drug carrier with positive charge on the surface to enhance the bioavailability of curcumin to overcome the tissue barrier, e.g., blood brain barrier. In this paper, a quaternized chitosan derivative, N,N,N-Trimethyl Chitosan (TMC) was produced which is a cationic polysaccharide. Nuclear magnetic resonance (<sup>1</sup>H-NMR) and Infrared Spectroscopy (FTIR) have been used to verify the synthesis of TMC. A simple nanoemulsion process has been developed to produce TMC-based nanosphere to load curcumin. A high encapsulation efficiency (over 90%) can be observed. The average particle size of nanospheres made of TMC with 2.5 mg/mL and 4.0 mg/ mL is estimated at 555.3±117.7 nm and 771.2±123.2 nm, respectively. The effect of the concentrations of TMC on the release profile has been investigated. It is found that nanospheres made of a higher concentration of TMC, 4.0 mg/mL, could lead to an extended release of curcumin, and the first-order release kinetics can be observed when release time increases from 0 to 265 h. The release kinetics of curcumin loaded in TMC nanospheres is also influenced by pH value. In addition, the cytotoxicity study shows that no toxic effect can be found when cells are treated with synthetic TMC. The relative cell viability of mouse cardiac endothelial cells treated with curcumin loaded TMC nanospheres is higher than that when cells treated with curcumin alone.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"2 ","pages":"Article 100092"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025922000395/pdfft?md5=638f74fd1dce98647f28bc37c8e35b00&pid=1-s2.0-S2667025922000395-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46619316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent progress in alginate-based carriers for ocular targeting of therapeutics 以海藻酸盐为基础的眼部靶向治疗载体的研究进展
IF 1.9 Q1 CHEMISTRY, APPLIED Pub Date : 2022-12-01 DOI: 10.1016/j.fhfh.2022.100071
Sandip Karmakar , Sreejan Manna , Sourav Kabiraj , Sougata Jana

Eye is one of the susceptible organs of the human body which is associated with several internal organs including the brain. Due to the protective mechanisms of body and ocular barrier properties, the area of ocular drug delivery presents a challenge to pharmaceutical researchers. Alginate is a naturally occurring polysaccharide obtained from marine brown seaweeds and bacterial sources. According to the Food and Drug Administration, (FDA) alginate is generally recognized as safe (GRAS). It is widely used as a gelling agent and thickener in the food industries. In the field of drug delivery, alginate is extensively investigated as an excipient. In ocular targeting of therapeutics, sodium alginate offers many advantages including ion sensitive in situ gelation, non-toxic and biodegradable behaviour in combination with mucoadhesive nature of the polymer. The instant gelation ability of alginate allows it to increase the ocular residence time and enhances the ocular drug bioavailability reducing the requirement of frequent administration of drug. The abundant availability and attractive physicochemical properties of alginate has encouraged pharmaceutical scientists to explore newer strategies in ocular drug targeting. In this review, the efficacy of alginate in delivering various therapeutic agents has been discussed.

眼睛是人体的易感器官之一,它与包括大脑在内的几个内脏器官都有联系。由于机体和眼屏障特性的保护机制,眼内给药成为药学研究的一个挑战。藻酸盐是一种天然存在的多糖,从海洋棕色海藻和细菌来源中获得。根据美国食品和药物管理局(FDA),海藻酸盐通常被认为是安全的(GRAS)。在食品工业中广泛用作胶凝剂和增稠剂。在给药领域,海藻酸盐作为一种赋形剂被广泛研究。在眼部靶向治疗中,海藻酸钠具有许多优点,包括离子敏感的原位凝胶,无毒和可生物降解的行为,以及聚合物的黏附性。海藻酸盐的即时凝胶能力使其能够增加眼部停留时间,提高眼部药物的生物利用度,减少频繁给药的需要。海藻酸盐丰富的可用性和吸引人的理化性质促使药理学家探索眼部药物靶向治疗的新策略。本文综述了海藻酸盐在各种治疗药物输送中的作用。
{"title":"Recent progress in alginate-based carriers for ocular targeting of therapeutics","authors":"Sandip Karmakar ,&nbsp;Sreejan Manna ,&nbsp;Sourav Kabiraj ,&nbsp;Sougata Jana","doi":"10.1016/j.fhfh.2022.100071","DOIUrl":"10.1016/j.fhfh.2022.100071","url":null,"abstract":"<div><p>Eye is one of the susceptible organs of the human body which is associated with several internal organs including the brain. Due to the protective mechanisms of body and ocular barrier properties, the area of ocular drug delivery presents a challenge to pharmaceutical researchers. Alginate is a naturally occurring polysaccharide obtained from marine brown seaweeds and bacterial sources. According to the Food and Drug Administration, (FDA) alginate is generally recognized as safe (GRAS). It is widely used as a gelling agent and thickener in the food industries. In the field of drug delivery, alginate is extensively investigated as an excipient. In ocular targeting of therapeutics, sodium alginate offers many advantages including ion sensitive <em>in situ</em> gelation, non-toxic and biodegradable behaviour in combination with mucoadhesive nature of the polymer. The instant gelation ability of alginate allows it to increase the ocular residence time and enhances the ocular drug bioavailability reducing the requirement of frequent administration of drug. The abundant availability and attractive physicochemical properties of alginate has encouraged pharmaceutical scientists to explore newer strategies in ocular drug targeting. In this review, the efficacy of alginate in delivering various therapeutic agents has been discussed.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"2 ","pages":"Article 100071"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025922000188/pdfft?md5=27402f6e434744a196c118844bf395a6&pid=1-s2.0-S2667025922000188-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47466961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
期刊
Food Hydrocolloids for Health
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1