Pub Date : 2019-02-04DOI: 10.1108/ijopm-11-2019-785
M. Cochet, A. Forner‐Cuenca, V. Manzi, M. Siegwart, D. Scheuble, P. Boillat
In this review the author stated that in the case-control study of childhood leukemia by Myers et al. (1), "their primary control group consisted of children with solid tissue tumors" which may also be associated with magnetic fields. This is erroneous: their control group consisted of children randomly selected from the population, which is appropriate in such studies. Rather, it was Coleman et al. (2) who enrolled patients with solid tissue tumor as controls for their leukemia cases. 1. Myers A, Clayden AD, Cartwright RA, Cartwright SC. Childhood cancer and overhead powerlines: a case-control study. Br J Cancer 62: 1008-1014 (1990). 2. Coleman MP, Bell CMJ, Taylor H-L, Primic-Zakelj M. Leukemia and residence near electricity transmission equipment: a case-control study. Br J Cancer 60: 793-798 (1989).
{"title":"Erratum","authors":"M. Cochet, A. Forner‐Cuenca, V. Manzi, M. Siegwart, D. Scheuble, P. Boillat","doi":"10.1108/ijopm-11-2019-785","DOIUrl":"https://doi.org/10.1108/ijopm-11-2019-785","url":null,"abstract":"In this review the author stated that in the case-control study of childhood leukemia by Myers et al. (1), \"their primary control group consisted of children with solid tissue tumors\" which may also be associated with magnetic fields. This is erroneous: their control group consisted of children randomly selected from the population, which is appropriate in such studies. Rather, it was Coleman et al. (2) who enrolled patients with solid tissue tumor as controls for their leukemia cases. 1. Myers A, Clayden AD, Cartwright RA, Cartwright SC. Childhood cancer and overhead powerlines: a case-control study. Br J Cancer 62: 1008-1014 (1990). 2. Coleman MP, Bell CMJ, Taylor H-L, Primic-Zakelj M. Leukemia and residence near electricity transmission equipment: a case-control study. Br J Cancer 60: 793-798 (1989).","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/ijopm-11-2019-785","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44780313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-08-15DOI: 10.1002/1615-6854(20020815)2:1<10::AID-FUCE10>3.0.CO;2-#
M. Arita
Fuel cell systems are seen as the ultimate solution to environmental issues such as CO2 emissions and air pollution. There is much current work aimed at developing FC vehicles (FCVs), which are expected to be on the market around 2003. However, in order to achieve widespread use of FCVs, they will need to provide the same performance, cost, and reliability as vehicles with internal combustion engines and hybrid electric vehicles. It is estimated that hydrogen FCVs can achieve the lowest CO2 emissions while reformate FCVs can attain the same level as diesel hybrid electric vehicles. The important technical issues of the FC stack system involve improving the efficiency and start ability at temperatures below 0 °C. The central technical issues of the reformate system are to improve efficiency and reduce start-up time. The most critical challenge for the popularization of FCVs is to achieve cost reductions and performance improvements simultaneously.
{"title":"Technical Issues of Fuel Cell Systems for Automotive Application","authors":"M. Arita","doi":"10.1002/1615-6854(20020815)2:1<10::AID-FUCE10>3.0.CO;2-#","DOIUrl":"https://doi.org/10.1002/1615-6854(20020815)2:1<10::AID-FUCE10>3.0.CO;2-#","url":null,"abstract":"Fuel cell systems are seen as the ultimate solution to environmental issues such as CO2 emissions and air pollution. There is much current work aimed at developing FC vehicles (FCVs), which are expected to be on the market around 2003. However, in order to achieve widespread use of FCVs, they will need to provide the same performance, cost, and reliability as vehicles with internal combustion engines and hybrid electric vehicles. It is estimated that hydrogen FCVs can achieve the lowest CO2 emissions while reformate FCVs can attain the same level as diesel hybrid electric vehicles. The important technical issues of the FC stack system involve improving the efficiency and start ability at temperatures below 0 °C. The central technical issues of the reformate system are to improve efficiency and reduce start-up time. The most critical challenge for the popularization of FCVs is to achieve cost reductions and performance improvements simultaneously.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"10 19","pages":"10-14"},"PeriodicalIF":2.8,"publicationDate":"2002-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1615-6854(20020815)2:1<10::AID-FUCE10>3.0.CO;2-#","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50763414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}