首页 > 最新文献

Food Bioscience最新文献

英文 中文
Clove essential oil and eugenol: A review of their significance and uses 丁香精油和丁香酚:其意义和用途综述
IF 4.8 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-09-13 DOI: 10.1016/j.fbio.2024.105112
The present review provides a comprehensive overview of clove essential oil, including an outline of extraction methods, a review of its medical applications, an approach to toxicity and antimicrobial activity of eugenol, an exploration of recent advancements in polymeric materials, and an emphasis on important methodologies for assessing the antimicrobial properties of films in active food packaging incorporating clove oil extracts into polymer formulations. By employing bibliometric research methods, the review also explores the evolution of scientific production on clove oil, highlighting significant contributions to the field. Specifically, in the field of active packaging, the integration of clove oil and eugenol to produce antimicrobial packaging offers substantial benefits for food preservation, yet it also presents several challenges that must be addressed through continued research. By overcoming these challenges and navigating the regulatory landscape, eugenol-based packaging could play a significant role in the future of sustainable food preservation, offering both enhanced safety and extended shelf life for a wide range of food products.
本综述全面概述了丁香精油,包括萃取方法概述、丁香精油医疗应用综述、丁香酚毒性和抗菌活性研究方法、聚合材料最新进展探索,并重点介绍了在聚合物配方中加入丁香精油提取物的活性食品包装薄膜抗菌性能的重要评估方法。通过采用文献计量学研究方法,该综述还探讨了丁香油科学生产的演变,突出强调了对该领域的重大贡献。具体来说,在活性包装领域,将丁香油和丁香酚结合在一起生产抗菌包装为食品保鲜带来了巨大益处,但同时也提出了一些必须通过持续研究来应对的挑战。通过克服这些挑战和应对监管环境,丁香酚包装可以在未来的可持续食品保鲜领域发挥重要作用,为各种食品提供更高的安全性和更长的保质期。
{"title":"Clove essential oil and eugenol: A review of their significance and uses","authors":"","doi":"10.1016/j.fbio.2024.105112","DOIUrl":"10.1016/j.fbio.2024.105112","url":null,"abstract":"<div><div>The present review provides a comprehensive overview of clove essential oil, including an outline of extraction methods, a review of its medical applications, an approach to toxicity and antimicrobial activity of eugenol, an exploration of recent advancements in polymeric materials, and an emphasis on important methodologies for assessing the antimicrobial properties of films in active food packaging incorporating clove oil extracts into polymer formulations. By employing bibliometric research methods, the review also explores the evolution of scientific production on clove oil, highlighting significant contributions to the field. Specifically, in the field of active packaging, the integration of clove oil and eugenol to produce antimicrobial packaging offers substantial benefits for food preservation, yet it also presents several challenges that must be addressed through continued research. By overcoming these challenges and navigating the regulatory landscape, eugenol-based packaging could play a significant role in the future of sustainable food preservation, offering both enhanced safety and extended shelf life for a wide range of food products.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The combination of oxalic acid and uric acid degrading probiotic from traditional Chinese fermented food reduces calcium accumulation and prevents kidney stones formation in rats 中国传统发酵食品中的草酸和降解尿酸益生菌结合使用,可减少大鼠体内的钙积累并防止肾结石形成
IF 4.8 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-09-12 DOI: 10.1016/j.fbio.2024.105099

Kidney stones, often resulting from a complex interplay of factors including oxalic acid, uric acid, and calcium. Current treatments lack comprehensive consideration of these factors and come with side effects. In this study, Lactobacillus paracasei GR-10 and Pediococcus acidilactici GR-11 were isolated from the fermented food “Jiangshui”. GR-10 demonstrated the ability to degrade 62.70% of oxalic acid (10 mM) within 24 h, while GR-11 degraded 28.60% of uric acid (4 mM). Combined treatment with GR-10 and GR-11 significantly reduced the number of stones in rats with ethylene glycol-induced kidney stones. This reduction was accompanied by a 57.19% decrease in urinary oxalate and a 52.80% decrease in serum uric acid levels. Simultaneously, urinary calcium level decreased by 27.18%. Inflammatory markers and indicators of oxidative stress associated with kidney stones were restored. Furthermore, the combined treatment effectively regulated the microbiota imbalance induced by kidney stones, resulting in reduced purine nucleoside accumulation in rat feces. This study offers promising insights into probiotics as an adjunct therapy for the prevention of kidney stones in the future.

肾结石通常是由草酸、尿酸和钙等复杂因素相互作用造成的。目前的治疗方法缺乏对这些因素的综合考虑,而且有副作用。本研究从发酵食品 "江水 "中分离出副酸乳杆菌 GR-10 和酸性乳球菌 GR-11。GR-10能在24小时内降解62.70%的草酸(10毫摩尔),而GR-11能降解28.60%的尿酸(4毫摩尔)。联合使用 GR-10 和 GR-11 能显著减少乙二醇诱发的大鼠肾结石的数量。在减少结石数量的同时,尿草酸盐含量降低了 57.19%,血清尿酸水平降低了 52.80%。同时,尿钙水平降低了 27.18%。与肾结石相关的炎症指标和氧化应激指标也得到了恢复。此外,联合治疗还能有效调节肾结石引起的微生物群失衡,从而减少大鼠粪便中嘌呤核苷的积累。这项研究为今后将益生菌作为预防肾结石的辅助疗法提供了前景广阔的见解。
{"title":"The combination of oxalic acid and uric acid degrading probiotic from traditional Chinese fermented food reduces calcium accumulation and prevents kidney stones formation in rats","authors":"","doi":"10.1016/j.fbio.2024.105099","DOIUrl":"10.1016/j.fbio.2024.105099","url":null,"abstract":"<div><p>Kidney stones, often resulting from a complex interplay of factors including oxalic acid, uric acid, and calcium. Current treatments lack comprehensive consideration of these factors and come with side effects. In this study, <em>Lactobacillus paracasei</em> GR-10 and <em>Pediococcus acidilactici</em> GR-11 were isolated from the fermented food “Jiangshui”. GR-10 demonstrated the ability to degrade 62.70% of oxalic acid (10 mM) within 24 h, while GR-11 degraded 28.60% of uric acid (4 mM). Combined treatment with GR-10 and GR-11 significantly reduced the number of stones in rats with ethylene glycol-induced kidney stones. This reduction was accompanied by a 57.19% decrease in urinary oxalate and a 52.80% decrease in serum uric acid levels. Simultaneously, urinary calcium level decreased by 27.18%. Inflammatory markers and indicators of oxidative stress associated with kidney stones were restored. Furthermore, the combined treatment effectively regulated the microbiota imbalance induced by kidney stones, resulting in reduced purine nucleoside accumulation in rat feces. This study offers promising insights into probiotics as an adjunct therapy for the prevention of kidney stones in the future.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of egg-derived nutrients in Alzheimer's disease: Exploring potential benefits and biological insights 鸡蛋营养素在阿尔茨海默病中的作用:探索潜在益处和生物学见解
IF 4.8 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-09-12 DOI: 10.1016/j.fbio.2024.105096
This review investigates the potential link between egg consumption and Alzheimer's disease (AD) through a nutritional lens, focusing on key nutrients found in eggs such as choline, docosahexaenoic acid (DHA), and tryptophan (TRP). Eggs are recognized for their high-quality protein content and are rich in nutrients essential for brain health. Notably, national health guidelines have shifted away from considering eggs as a risk factor for hypercholesterolemia and cardiovascular disease, largely due to the complex relationship between dietary cholesterol and blood cholesterol levels. Although eggs are a significant source of dietary cholesterol, recent studies suggest that the cholesterol in eggs does not substantially raise blood cholesterol levels or increase the risk of heart disease. This review also explores how nutrients like choline, DHA, and TRP in eggs contribute to cognitive health and may help reduce the risk of age-related cognitive decline, including AD. While the direct connection between egg consumption and AD is not fully established, the neuroprotective roles of these nutrients highlight the importance of further research. Additionally, this review addresses common misconceptions about egg cholesterol, emphasizing the importance of eggs as part of a balanced diet for maintaining brain health and potentially mitigating the risk of neurodegenerative diseases.
本综述从营养学的角度研究了食用鸡蛋与阿尔茨海默病(AD)之间的潜在联系,重点关注鸡蛋中的主要营养成分,如胆碱、二十二碳六烯酸(DHA)和色氨酸(TRP)。鸡蛋因其优质蛋白质含量和丰富的脑部健康所必需的营养素而受到认可。值得注意的是,国家健康指南已不再将鸡蛋视为高胆固醇血症和心血管疾病的风险因素,这主要是由于膳食胆固醇和血液胆固醇水平之间的复杂关系。虽然鸡蛋是膳食胆固醇的重要来源,但最近的研究表明,鸡蛋中的胆固醇不会大幅提高血液中的胆固醇水平,也不会增加患心脏病的风险。本综述还探讨了鸡蛋中的胆碱、DHA 和 TRP 等营养物质如何促进认知健康,并有助于降低与年龄相关的认知能力下降(包括注意力缺失症)的风险。虽然食用鸡蛋与注意力缺失症之间的直接联系尚未完全确定,但这些营养素的神经保护作用凸显了进一步研究的重要性。此外,本综述还讨论了有关鸡蛋胆固醇的常见误解,强调了鸡蛋作为均衡饮食的一部分对于维持大脑健康和潜在降低神经退行性疾病风险的重要性。
{"title":"The role of egg-derived nutrients in Alzheimer's disease: Exploring potential benefits and biological insights","authors":"","doi":"10.1016/j.fbio.2024.105096","DOIUrl":"10.1016/j.fbio.2024.105096","url":null,"abstract":"<div><div>This review investigates the potential link between egg consumption and Alzheimer's disease (AD) through a nutritional lens, focusing on key nutrients found in eggs such as choline, docosahexaenoic acid (DHA), and tryptophan (TRP). Eggs are recognized for their high-quality protein content and are rich in nutrients essential for brain health. Notably, national health guidelines have shifted away from considering eggs as a risk factor for hypercholesterolemia and cardiovascular disease, largely due to the complex relationship between dietary cholesterol and blood cholesterol levels. Although eggs are a significant source of dietary cholesterol, recent studies suggest that the cholesterol in eggs does not substantially raise blood cholesterol levels or increase the risk of heart disease. This review also explores how nutrients like choline, DHA, and TRP in eggs contribute to cognitive health and may help reduce the risk of age-related cognitive decline, including AD. While the direct connection between egg consumption and AD is not fully established, the neuroprotective roles of these nutrients highlight the importance of further research. Additionally, this review addresses common misconceptions about egg cholesterol, emphasizing the importance of eggs as part of a balanced diet for maintaining brain health and potentially mitigating the risk of neurodegenerative diseases.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212429224015268/pdfft?md5=749b9cc996496cf25a8d5e35f5891d05&pid=1-s2.0-S2212429224015268-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural aggregation of Lactobacillus: Mechanisms and influencing factors 乳酸菌的自然聚集:机制和影响因素
IF 4.8 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-09-12 DOI: 10.1016/j.fbio.2024.105007

Lactobacillus aggregation is a bacterial behavior, in which Lactobacillus cells adhere to each other or other strains to form aggregates. Substantial evidence indicates that Lactobacillus aggregation is closely related to biofilm formation, adhesion, colonization, and host physiological functions. Current reviews on Lactobacillus aggregation are often limited to a few aspects, or serve as a single step to address other related problems. In this paper, we review the current state and characteristics of self- and co-aggregations, including aggregation percentages, influencing factors, molecular mechanisms, and functions. Lactobacillus aggregation is a strain-specific behavior, rather than a species-specific one, and the characteristics of both aggregations are similar. The same species of Lactobacillus exhibits a relatively broad range of aggregation percentage, and involved in different influencing factors and mechanisms. Moreover, the same factors and mechanisms also participate in different Lactobacillus aggregations. This is mainly because of the complexity of aggregations. Meanwhile, we also summarize the functions of aggregation, including enhancing bacterial survival, promoting biofilm formation and involving in host physiological regulation.

乳酸杆菌聚集是一种细菌行为,在这种行为中,乳酸杆菌细胞相互粘附或与其他菌株粘附形成聚集体。大量证据表明,乳酸杆菌聚集与生物膜形成、粘附、定植和宿主生理功能密切相关。目前关于乳酸菌聚集的综述往往局限于几个方面,或者只是解决其他相关问题的一个步骤。本文综述了自聚集和共聚集的现状和特点,包括聚集比例、影响因素、分子机制和功能。乳杆菌聚集是一种菌株特异性行为,而非物种特异性行为,两种聚集的特征相似。同一种类的乳酸菌表现出的聚集比例范围相对较广,并涉及不同的影响因素和机制。此外,相同的因素和机制也参与了不同的乳酸菌聚集。这主要是因为聚集的复杂性。同时,我们还总结了聚集的功能,包括提高细菌存活率、促进生物膜形成和参与宿主生理调节。
{"title":"Natural aggregation of Lactobacillus: Mechanisms and influencing factors","authors":"","doi":"10.1016/j.fbio.2024.105007","DOIUrl":"10.1016/j.fbio.2024.105007","url":null,"abstract":"<div><p><em>Lactobacillus</em> aggregation is a bacterial behavior, in which <em>Lactobacillus</em> cells adhere to each other or other strains to form aggregates. Substantial evidence indicates that <em>Lactobacillus</em> aggregation is closely related to biofilm formation, adhesion, colonization, and host physiological functions. Current reviews on <em>Lactobacillus</em> aggregation are often limited to a few aspects, or serve as a single step to address other related problems. In this paper, we review the current state and characteristics of self- and co-aggregations, including aggregation percentages, influencing factors, molecular mechanisms, and functions. <em>Lactobacillus</em> aggregation is a strain-specific behavior, rather than a species-specific one, and the characteristics of both aggregations are similar. The same species of <em>Lactobacillus</em> exhibits a relatively broad range of aggregation percentage, and involved in different influencing factors and mechanisms. Moreover, the same factors and mechanisms also participate in different <em>Lactobacillus</em> aggregations. This is mainly because of the complexity of aggregations. Meanwhile, we also summarize the functions of aggregation, including enhancing bacterial survival, promoting biofilm formation and involving in host physiological regulation.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metagenomic and metatranscriptomic analyses of microbial genera and volatiles produced during the fermentation of doubanjiang meju 豆瓣酱发酵过程中产生的微生物菌属和挥发性物质的元基因组和元转录组分析
IF 4.8 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-09-12 DOI: 10.1016/j.fbio.2024.105100

Fermented broad beans (Vicia faba L.), commonly known as meju, serve as a crucial raw material for producing Pixian Doubanjiang (DBJ), a traditional condiment in Chinese cuisine. However, there is limited information on the dynamics of fungal populations and the activity shifts of key enzymes during DBJ meju fermentation. This study aimed to elucidate the microbial composition, active genera, expressed genes and pathways during the DBJ meju fermentation. The general chemical components, free amino acids, enzymes and volatile compounds were also investigated; the correlations between active genera and physicochemical factors were analyzed, at different fermentation stages. The results demonstrated that protease was the predominant enzyme during meju fermentation. A total of 32 major volatile compounds were identified, with most alcohols and aldehydes showing a sharp increase from the early to the middle stages, followed by stabilization until the end of fermentation. Significant shifts in metatranscriptomic composition at the genus level were observed, with Aspergillus, Staphylococcus, and Tulasnella emerging as the core active genera in the process. Notably, cellulase activity was positively correlated with the presence of Tulasnella. Additionally, Aspergillus and Tulasnella were found to play a crucial role in developing the unique aroma of DBJ meju. Our findings on the succession of active genera and their correlation with physicochemical factors are expected to provide substantial evidence for potential quality control and enhancement of this renowned Chinese condiment.

发酵蚕豆(Vicia faba L.)俗称烧酒,是生产郫县豆瓣酱(DBJ)的重要原料,DBJ 是中国菜肴中的一种传统调味品。然而,有关 DBJ 烧酒发酵过程中真菌种群动态和关键酶活性变化的信息十分有限。本研究旨在阐明 DBJ 烧酒发酵过程中的微生物组成、活性菌属、表达基因和途径。研究还调查了一般化学成分、游离氨基酸、酶和挥发性化合物;分析了不同发酵阶段活性菌属与理化因素之间的相关性。结果表明,蛋白酶是烧酒发酵过程中最主要的酶。共鉴定出 32 种主要挥发性化合物,其中大部分醇类和醛类化合物从发酵初期到中期急剧增加,随后趋于稳定,直至发酵结束。在属一级观察到元转录组成分的显著变化,曲霉、葡萄球菌和土拉菌成为发酵过程中的核心活性属。值得注意的是,纤维素酶活性与土拉斯菌的存在呈正相关。此外,我们还发现曲霉菌和杜拉斯菌在形成愉景烧酒独特香味的过程中发挥了关键作用。我们关于活性菌属的演替及其与理化因素的相关性的研究结果有望为这一著名中国调味品的潜在质量控制和改进提供实质性证据。
{"title":"Metagenomic and metatranscriptomic analyses of microbial genera and volatiles produced during the fermentation of doubanjiang meju","authors":"","doi":"10.1016/j.fbio.2024.105100","DOIUrl":"10.1016/j.fbio.2024.105100","url":null,"abstract":"<div><p>Fermented broad beans (<em>Vicia faba</em> L.), commonly known as meju, serve as a crucial raw material for producing Pixian Doubanjiang (DBJ), a traditional condiment in Chinese cuisine. However, there is limited information on the dynamics of fungal populations and the activity shifts of key enzymes during DBJ meju fermentation. This study aimed to elucidate the microbial composition, active genera, expressed genes and pathways during the DBJ meju fermentation. The general chemical components, free amino acids, enzymes and volatile compounds were also investigated; the correlations between active genera and physicochemical factors were analyzed, at different fermentation stages. The results demonstrated that protease was the predominant enzyme during meju fermentation. A total of 32 major volatile compounds were identified, with most alcohols and aldehydes showing a sharp increase from the early to the middle stages, followed by stabilization until the end of fermentation. Significant shifts in metatranscriptomic composition at the genus level were observed, with <em>Aspergillus</em>, <em>Staphylococcus</em>, and <em>Tulasnella</em> emerging as the core active genera in the process. Notably, cellulase activity was positively correlated with the presence of <em>Tulasnella</em>. Additionally, <em>Aspergillus</em> and <em>Tulasnella</em> were found to play a crucial role in developing the unique aroma of DBJ meju. Our findings on the succession of active genera and their correlation with physicochemical factors are expected to provide substantial evidence for potential quality control and enhancement of this renowned Chinese condiment.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acesulfame potassium induces hepatic inflammation and fatty acids accumulation via disturbance of carnitine metabolism and gut microbiota 安赛蜜钾通过干扰肉碱代谢和肠道微生物群诱发肝脏炎症和脂肪酸积累
IF 4.8 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-09-12 DOI: 10.1016/j.fbio.2024.105101

The controversy surrounding the impact of acesulfame potassium (Ace-K) on metabolic health has been growing. Here, male C57BL/6 mice were given Ace-K for 11 weeks (sterile water as the control group, 40 mg/kg body weight as the low dose group, 120 mg/kg as the high dose group), subsequently gut microbiome and targeted metabolomics were conducted to evaluate the effect of Ace-K on host health. Gut microbiota was perturbed by Ace-K, as evidenced by the down-regulation of beneficial bacteria and the increased abundance of Collinsella associated with inflammation. Fatty acids metabolism was altered by Ace-K, as evidenced by elevated long chain fatty acids (LCFAs) in liver and serum. Notably, the reduction of related genes and proteins correlated to carnitine metabolism and hepatic carnitine metabolites by Ace-K led to a reduction in the β-oxidation of LCFAs, ultimately causing the accumulation of LCFAs. These findings uncovered new perspectives on Ace-K-induced hepatic inflammation and fatty acids accumulation.

围绕安赛蜜钾(Ace-K)对代谢健康影响的争议越来越多。在此,研究人员给雄性 C57BL/6 小鼠服用安赛蜜钾 11 周(对照组为无菌水,低剂量组为每公斤体重 40 毫克,高剂量组为每公斤体重 120 毫克),随后进行了肠道微生物组学和靶向代谢组学研究,以评估安赛蜜钾对宿主健康的影响。肠道微生物群受到 Ace-K 的干扰,表现为有益菌的下调和与炎症相关的柯林斯菌的增加。Ace-K 改变了脂肪酸代谢,肝脏和血清中长链脂肪酸(LCFAs)的升高证明了这一点。值得注意的是,Ace-K 减少了与肉碱代谢和肝脏肉碱代谢物相关的基因和蛋白质,导致低碳脂肪酸的β-氧化减少,最终造成低碳脂肪酸的积累。这些发现为 Ace-K 诱导的肝脏炎症和脂肪酸积累提供了新的视角。
{"title":"Acesulfame potassium induces hepatic inflammation and fatty acids accumulation via disturbance of carnitine metabolism and gut microbiota","authors":"","doi":"10.1016/j.fbio.2024.105101","DOIUrl":"10.1016/j.fbio.2024.105101","url":null,"abstract":"<div><p>The controversy surrounding the impact of acesulfame potassium (Ace-K) on metabolic health has been growing. Here, male C57BL/6 mice were given Ace-K for 11 weeks (sterile water as the control group, 40 mg/kg body weight as the low dose group, 120 mg/kg as the high dose group), subsequently gut microbiome and targeted metabolomics were conducted to evaluate the effect of Ace-K on host health. Gut microbiota was perturbed by Ace-K, as evidenced by the down-regulation of beneficial bacteria and the increased abundance of <em>Collinsella</em> associated with inflammation. Fatty acids metabolism was altered by Ace-K, as evidenced by elevated long chain fatty acids (LCFAs) in liver and serum. Notably, the reduction of related genes and proteins correlated to carnitine metabolism and hepatic carnitine metabolites by Ace-K led to a reduction in the <em>β</em>-oxidation of LCFAs, ultimately causing the accumulation of LCFAs. These findings uncovered new perspectives on Ace-K-induced hepatic inflammation and fatty acids accumulation.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extraction of apple pomace polyphenols using natural deep eutectic solvents: A sustainable approach 使用天然深共晶溶剂萃取苹果渣多酚:一种可持续的方法
IF 4.8 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-09-12 DOI: 10.1016/j.fbio.2024.105083

To effectively utilize apple pomace resources, we extracted apple pomace polyphenols using natural deep eutectic solvent (NADES) as the medium, with a solvent-to-solid ratio of 50 mL/g, for a duration of 120 min. Compared to conventional extraction solvents (ethanol and methanol), four NADES significantly enhanced the extraction efficiency of polyphenols from apple pomace. Notably, NADES 1 (betaine: urea = 1:1, 30% water) and NADES 2 (betaine: malic acid = 1:1, 30% water) exhibited superior extraction capabilities, with maximum values reaching 5.245 ± 0.124 mg GAE/g pomace and 5.157 ± 0.164 mg GAE/g pomace, respectively, in Qinguan apple pomace. Both solvents reached their maximum extraction efficiency within 120 min, with NADES 1 achieving a maximum extraction amount of 4.8325 mg GAE/g and NADES 2 achieving 5.3039 mg GAE/g from Fuji apple pomace. NADES 1 and NADES 2 were more efficient in extracting monophenols such as quercetin, rutin, gallic acid, and procyanidin, whereas organic solvents (methanol and ethanol) were more effective for monophenols like methyl gallate and phlorizin. Furthermore, polyphenol extracts obtained using NADES from Fuji apple pomace displayed varying levels of antibacterial effectiveness, with NADES 4 (glucose: lactic acid = 1:5, 60% water) and NADES 2 showing superior efficacy against Escherichia coli and Staphylococcus aureus. This comprehensive study not only demonstrated the potential of NADES in extracting polyphenols from apple pomace but also highlighted their applicability as natural preservatives in the food industry.

为了有效利用苹果渣资源,我们以天然深层共晶溶剂(NADES)为介质,溶剂与固体的比例为 50 mL/g,持续 120 分钟提取苹果渣中的多酚。与传统提取溶剂(乙醇和甲醇)相比,四种 NADES 可显著提高苹果渣中多酚的提取效率。其中,NADES 1(甜菜碱:尿素=1:1,30%水)和 NADES 2(甜菜碱:苹果酸=1:1,30%水)的萃取能力更强,在秦安苹果渣中的最大值分别达到 5.245 ± 0.124 mg GAE/g 果渣和 5.157 ± 0.164 mg GAE/g果渣。两种溶剂均在 120 分钟内达到最大提取效率,其中 NADES 1 在富士苹果渣中的最大提取量为 4.8325 mg GAE/g,NADES 2 的最大提取量为 5.3039 mg GAE/g。NADES 1 和 NADES 2 对单酚(如槲皮素、芦丁、没食子酸和原花青素)的提取效率更高,而有机溶剂(甲醇和乙醇)对单酚(如没食子酸甲酯和叶绿素)的提取效率更高。此外,使用 NADES 从富士苹果渣中提取的多酚也显示出不同程度的抗菌效果,其中 NADES 4(葡萄糖:乳酸 = 1:5,60% 水)和 NADES 2 对大肠杆菌和金黄色葡萄球菌的抗菌效果更佳。这项综合研究不仅证明了 NADES 从苹果渣中提取多酚的潜力,还突出了它们在食品工业中作为天然防腐剂的适用性。
{"title":"Extraction of apple pomace polyphenols using natural deep eutectic solvents: A sustainable approach","authors":"","doi":"10.1016/j.fbio.2024.105083","DOIUrl":"10.1016/j.fbio.2024.105083","url":null,"abstract":"<div><p>To effectively utilize apple pomace resources, we extracted apple pomace polyphenols using natural deep eutectic solvent (NADES) as the medium, with a solvent-to-solid ratio of 50 mL/g, for a duration of 120 min. Compared to conventional extraction solvents (ethanol and methanol), four NADES significantly enhanced the extraction efficiency of polyphenols from apple pomace. Notably, NADES 1 (betaine: urea = 1:1, 30% water) and NADES 2 (betaine: malic acid = 1:1, 30% water) exhibited superior extraction capabilities, with maximum values reaching 5.245 ± 0.124 mg GAE/g pomace and 5.157 ± 0.164 mg GAE/g pomace, respectively, in Qinguan apple pomace. Both solvents reached their maximum extraction efficiency within 120 min, with NADES 1 achieving a maximum extraction amount of 4.8325 mg GAE/g and NADES 2 achieving 5.3039 mg GAE/g from Fuji apple pomace. NADES 1 and NADES 2 were more efficient in extracting monophenols such as quercetin, rutin, gallic acid, and procyanidin, whereas organic solvents (methanol and ethanol) were more effective for monophenols like methyl gallate and phlorizin. Furthermore, polyphenol extracts obtained using NADES from Fuji apple pomace displayed varying levels of antibacterial effectiveness, with NADES 4 (glucose: lactic acid = 1:5, 60% water) and NADES 2 showing superior efficacy against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>. This comprehensive study not only demonstrated the potential of NADES in extracting polyphenols from apple pomace but also highlighted their applicability as natural preservatives in the food industry.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grass pea protein as an emerging source of sustainable plant proteins: Structure, modification, functionality, and applications 作为可持续植物蛋白新兴来源的草豌豆蛋白:结构、改性、功能和应用
IF 4.8 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-09-11 DOI: 10.1016/j.fbio.2024.105092
Grass pea is a legume crop with a protein content ranging from 20% to 30%, primarily composed of approximately 66% globulin, along with glutelin (15%), albumin (14%), and prolamin (5%). Grass pea protein (GPP) ingredients are commonly isolated using alkaline extraction and acid precipitation methods. The water solubility of GPP ingredients is approximately 60% at neutral pH. However, the resulting functional attributes of these ingredients are relatively poor, which limits their application in numerous food and beverage products. This review describes the grass pea protein as an emerging source of plant proteins including structure, modification, functionality, as well as its applications in food systems.
The functional attributes of GPP can be enhanced using various physical, chemical, and biological modification methods that alter the conformation, aggregation, or molecular weight of the proteins. Physical methods like ultrasonication, cold plasma, heat treatment, and high-pressure treatment, as well as chemical methods like protein-polysaccharide conjugation and enzymatic modification, have been used for this purpose. Modification techniques such as ultrasonication has the potential to enhance protein solubility by over 90% and also significantly improve emulsifying, foaming, and gelation properties of GPPs by more than two-fold. The properties of GPPs can be characterized using a variety of analytical methods including UV–visible spectroscopy, surface hydrophobicity, free sulfhydryl groups, Fourier transform infrared spectroscopy, circular dichroism, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In conclusion, GPP holds great potential for application in the formulation of plant-based foods and beverages in the food industry due to its good functional and nutritional properties.
草豌豆是一种豆科作物,蛋白质含量在 20% 至 30% 之间,主要成分是约 66% 的球蛋白,以及谷蛋白(15%)、白蛋白(14%)和丙种球蛋白(5%)。草豌豆蛋白(GPP)成分通常采用碱性提取和酸沉淀法分离。在中性 pH 值下,GPP 成分的水溶性约为 60%。然而,这些成分的功能属性相对较差,限制了它们在众多食品和饮料产品中的应用。本综述介绍了作为植物蛋白新兴来源的禾本科豌豆蛋白,包括其结构、改性、功能及其在食品系统中的应用。"禾本科豌豆蛋白的功能属性可通过各种物理、化学和生物改性方法来提高,这些方法可改变蛋白质的构象、聚集或分子量。为此,人们采用了超声波、冷等离子体、热处理和高压处理等物理方法,以及蛋白质-多糖共轭和酶改性等化学方法。超声波等改性技术有可能使蛋白质的溶解度提高 90% 以上,并使 GPP 的乳化、发泡和凝胶特性显著提高两倍以上。GPP 的特性可通过多种分析方法进行表征,包括紫外可见光谱法、表面疏水性、游离巯基、傅里叶变换红外光谱法、圆二色法和十二烷基硫酸钠-聚丙烯酰胺凝胶电泳法。总之,由于具有良好的功能和营养特性,GPP 在食品工业中应用于植物性食品和饮料配方方面具有巨大的潜力。
{"title":"Grass pea protein as an emerging source of sustainable plant proteins: Structure, modification, functionality, and applications","authors":"","doi":"10.1016/j.fbio.2024.105092","DOIUrl":"10.1016/j.fbio.2024.105092","url":null,"abstract":"<div><div>Grass pea is a legume crop with a protein content ranging from 20% to 30%, primarily composed of approximately 66% globulin, along with glutelin (15%), albumin (14%), and prolamin (5%). Grass pea protein (GPP) ingredients are commonly isolated using alkaline extraction and acid precipitation methods. The water solubility of GPP ingredients is approximately 60% at neutral pH. However, the resulting functional attributes of these ingredients are relatively poor, which limits their application in numerous food and beverage products. This review describes the grass pea protein as an emerging source of plant proteins including structure, modification, functionality, as well as its applications in food systems.</div><div>The functional attributes of GPP can be enhanced using various physical, chemical, and biological modification methods that alter the conformation, aggregation, or molecular weight of the proteins. Physical methods like ultrasonication, cold plasma, heat treatment, and high-pressure treatment, as well as chemical methods like protein-polysaccharide conjugation and enzymatic modification, have been used for this purpose. Modification techniques such as ultrasonication has the potential to enhance protein solubility by over 90% and also significantly improve emulsifying, foaming, and gelation properties of GPPs by more than two-fold. The properties of GPPs can be characterized using a variety of analytical methods including UV–visible spectroscopy, surface hydrophobicity, free sulfhydryl groups, Fourier transform infrared spectroscopy, circular dichroism, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In conclusion, GPP holds great potential for application in the formulation of plant-based foods and beverages in the food industry due to its good functional and nutritional properties.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent quality control of gelatinous polysaccharide-based fresh products during cold chain logistics: A review 冷链物流过程中基于凝胶多糖的生鲜产品的智能质量控制:综述
IF 4.8 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-09-11 DOI: 10.1016/j.fbio.2024.105081

Gelatinous polysaccharide-based fresh products are influenced by environmental and temperature changes, and maintaining their quality and freshness has always been a challenge. Intelligent management and control of cold chain logistics systems have been extensively used in transporting and storing these goods to overcome the problem. This review introduces common quality deterioration issues, including those encountered during the transportation and storage of these products, such as softening, water loss, and color changes. The application of intelligent detection technologies, including gas detection, intelligent label, and spectral detection is reviewed to achieve real-time monitoring and evaluation of product status. This article also introduces the Internet of Things, wireless sensor networks, and radio frequency identification for product data transmission. It utilizes artificial neural networks and digital twins to build quality models, achieving better management of gelatinous polysaccharide-based fresh products in the cold chain. Moreover, some preservation techniques are used to increase the longevity of these products in storage and reduce losses in the cold chain. These techniques include irradiation, chemical treatment, and coating preservation. This review will, hopefully, encourage additional work that may help reach the goal of having better intelligent quality control of gelatinous polysaccharide-based fresh products during cold chain logistics.

胶状多糖类生鲜产品受环境和温度变化的影响较大,如何保持其质量和新鲜度一直是个难题。为解决这一问题,冷链物流系统的智能管理和控制已被广泛应用于这些产品的运输和储存。本综述介绍了常见的质量劣变问题,包括这些产品在运输和储存过程中遇到的问题,如软化、失水和颜色变化。文章介绍了智能检测技术的应用,包括气体检测、智能标签和光谱检测,以实现对产品状态的实时监控和评估。本文还介绍了用于产品数据传输的物联网、无线传感器网络和射频识别技术。利用人工神经网络和数字孪生建立质量模型,更好地管理冷链中的胶状多糖类生鲜产品。此外,还采用了一些保鲜技术来延长这些产品的储存寿命,减少冷链中的损耗。这些技术包括辐照、化学处理和涂层保鲜。希望这篇综述能鼓励更多的工作,以帮助实现在冷链物流过程中更好地对基于凝胶多糖的生鲜产品进行智能质量控制的目标。
{"title":"Intelligent quality control of gelatinous polysaccharide-based fresh products during cold chain logistics: A review","authors":"","doi":"10.1016/j.fbio.2024.105081","DOIUrl":"10.1016/j.fbio.2024.105081","url":null,"abstract":"<div><p>Gelatinous polysaccharide-based fresh products are influenced by environmental and temperature changes, and maintaining their quality and freshness has always been a challenge. Intelligent management and control of cold chain logistics systems have been extensively used in transporting and storing these goods to overcome the problem. This review introduces common quality deterioration issues, including those encountered during the transportation and storage of these products, such as softening, water loss, and color changes. The application of intelligent detection technologies, including gas detection, intelligent label, and spectral detection is reviewed to achieve real-time monitoring and evaluation of product status. This article also introduces the Internet of Things, wireless sensor networks, and radio frequency identification for product data transmission. It utilizes artificial neural networks and digital twins to build quality models, achieving better management of gelatinous polysaccharide-based fresh products in the cold chain. Moreover, some preservation techniques are used to increase the longevity of these products in storage and reduce losses in the cold chain. These techniques include irradiation, chemical treatment, and coating preservation. This review will, hopefully, encourage additional work that may help reach the goal of having better intelligent quality control of gelatinous polysaccharide-based fresh products during cold chain logistics.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating transcriptomics and metabolomics differences offers insights into the mechanisms of muscular fat deposition in common carp (Cyprinus carpio) 研究转录组学和代谢组学的差异有助于了解鲤鱼肌肉脂肪沉积的机制
IF 4.8 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-09-11 DOI: 10.1016/j.fbio.2024.105082

With the global population increasing and lifestyle improving, the demand for high-quality nutritional aquatic foods has been rising. Muscle fat is a crucial nutritional index for evaluating the quality of fish flesh. However, the comprehensive and systematic understanding of the molecular mechanism underlying differences in muscle fat deposition remains insufficient. In this study, we integrated transcriptomics and metabolomics of selected samples with extremely high and low muscle fat in common carp (Cyprinus carpio), the major freshwater aquaculture fish in Asia, to identify critical genes, metabolites and metabolic pathways. We totally identified 204 differentially expressed genes (DEGs) and 1528 differentially accumulated metabolites (DAMs). Glycerolipid, glycerophospholipid and glyoxylate and dicarboxylate metabolisms were enriched through both transcriptomics and metabolomics. These lipid metabolism pathways may be regulated by some critical signal transduction pathways, including Extracellular matrix [ECM]-receptor interaction, mTOR signaling pathway and FoxO signaling pathway. Combined with the validation of gene expression and biochemical indices, a supposed regulatory network was established. To our knowledge, it is the first study to apply a multi-omics approach in fish with naturally different muscle fat to comprehensively elucidate the mechanism. This study could deepen our understanding of the molecular mechanism of muscle fat deposition and be helpful for improving the quality of fish.

随着全球人口的增长和生活方式的改善,人们对高品质营养水产食品的需求不断增加。肌肉脂肪是评价鱼肉质量的重要营养指标。然而,人们对肌肉脂肪沉积差异的分子机制仍缺乏全面系统的了解。在本研究中,我们对亚洲主要淡水养殖鱼类--鲤鱼(Cyprinus carpio)肌肉脂肪极高和极低的部分样本进行了转录组学和代谢组学研究,以确定关键基因、代谢产物和代谢途径。我们共鉴定出 204 个差异表达基因(DEGs)和 1528 个差异积累代谢物(DAMs)。通过转录组学和代谢组学,丰富了甘油酯、甘油磷脂、乙醛酸和二羧酸代谢。这些脂质代谢通路可能受到一些关键信号转导通路的调控,包括细胞外基质[ECM]-受体相互作用、mTOR信号通路和FoxO信号通路。结合基因表达和生化指标的验证,我们建立了一个假定的调控网络。据我们所知,这是首次在具有天然不同肌肉脂肪的鱼类中应用多组学方法全面阐明其机制的研究。这项研究可以加深我们对肌肉脂肪沉积分子机制的理解,有助于提高鱼类的品质。
{"title":"Investigating transcriptomics and metabolomics differences offers insights into the mechanisms of muscular fat deposition in common carp (Cyprinus carpio)","authors":"","doi":"10.1016/j.fbio.2024.105082","DOIUrl":"10.1016/j.fbio.2024.105082","url":null,"abstract":"<div><p>With the global population increasing and lifestyle improving, the demand for high-quality nutritional aquatic foods has been rising. Muscle fat is a crucial nutritional index for evaluating the quality of fish flesh. However, the comprehensive and systematic understanding of the molecular mechanism underlying differences in muscle fat deposition remains insufficient. In this study, we integrated transcriptomics and metabolomics of selected samples with extremely high and low muscle fat in common carp (<em>Cyprinus carpio</em>), the major freshwater aquaculture fish in Asia, to identify critical genes, metabolites and metabolic pathways. We totally identified 204 differentially expressed genes (DEGs) and 1528 differentially accumulated metabolites (DAMs). Glycerolipid, glycerophospholipid and glyoxylate and dicarboxylate metabolisms were enriched through both transcriptomics and metabolomics. These lipid metabolism pathways may be regulated by some critical signal transduction pathways, including Extracellular matrix [ECM]-receptor interaction, mTOR signaling pathway and FoxO signaling pathway. Combined with the validation of gene expression and biochemical indices, a supposed regulatory network was established. To our knowledge, it is the first study to apply a multi-omics approach in fish with naturally different muscle fat to comprehensively elucidate the mechanism. This study could deepen our understanding of the molecular mechanism of muscle fat deposition and be helpful for improving the quality of fish.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Food Bioscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1