This review investigates the roles of Saccharomyces sp. And non-Saccharomyces yeasts, lactic acid bacteria (LAB), and bioprotection strategies in promoting sustainable winemaking. While Saccharomyces cerevisiae has long been central to fermentation, non-Saccharomyces species like Starmerella bacillaris, Torulaspora delbrueckii, and Lachancea thermotolerans are now recognized for enhancing flavor complexity and reducing the need for chemical additives. LAB, particularly Oenococcus oeni, contribute to malolactic fermentation, improving wine stability and sensory qualities, while aiding in sustainable waste management by converting by-products into valuable materials such as biogas. Bioprotection methods using yeasts like Metschnikowia pulcherrima offer a natural alternative to chemical preservatives, reducing sulfite use and chemical inputs. These microbial strategies align with sustainability goals by minimizing synthetic additives, promoting natural fermentation, and enhancing energy efficiency. Sustainable vineyard practices, such as promoting microbial diversity, cover cropping, and organic pest management, help maintain soil health, reduce chemical fertilizers, and improve vine resilience. The integration of these practices supports both environmental and economic sustainability, reducing production costs and enhancing product quality. Additionally, advances in omics approaches enable the development of tailored microbial consortia suited to specific environmental conditions, further improving the resilience and efficiency of winemaking, especially under climate variability. This comprehensive approach meets consumer demand for natural wines while reducing the wine industry's environmental footprint and improving economic viability.