Pub Date : 2024-09-27DOI: 10.1016/j.fbio.2024.105194
A large volume of food waste is produced while processing raw materials from the agro-food sector, including shells, skins, pulp, stems, seeds, etc. Disposing of these discarded materials in landfills or incinerators, which have detrimental environmental impacts, is expensive. However, despite this, food by-products may contain nutritional compounds that have a distinct market potential because they are abundant, inexpensive, and readily available. This review article discusses the effect of food waste on the environment and sustainability, with a particular focus on achieving the multiple goals of the sustainable development goals (SDGs) agenda 2030. A detailed process of food waste valorization has been described, starting from the recovery of functional compounds, including polyphenols, essential oils, pigments, bioactive compounds, and carotenoids from food by-products, extraction strategies, characterization, and finally, utilization of extracted compounds in the Food sector, pharmaceutical sector, food packaging and Cosmetic sector which ultimately increase in the global food market and fulfilling different goals from Sdgs agenda 2030.
{"title":"Valorization of agro-food by-products: Advancing sustainability and sustainable development goals 2030 through functional compounds recovery","authors":"","doi":"10.1016/j.fbio.2024.105194","DOIUrl":"10.1016/j.fbio.2024.105194","url":null,"abstract":"<div><div>A large volume of food waste is produced while processing raw materials from the agro-food sector, including shells, skins, pulp, stems, seeds, etc. Disposing of these discarded materials in landfills or incinerators, which have detrimental environmental impacts, is expensive. However, despite this, food by-products may contain nutritional compounds that have a distinct market potential because they are abundant, inexpensive, and readily available. This review article discusses the effect of food waste on the environment and sustainability, with a particular focus on achieving the multiple goals of the sustainable development goals (SDGs) agenda 2030. A detailed process of food waste valorization has been described, starting from the recovery of functional compounds, including polyphenols, essential oils, pigments, bioactive compounds, and carotenoids from food by-products, extraction strategies, characterization, and finally, utilization of extracted compounds in the Food sector, pharmaceutical sector, food packaging and Cosmetic sector which ultimately increase in the global food market and fulfilling different goals from Sdgs agenda 2030.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.fbio.2024.105189
Food-derived bioactive components (BC) are celebrated for their health-enhancing properties, but their application was limited in terms of the low solubility, weak stability, and poor bioavailability. To overcome these challenges, various nano-delivery systems have been developed and extensively investigated. This review focused on the most prominent nano-delivery systems, such as nanoparticles have emerged as versatile carriers, allowing for improved solubility and controlled release of BC. Nano-emulsions offer enhanced bioavailability and stability, particularly for lipophilic BC. Liposomes, with their cell-membrane-like structure, facilitate efficient intracellular delivery. Solid lipid nanoparticles and nanostructured lipid carriers provide options for controlled release and protection against environmental factors. Additionally, various novel nano-delivery systems have been designed to cater to specific ingredient and application requirements. This review highlighted their advantages, challenges, and recent breakthroughs. The intricate interplay between nano-carrier properties and BC characteristics was elucidated, offering valuable insights for the development of functional foods with enhanced health benefits.
从食物中提取的生物活性成分(BC)因其增进健康的特性而备受赞誉,但其应用却因溶解度低、稳定性差和生物利用率低而受到限制。为了克服这些挑战,人们开发并广泛研究了各种纳米给药系统。本综述侧重于最突出的纳米给药系统,如纳米颗粒已成为多功能载体,可改善 BC 的溶解度和控释。纳米乳剂可提高生物利用度和稳定性,特别是对于亲脂性生物碱。脂质体具有类似细胞膜的结构,可促进高效的细胞内给药。固体脂质纳米颗粒和纳米结构脂质载体为控制释放和抵御环境因素提供了选择。此外,还设计了各种新型纳米给药系统,以满足特定成分和应用的要求。本综述重点介绍了它们的优势、挑战和最新突破。该综述阐明了纳米载体特性与 BC 特性之间错综复杂的相互作用,为开发具有更多健康益处的功能食品提供了宝贵的见解。
{"title":"Research progress on the nano-delivery systems of food-derived bioactive components","authors":"","doi":"10.1016/j.fbio.2024.105189","DOIUrl":"10.1016/j.fbio.2024.105189","url":null,"abstract":"<div><div>Food-derived bioactive components (BC) are celebrated for their health-enhancing properties, but their application was limited in terms of the low solubility, weak stability, and poor bioavailability. To overcome these challenges, various nano-delivery systems have been developed and extensively investigated. This review focused on the most prominent nano-delivery systems, such as nanoparticles have emerged as versatile carriers, allowing for improved solubility and controlled release of BC. Nano-emulsions offer enhanced bioavailability and stability, particularly for lipophilic BC. Liposomes, with their cell-membrane-like structure, facilitate efficient intracellular delivery. Solid lipid nanoparticles and nanostructured lipid carriers provide options for controlled release and protection against environmental factors. Additionally, various novel nano-delivery systems have been designed to cater to specific ingredient and application requirements. This review highlighted their advantages, challenges, and recent breakthroughs. The intricate interplay between nano-carrier properties and BC characteristics was elucidated, offering valuable insights for the development of functional foods with enhanced health benefits.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1016/j.fbio.2024.105183
In recent years, there has been a significant surge in concerns regarding food safety, leading to an intensified focus on the health implications of food consumption. Lactoferrin, as a prominent representative of functional foods, not only serves as a vital source of nutrients for the human body but also offers numerous protective benefits for human health. The remarkable antibacterial and antiviral properties of lactoferrin have stimulated extensive research and increased its application in promoting human well-being. The substantial nutritional value of lactoferrin has contributed to a steady expansion in market demand. Addressing the challenge posed by demand surpassing supply, a more environmentally friendly and economically viable approach for lactoferrin production involves heterologous expression. This paper provides a comprehensive and updated review of these advances, including their source, molecular structure, biological function, heterologous host expression, protein purification, and application. The expression system, function, and application of lactoferrin were emphasized and highlighted, aiming to provide practical guidelines for further development and utilization of lactoferrin.
{"title":"Lactoferrin: Current situation and future prospects","authors":"","doi":"10.1016/j.fbio.2024.105183","DOIUrl":"10.1016/j.fbio.2024.105183","url":null,"abstract":"<div><div>In recent years, there has been a significant surge in concerns regarding food safety, leading to an intensified focus on the health implications of food consumption. Lactoferrin, as a prominent representative of functional foods, not only serves as a vital source of nutrients for the human body but also offers numerous protective benefits for human health. The remarkable antibacterial and antiviral properties of lactoferrin have stimulated extensive research and increased its application in promoting human well-being. The substantial nutritional value of lactoferrin has contributed to a steady expansion in market demand. Addressing the challenge posed by demand surpassing supply, a more environmentally friendly and economically viable approach for lactoferrin production involves heterologous expression. This paper provides a comprehensive and updated review of these advances, including their source, molecular structure, biological function, heterologous host expression, protein purification, and application. The expression system, function, and application of lactoferrin were emphasized and highlighted, aiming to provide practical guidelines for further development and utilization of lactoferrin.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.fbio.2024.105170
Spirulina (SP) is the commercial name of Arthrospira algae species, especially A. maxima and A. platensis. This microalga has a unique composition of macro/micronutrients and is therefore characterized by an exceptional nutritional value. It contains a high amount of protein with most of the essential amino acids. It is also considered a good source of omega-3 fatty acids. Other nutritional properties of SP include minerals and antioxidant phenolics. In recent years, there has been a great interest in SP incorporation into food formulations to produce functional foods. In this article, the reports that used SP as an innovative ingredient in the formulation of bakery and pasta products were reviewed. The results of the examined studies indicated that the techno-functional characteristics of the products are not negatively affected if the optimum SP level is added to the food formulations. It seems that the most crucial concern of incorporating SP into different cereal-based products is its significant effect on their sensory properties such as odor, taste and overall acceptance. Several studies have investigated methods to overcome this major challenge: such as the use of ethanol-treated SP, encapsulation and application of flavor-improving agents. Using ethanol to remove SP pigments and using SP powder treated with ethanol in the product formulations can improve the sensory properties of the product. Moreover, encapsulation of SP by covering its odor could generally enhance the customer's satisfaction. More studies are still needed to prove the effectiveness of these techniques.
螺旋藻(SP)是节藻(Arthrospira)的商业名称,尤其是 A. maxima 和 A. platensis。这种微藻具有独特的宏/微量营养素组成,因此营养价值极高。它含有大量蛋白质和大部分必需氨基酸。它也被认为是欧米伽-3 脂肪酸的良好来源。SP 的其他营养特性还包括矿物质和抗氧化酚类物质。近年来,人们对在食品配方中添加 SP 以生产功能性食品产生了浓厚的兴趣。本文回顾了将 SP 作为创新配料用于烘焙和面食产品配方的报告。研究结果表明,如果在食品配方中添加最佳 SP 水平,产品的技术功能特性不会受到负面影响。将 SP 添加到不同的谷物类产品中,最重要的问题似乎是其对产品感官特性(如气味、口感和总体接受度)的显著影响。有几项研究探讨了克服这一重大挑战的方法:如使用乙醇处理过的 SP、封装和应用风味改进剂。使用乙醇去除 SP 色素和在产品配方中使用经乙醇处理的 SP 粉末可以改善产品的感官特性。此外,通过掩盖 SP 的气味对其进行封装可普遍提高消费者的满意度。要证明这些技术的有效性,还需要进行更多的研究。
{"title":"Application of Spirulina as an innovative ingredient in pasta and bakery products","authors":"","doi":"10.1016/j.fbio.2024.105170","DOIUrl":"10.1016/j.fbio.2024.105170","url":null,"abstract":"<div><div>Spirulina (SP) is the commercial name of <em>Arthrospira</em> algae species, especially <em>A. maxima</em> and <em>A. platensis</em>. This microalga has a unique composition of macro/micronutrients and is therefore characterized by an exceptional nutritional value. It contains a high amount of protein with most of the essential amino acids. It is also considered a good source of omega-3 fatty acids. Other nutritional properties of SP include minerals and antioxidant phenolics. In recent years, there has been a great interest in SP incorporation into food formulations to produce functional foods. In this article, the reports that used SP as an innovative ingredient in the formulation of bakery and pasta products were reviewed. The results of the examined studies indicated that the techno-functional characteristics of the products are not negatively affected if the optimum SP level is added to the food formulations. It seems that the most crucial concern of incorporating SP into different cereal-based products is its significant effect on their sensory properties such as odor, taste and overall acceptance. Several studies have investigated methods to overcome this major challenge: such as the use of ethanol-treated SP, encapsulation and application of flavor-improving agents. Using ethanol to remove SP pigments and using SP powder treated with ethanol in the product formulations can improve the sensory properties of the product. Moreover, encapsulation of SP by covering its odor could generally enhance the customer's satisfaction. More studies are still needed to prove the effectiveness of these techniques.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.fbio.2024.105179
Due to their health benefits, the growing demand for functional foods, including probiotics, is driving the market. Although several probiotic foods are available, their incorporation presents challenges due to the sensitivity of probiotics to processing conditions. Thus, the adoption of non-thermal technologies for microencapsulation and processing, such as high pressure, has been increasingly studied to preserve strains' viability and resistance. There are types of processing: high-pressure homogenization (HAP) and high hydrostatic pressure processing (HPP), depending on the pressure values applied and their specific purposes. This review explored the potential of high-pressure (HP) technology as an alternative to heat treatments for developing probiotic foods containing free and microencapsulated microorganisms, considering recent searches in ScienceDirect, Scopus, Web of Science, PubMed, and Google Scholar. This technology increases the viability and resistance of probiotics during processing, improving their functionality, maintaining the nutritional and sensory properties of the food, inactivating pathogenic and spoilage microorganisms and enzymes, and increasing the safety and shelf life of the food, being efficient for the microencapsulation of probiotics, providing them with protection and stability and enabling the development of innovative functional products. New wall materials such as natural polysaccharides and vegetable proteins have been studied for high-pressure microencapsulation, standing out for their biocompatibility, biodegradability, food safety, and desirable functional properties. HP technology presents itself as a promising alternative in developing probiotic foods from plant or animal matrices, considering free or microencapsulated microorganisms, enabling the development of a functional, safe, stable, innovative, and high-quality food.
由于益生菌对健康有益,包括益生菌在内的功能性食品需求不断增长,推动了市场的发展。虽然市面上有多种益生菌食品,但由于益生菌对加工条件的敏感性,将其添加到食品中面临着挑战。因此,人们越来越多地研究采用高压等非热技术进行微囊化和加工,以保持菌株的活力和抵抗力。根据所使用的压力值和具体用途的不同,可分为高压均质化(HAP)和高压静压处理(HPP)两种处理方式。本综述考虑到最近在 ScienceDirect、Scopus、Web of Science、PubMed 和 Google Scholar 上的搜索结果,探讨了高压(HP)技术作为热处理替代品的潜力,以开发含有游离和微囊微生物的益生菌食品。这种技术能提高益生菌在加工过程中的存活率和抵抗力,改善其功能,保持食品的营养和感官特性,灭活致病和腐败微生物及酶,延长食品的安全性和保质期,是益生菌微胶囊化的有效方法,能为益生菌提供保护和稳定性,促进创新功能产品的开发。人们研究了用于高压微胶囊技术的新型壁材,如天然多糖和植物蛋白,它们具有生物相容性、生物可降解性、食品安全性和理想的功能特性。在利用植物或动物基质开发益生菌食品方面,高压微胶囊技术是一种很有前途的选择,它可以考虑使用游离或微胶囊微生物,从而开发出功能性、安全、稳定、创新和高质量的食品。
{"title":"Perspectives of high-pressure technology in probiotic food production: A comprehensive review","authors":"","doi":"10.1016/j.fbio.2024.105179","DOIUrl":"10.1016/j.fbio.2024.105179","url":null,"abstract":"<div><div>Due to their health benefits, the growing demand for functional foods, including probiotics, is driving the market. Although several probiotic foods are available, their incorporation presents challenges due to the sensitivity of probiotics to processing conditions. Thus, the adoption of non-thermal technologies for microencapsulation and processing, such as high pressure, has been increasingly studied to preserve strains' viability and resistance. There are types of processing: high-pressure homogenization (HAP) and high hydrostatic pressure processing (HPP), depending on the pressure values applied and their specific purposes. This review explored the potential of high-pressure (HP) technology as an alternative to heat treatments for developing probiotic foods containing free and microencapsulated microorganisms, considering recent searches in ScienceDirect, Scopus, Web of Science, PubMed, and Google Scholar. This technology increases the viability and resistance of probiotics during processing, improving their functionality, maintaining the nutritional and sensory properties of the food, inactivating pathogenic and spoilage microorganisms and enzymes, and increasing the safety and shelf life of the food, being efficient for the microencapsulation of probiotics, providing them with protection and stability and enabling the development of innovative functional products. New wall materials such as natural polysaccharides and vegetable proteins have been studied for high-pressure microencapsulation, standing out for their biocompatibility, biodegradability, food safety, and desirable functional properties. HP technology presents itself as a promising alternative in developing probiotic foods from plant or animal matrices, considering free or microencapsulated microorganisms, enabling the development of a functional, safe, stable, innovative, and high-quality food.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.fbio.2024.105166
Mushrooms are renowned for their multifaceted contributions in the realms of nutrition and therapy. Possessing exceptional flavors, aromas, and nutritional content, they are categorized as 'functional foods' due to their ability to enhance overall health and confer nutritional advantages. Moreover, mushrooms have gained substantial recognition for their therapeutic applications, primarily owing it to their diverse repository of bioactive compounds referred to as secondary metabolites. These secondary metabolites exhibit a wide range of biological properties, encompassing anti-cancer, anti-diabetic, immunomodulatory, antimicrobial, anti-inflammatory, and antioxidative activities. The primary objective of this review is to emphasize the biologically active constituents found in various edible and medicinal mushroom species, with focus on the extraction and utilization of their principal compounds, particularly polyphenols. These polyphenols not only confer antioxidant effects but also offer preventive and therapeutic benefits. To achieve this, it is imperative to comprehend the techniques employed for phenolic compound extraction and to synthesize the key findings from the most noteworthy studies conducted to date.
{"title":"Bioactive secondary metabolites in mushrooms: A focus on polyphenols, their health benefits and applications","authors":"","doi":"10.1016/j.fbio.2024.105166","DOIUrl":"10.1016/j.fbio.2024.105166","url":null,"abstract":"<div><div>Mushrooms are renowned for their multifaceted contributions in the realms of nutrition and therapy. Possessing exceptional flavors, aromas, and nutritional content, they are categorized as 'functional foods' due to their ability to enhance overall health and confer nutritional advantages. Moreover, mushrooms have gained substantial recognition for their therapeutic applications, primarily owing it to their diverse repository of bioactive compounds referred to as secondary metabolites. These secondary metabolites exhibit a wide range of biological properties, encompassing anti-cancer, anti-diabetic, immunomodulatory, antimicrobial, anti-inflammatory, and antioxidative activities. The primary objective of this review is to emphasize the biologically active constituents found in various edible and medicinal mushroom species, with focus on the extraction and utilization of their principal compounds, particularly polyphenols. These polyphenols not only confer antioxidant effects but also offer preventive and therapeutic benefits. To achieve this, it is imperative to comprehend the techniques employed for phenolic compound extraction and to synthesize the key findings from the most noteworthy studies conducted to date.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.fbio.2024.105124
Saskatoon berry pomace, an antioxidant rich byproduct, may be suitable for nutraceuticals and functional foods. The present study aimed to co-encapsulate polyphenol-rich berry extract with probiotics to utilize the polyphenolic compounds present in berry pomace. The major benefit of co-encapsulation is that polyphenolic compounds increase the survival characteristics of probiotic bacteria in gastrointestinal tract. To make the process cost-effective, a conventional solvent extraction method was used for extraction of polyphenolic compounds from berry pomace. Spray drying was used to co-encapsulate polyphenols and probiotics by using plant-based carrier materials (pea protein isolate with gum Arabic). Spray dried powder was evaluated for encapsulation efficiency, gastrointestinal stability, bio-accessibility index, along with functional, structural and thermal characteristics. Berry pomace was found to be a good source of TPC, DPPH and ABTS with 2.49 mg GAE/1 g, 4.48 mg QE/1 g and 2.96 mg QE/1 g, respectively. The encapsulation efficiency (retention of polyphenolics and bacteria in capsules) of polyphenolic compounds and probiotics was 72.6% and 94.4%, respectively. Probiotic cells encapsulated with polyphenolic compounds showed improved survival (9.08 log CFU/mL) during in vitro gastrointestinal digestion. The bio-accessibility of TPC was 63.6% after intestinal digestion. The spray dried powder was observed to possess good thermal stability but poor functional properties, thus limiting applications to products such as bakery goods, sports bars, cereals and other foods where dispersibility is not imperative. Therefore, co-encapsulation by spray drying method offers an efficient and cost-effective method for simultaneous delivery of bioactive compounds and probiotics to the gut, extending their benefits by this combination.
{"title":"Valorization of berry pomace for extraction of polyphenol compounds and its co-encapsulation with probiotic bacteria","authors":"","doi":"10.1016/j.fbio.2024.105124","DOIUrl":"10.1016/j.fbio.2024.105124","url":null,"abstract":"<div><div>Saskatoon berry pomace, an antioxidant rich byproduct, may be suitable for nutraceuticals and functional foods. The present study aimed to co-encapsulate polyphenol-rich berry extract with probiotics to utilize the polyphenolic compounds present in berry pomace. The major benefit of co-encapsulation is that polyphenolic compounds increase the survival characteristics of probiotic bacteria in gastrointestinal tract. To make the process cost-effective, a conventional solvent extraction method was used for extraction of polyphenolic compounds from berry pomace. Spray drying was used to co-encapsulate polyphenols and probiotics by using plant-based carrier materials (pea protein isolate with gum Arabic). Spray dried powder was evaluated for encapsulation efficiency, gastrointestinal stability, bio-accessibility index, along with functional, structural and thermal characteristics. Berry pomace was found to be a good source of TPC, DPPH and ABTS with 2.49 mg GAE/1 g, 4.48 mg QE/1 g and 2.96 mg QE/1 g, respectively. The encapsulation efficiency (retention of polyphenolics and bacteria in capsules) of polyphenolic compounds and probiotics was 72.6% and 94.4%, respectively. Probiotic cells encapsulated with polyphenolic compounds showed improved survival (9.08 log CFU/mL) during <em>in vitro</em> gastrointestinal digestion. The bio-accessibility of TPC was 63.6% after intestinal digestion. The spray dried powder was observed to possess good thermal stability but poor functional properties, thus limiting applications to products such as bakery goods, sports bars, cereals and other foods where dispersibility is not imperative. Therefore, co-encapsulation by spray drying method offers an efficient and cost-effective method for simultaneous delivery of bioactive compounds and probiotics to the gut, extending their benefits by this combination.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212429224015542/pdfft?md5=6333d91316f623fee5105d317b9a158f&pid=1-s2.0-S2212429224015542-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.fbio.2024.105133
In recent years, changes in diet patterns and preferences for fresh food commodities, ready-to-eat food products, functional foods, and nutraceuticals have increased. Microgreens (young vegetable greens) are a relatively new form of product that has gained popularity and is also referred to as ‘vegetable confetti’. It is used to improve the sensorial characteristics, viz. appearance and flavor of foods such as salads and main dishes. Compared with seeds and their mature counterparts, microgreens contain greater levels of functional nutrients (minerals, vitamins, antioxidants, and phenolic compounds). This comprehensive review briefly describes the different families of microgreens used for the cultivation of microscale products and highlights their health-promoting bioactive compounds, such as antioxidants, phenolics, pigments, minerals, and vitamins, which are critically associated with the sustainable developmental goals of good health and welfare. In addition to these important factors affecting the cultivation of microgreens, such as their species, type, growth medium, use of nutrients, biofortification, and use of advanced illumination systems, preharvest and postharvest factors affecting microgreens are also addressed.
{"title":"Microgreens: Cultivation practices, bioactive potential, health benefits, and opportunities for its utilization as value-added food","authors":"","doi":"10.1016/j.fbio.2024.105133","DOIUrl":"10.1016/j.fbio.2024.105133","url":null,"abstract":"<div><div>In recent years, changes in diet patterns and preferences for fresh food commodities, ready-to-eat food products, functional foods, and nutraceuticals have increased. Microgreens (young vegetable greens) are a relatively new form of product that has gained popularity and is also referred to as ‘vegetable confetti’. It is used to improve the sensorial characteristics, <em>viz</em>. appearance and flavor of foods such as salads and main dishes. Compared with seeds and their mature counterparts, microgreens contain greater levels of functional nutrients (minerals, vitamins, antioxidants, and phenolic compounds). This comprehensive review briefly describes the different families of microgreens used for the cultivation of microscale products and highlights their health-promoting bioactive compounds, such as antioxidants, phenolics, pigments, minerals, and vitamins, which are critically associated with the sustainable developmental goals of good health and welfare. In addition to these important factors affecting the cultivation of microgreens, such as their species, type, growth medium, use of nutrients, biofortification, and use of advanced illumination systems, preharvest and postharvest factors affecting microgreens are also addressed.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1016/j.fbio.2024.105057
Colitis is often accompanied with reduced intestinal α1,2-fucosylation. D-serine has been reported to prevent chronic colitis and upregulate the α1,2-fucosylation levels of intestinal epithelial cells in vitro. However, the role of D-serine in acute colitis and whether α1,2-fucosylation regulation is involved in the process remains unclear. In this study, D-serine alleviated body weight loss, colon shortening, and intestinal barrier damage in mice with acute colitis. Additionally, D-serine helped maintain gut microbiota balance by increasing the abundance of beneficial bacteria, including Bifidobacterium, and decreasing the harmful bacteria, such as Escherichia. Shigella. Furthermore, untargeted metabolomics showed that D-serine can modify the metabolism of cecal microbiota by decreasing concentrations of colitis-associated metabolites. Nevertheless, inhibiting α1,2-fucosylation impaired D-serine-mediated alleviation of colitis, highlighting the importance of α1,2-fucosylation upregulation in this process. D-serine significantly increased the trans-epithelial resistance of normal colonic epithelial cells, which was impaired by α1,2-fucosylation inhibition. Additionally, D-serine enhanced α1,2-fucosylation of macrophages (RAW264.7 cells) and reduced the secretion of tumor necrosis factor-α. The higher expression of the serine uptake gene Slc3a5 in type 3 innate lymphoid cells (ILC3s) suggested that D-serine may regulate intestinal α1,2-fucosylation by affecting IL-22 secretion of ILC3s. Taken together, our study showed that D-serine alleviates acute colitis by regulating α1,2-fucosylation of intestinal epithelial cells and macrophages. These findings suggest that regulating intestinal α1,2-fucosylation could be a potential strategy for the treatment of colitis.
{"title":"D-serine alleviates colitis by regulating intestinal α1,2-fucosylation","authors":"","doi":"10.1016/j.fbio.2024.105057","DOIUrl":"10.1016/j.fbio.2024.105057","url":null,"abstract":"<div><div>Colitis is often accompanied with reduced intestinal α1,2-fucosylation. D-serine has been reported to prevent chronic colitis and upregulate the α1,2-fucosylation levels of intestinal epithelial cells <em>in vitro.</em> However, the role of D-serine in acute colitis and whether α1,2-fucosylation regulation is involved in the process remains unclear. In this study, D-serine alleviated body weight loss, colon shortening, and intestinal barrier damage in mice with acute colitis. Additionally, D-serine helped maintain gut microbiota balance by increasing the abundance of beneficial bacteria, including <em>Bifidobacterium</em>, and decreasing the harmful bacteria, such as <em>Escherichia. Shigella</em>. Furthermore, untargeted metabolomics showed that D-serine can modify the metabolism of cecal microbiota by decreasing concentrations of colitis-associated metabolites. Nevertheless, inhibiting α1,2-fucosylation impaired D-serine-mediated alleviation of colitis, highlighting the importance of α1,2-fucosylation upregulation in this process. D-serine significantly increased the trans-epithelial resistance of normal colonic epithelial cells, which was impaired by α1,2-fucosylation inhibition. Additionally, D-serine enhanced α1,2-fucosylation of macrophages (RAW264.7 cells) and reduced the secretion of tumor necrosis factor-α. The higher expression of the serine uptake gene <em>Slc3a5</em> in type 3 innate lymphoid cells (ILC3s) suggested that D-serine may regulate intestinal α1,2-fucosylation by affecting IL-22 secretion of ILC3s. Taken together, our study showed that D-serine alleviates acute colitis by regulating α1,2-fucosylation of intestinal epithelial cells and macrophages. These findings suggest that regulating intestinal α1,2-fucosylation could be a potential strategy for the treatment of colitis.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1016/j.fbio.2024.105120
To identify milk-derived peptides with both antioxidant and calcium absorption activities in combating osteoporosis, we employed a comprehensive screening approach that included virtual enzymatic hydrolysis, molecular docking, and cellular experiments using osteoblasts. Under the optimal conditions for dual-enzyme hydrolysis, the 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) radical scavenging rate and soluble calcium binding capacity of the milk-derived peptides were 19.69% and 0.6965 μg/mL, respectively. Six peptide segments, namely KEDVPSER, HKEMPFPK, YPSYG, EDVPSE, VPQLE, and IPAVF, were identified through UPLC-Q-Exactive Orbitrap MS and molecular docking for further validation. Among the peptides, YPSYG significantly promoted the proliferation of MC3T3-E1 cells both with and without CaCl2 (P < 0.05), increasing proliferation by 38.27% and 20.67%, respectively, compared to the control group. Additionally, YPSYG significantly improved proliferation after H2O2-induced oxidative damage (P < 0.05), with a 38.23% higher rate than the model group. Compared with rats in the osteoporosis model group, YPSYG significantly enhanced serum alkaline phosphatase (ALP) and N-terminal propeptide of type I procollagen in rats (s-PINP) levels and decreased tartrate-resistant acid phosphatase (TRAP) levels (P < 0.05). Furthermore, milk-derived peptides and YPSYG significantly increased the bone weight index, maximum load, and bending energy of the femur and tibia in osteoporotic rats (P < 0.05). Additionally, these peptides significantly reduced the number of osteoclasts in the metaphysis of the femur and tibia in osteoporotic rats and alleviated microstructural damage. This study confirmed that milk-derived peptides, including YPSYG, effectively promoted bone formation and improved bone microstructure in osteoporotic rats. These findings provided a foundation for developing functional foods for elderly bone health.
{"title":"Preparation, identification and screening of anti-osteoporosis milk-derived peptides: Intervention effects in osteoporosis rats","authors":"","doi":"10.1016/j.fbio.2024.105120","DOIUrl":"10.1016/j.fbio.2024.105120","url":null,"abstract":"<div><div>To identify milk-derived peptides with both antioxidant and calcium absorption activities in combating osteoporosis, we employed a comprehensive screening approach that included virtual enzymatic hydrolysis, molecular docking, and cellular experiments using osteoblasts. Under the optimal conditions for dual-enzyme hydrolysis, the 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) radical scavenging rate and soluble calcium binding capacity of the milk-derived peptides were 19.69% and 0.6965 μg/mL, respectively. Six peptide segments, namely KEDVPSER, HKEMPFPK, YPSYG, EDVPSE, VPQLE, and IPAVF, were identified through UPLC-Q-Exactive Orbitrap MS and molecular docking for further validation. Among the peptides, YPSYG significantly promoted the proliferation of MC3T3-E1 cells both with and without CaCl<sub>2</sub> (<em>P</em> < 0.05), increasing proliferation by 38.27% and 20.67%, respectively, compared to the control group. Additionally, YPSYG significantly improved proliferation after H<sub>2</sub>O<sub>2</sub>-induced oxidative damage (<em>P</em> < 0.05), with a 38.23% higher rate than the model group. Compared with rats in the osteoporosis model group, YPSYG significantly enhanced serum alkaline phosphatase (ALP) and N-terminal propeptide of type I procollagen in rats (s-PINP) levels and decreased tartrate-resistant acid phosphatase (TRAP) levels (<em>P</em> < 0.05). Furthermore, milk-derived peptides and YPSYG significantly increased the bone weight index, maximum load, and bending energy of the femur and tibia in osteoporotic rats (<em>P</em> < 0.05). Additionally, these peptides significantly reduced the number of osteoclasts in the metaphysis of the femur and tibia in osteoporotic rats and alleviated microstructural damage. This study confirmed that milk-derived peptides, including YPSYG, effectively promoted bone formation and improved bone microstructure in osteoporotic rats. These findings provided a foundation for developing functional foods for elderly bone health.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}