Pub Date : 2024-09-18DOI: 10.1109/tcsi.2024.3455409
Chenyu Wang, Jun Zheng, Yining Qian
{"title":"Structure-Varying Complex Network Chaotic Model and Its Hardware Implementation","authors":"Chenyu Wang, Jun Zheng, Yining Qian","doi":"10.1109/tcsi.2024.3455409","DOIUrl":"https://doi.org/10.1109/tcsi.2024.3455409","url":null,"abstract":"","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1109/tcsi.2024.3458864
Esfandiar Esmaieli, Yasser Sedaghat, Ali Peiravi
{"title":"Fanout-Based Reliability Model for SER Estimation in Combinational Circuits","authors":"Esfandiar Esmaieli, Yasser Sedaghat, Ali Peiravi","doi":"10.1109/tcsi.2024.3458864","DOIUrl":"https://doi.org/10.1109/tcsi.2024.3458864","url":null,"abstract":"","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1109/tcsi.2024.3457838
Zhongding Zhang, Zeyu Guo, Zuo Wang, Shihua Li
{"title":"Universal Finite-Time Observer-Based ITSMC for Converter-Driven Motor Systems With Disturbances","authors":"Zhongding Zhang, Zeyu Guo, Zuo Wang, Shihua Li","doi":"10.1109/tcsi.2024.3457838","DOIUrl":"https://doi.org/10.1109/tcsi.2024.3457838","url":null,"abstract":"","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis and Design of Wideband Active Single-Sideband Time Modulator in 0.13-$mu$m CMOS","authors":"Guoxiao Cheng, Jin-Dong Zhang, Qiaoyu Chen, Wen Wu","doi":"10.1109/tcsi.2024.3456237","DOIUrl":"https://doi.org/10.1109/tcsi.2024.3456237","url":null,"abstract":"","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1109/tcsi.2024.3455350
Yongxin Li, Chunbiao Li, Sen Zhang, Yuanjin Zheng, Guanrong Chen
{"title":"Offset Boosting-Oriented Construction of Multi-Scroll Attractor via a Memristor Model","authors":"Yongxin Li, Chunbiao Li, Sen Zhang, Yuanjin Zheng, Guanrong Chen","doi":"10.1109/tcsi.2024.3455350","DOIUrl":"https://doi.org/10.1109/tcsi.2024.3455350","url":null,"abstract":"","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The low-density parity-check code (LDPC) has been widely used to significantly enhance the reliability of 3-D NAND flash memory. However, in cases where the raw bit error rate (RBER) of the data is high, it not only demands more sense levels but also requires a large number of iterations, leading to a notable read latency issue. To mitigate this challenge, this paper introduces an innovative lightweight latency decrease (LLD) scheme. Initially, by examining the correlation between the number of iterations and the hard decision level (HDL), a functional model that encapsulates the relationship between iteration and offset is established. Building upon this model, the all-wordlines latency decrease (AWLD) scheme is proposed. In an effort to further decrease latency, an in-depth analysis of the similarities among different wordlines within a flash memory block is conducted, leading to the development of an optimized one-wordline lightweight latency decrease (OWLLD) scheme. For scenarios involving random reading of small data volumes, the interplay between function models of various overlapping regions is delved into, which ultimately results in the proposal of a further optimized one-page lightweight latency decrease (OPLLD) scheme. Experimental findings reveal that the OPLLD scheme can enhance the iterative performance of LDPC by up to 94.63% and reduce latency by up to 66.89% compared to traditional algorithms, while incurring minimal storage and computational overhead. This clearly indicates that the proposed scheme substantially enhances the read latency performance of LDPC in flash memory.
{"title":"LLD: Lightweight Latency Decrease Scheme of LDPC Hard Decision Decoding for 3-D TLC NAND Flash Memory","authors":"Debao Wei;Yongchao Wang;Hua Feng;Huqi Xiang;Liyan Qiao","doi":"10.1109/TCSI.2024.3438789","DOIUrl":"https://doi.org/10.1109/TCSI.2024.3438789","url":null,"abstract":"The low-density parity-check code (LDPC) has been widely used to significantly enhance the reliability of 3-D NAND flash memory. However, in cases where the raw bit error rate (RBER) of the data is high, it not only demands more sense levels but also requires a large number of iterations, leading to a notable read latency issue. To mitigate this challenge, this paper introduces an innovative lightweight latency decrease (LLD) scheme. Initially, by examining the correlation between the number of iterations and the hard decision level (HDL), a functional model that encapsulates the relationship between iteration and offset is established. Building upon this model, the all-wordlines latency decrease (AWLD) scheme is proposed. In an effort to further decrease latency, an in-depth analysis of the similarities among different wordlines within a flash memory block is conducted, leading to the development of an optimized one-wordline lightweight latency decrease (OWLLD) scheme. For scenarios involving random reading of small data volumes, the interplay between function models of various overlapping regions is delved into, which ultimately results in the proposal of a further optimized one-page lightweight latency decrease (OPLLD) scheme. Experimental findings reveal that the OPLLD scheme can enhance the iterative performance of LDPC by up to 94.63% and reduce latency by up to 66.89% compared to traditional algorithms, while incurring minimal storage and computational overhead. This clearly indicates that the proposed scheme substantially enhances the read latency performance of LDPC in flash memory.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1109/tcsi.2024.3454793
Xinchi Xu, Yonggang Wang, Yonghang Zhou, Zhengqi Song, Bo Wu, Xin Lin
{"title":"A 12 ps Precision Two-Step Time-to-Digital Converter Consuming 434 $mu$W at 1 MS/s in 180 nm CMOS With a Dual-Slope Time Amplifier","authors":"Xinchi Xu, Yonggang Wang, Yonghang Zhou, Zhengqi Song, Bo Wu, Xin Lin","doi":"10.1109/tcsi.2024.3454793","DOIUrl":"https://doi.org/10.1109/tcsi.2024.3454793","url":null,"abstract":"","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The visual SLAM (vSLAM) algorithm is becoming a research hotspot in recent years because of its low cost and low delay. Due to the advantage of fitting irregular data input, random sample consensus (RANSAC) has become a commonly used method in vSLAM to eliminate mismatched feature point pairs in adjacent frames. However, the huge number of iterations and computational complexity of the algorithm make the hardware implementation and integration of the entire system challenging. This paper pioneeringly proposes an efficient hardware acceleration design with homography matrix as RANSAC hypothesis model, which achieves high speed and high precision. Through optimizing the direct linear transformation (DLT) method, the delay and resource consumption are reduced. The design is implemented on FPGA. Through the verification of Xilinx Zynq 7100 platform, the processing frame rate on EuRoc dataset is 709 fps, reaching an average speed up of $263.2times $