Pub Date : 2024-10-28DOI: 10.1109/JBHI.2024.3483428
Panipat Wattanasiri, Samuel Wilson, Weiguang Huo, Ravi Vaidyanathan
In hand gesture recognition, classifying gestures across multiple arm postures is challenging due to the dynamic nature of muscle fibers and the need to capture muscle activity through electrical connections with the skin. This paper presents a gesture recognition architecture addressing the arm posture challenges using an unsupervised domain adaptation technique and a wearable mechanomyogram (MMG) device that does not require electrical contact with the skin. To deal with the transient characteristics of muscle activities caused by changing arm posture, Continuous Wavelet Transform (CWT) combined with Domain-Adversarial Convolutional Neural Networks (DACNN) were used to extract MMG features and classify hand gestures. DACNN was compared with supervised trained classifiers and shown to achieve consistent improvement in classification accuracies over multiple arm postures. With less than 5 minutes of setup time to record 20 examples per gesture in each arm posture, the developed method achieved an average prediction accuracy of 87.43% for classifying 5 hand gestures in the same arm posture and 64.29% across 10 different arm postures. When further expanding the MMG segmentation window from 200 ms to 600 ms to extract greater discriminatory information at the expense of longer response time, the intraposture and inter-posture accuracies increased to 92.32% and 71.75%. The findings demonstrate the capability of the proposed method to improve generalization throughout dynamic changes caused by arm postures during non-laboratory usages and the potential of MMG to be an alternative sensor with comparable performance to the widely used electromyogram (EMG) gesture recognition systems.
{"title":"Gesture Recognition through Mechanomyogram Signals: An Adaptive Framework for Arm Posture Variability.","authors":"Panipat Wattanasiri, Samuel Wilson, Weiguang Huo, Ravi Vaidyanathan","doi":"10.1109/JBHI.2024.3483428","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3483428","url":null,"abstract":"<p><p>In hand gesture recognition, classifying gestures across multiple arm postures is challenging due to the dynamic nature of muscle fibers and the need to capture muscle activity through electrical connections with the skin. This paper presents a gesture recognition architecture addressing the arm posture challenges using an unsupervised domain adaptation technique and a wearable mechanomyogram (MMG) device that does not require electrical contact with the skin. To deal with the transient characteristics of muscle activities caused by changing arm posture, Continuous Wavelet Transform (CWT) combined with Domain-Adversarial Convolutional Neural Networks (DACNN) were used to extract MMG features and classify hand gestures. DACNN was compared with supervised trained classifiers and shown to achieve consistent improvement in classification accuracies over multiple arm postures. With less than 5 minutes of setup time to record 20 examples per gesture in each arm posture, the developed method achieved an average prediction accuracy of 87.43% for classifying 5 hand gestures in the same arm posture and 64.29% across 10 different arm postures. When further expanding the MMG segmentation window from 200 ms to 600 ms to extract greater discriminatory information at the expense of longer response time, the intraposture and inter-posture accuracies increased to 92.32% and 71.75%. The findings demonstrate the capability of the proposed method to improve generalization throughout dynamic changes caused by arm postures during non-laboratory usages and the potential of MMG to be an alternative sensor with comparable performance to the widely used electromyogram (EMG) gesture recognition systems.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1109/JBHI.2024.3485023
Mingxiao Tu, Hoijoon Jung, Jinman Kim, Andre Kyme
Surgical context-aware systems (SCAS), which leverage real-time data and analysis from the operating room to inform surgical activities, can be enhanced through the integration of head-mounted displays (HMDs). Rather than user-agnostic data derived from conventional, and often static, external sensors, HMD-based SCAS relies on dynamic user-centric sensing of the surgical context. The analyzed context-aware information is then augmented directly into a user's field of view via augmented reality (AR) to directly improve their task and decision-making capability. This stateof-the-art review complements previous reviews by exploring the advancement of HMD-based SCAS, including their development and impact on enhancing situational awareness and surgical outcomes in the operating room. The survey demonstrates that this technology can mitigate risks associated with gaps in surgical expertise, increase procedural efficiency, and improve patient outcomes. We also highlight key limitations still to be addressed by the research community, including improving prediction accuracy, robustly handling data heterogeneity, and reducing system latency.
{"title":"Head-Mounted Displays in Context-Aware Systems for Open Surgery: A State-of-the-Art Review.","authors":"Mingxiao Tu, Hoijoon Jung, Jinman Kim, Andre Kyme","doi":"10.1109/JBHI.2024.3485023","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3485023","url":null,"abstract":"<p><p>Surgical context-aware systems (SCAS), which leverage real-time data and analysis from the operating room to inform surgical activities, can be enhanced through the integration of head-mounted displays (HMDs). Rather than user-agnostic data derived from conventional, and often static, external sensors, HMD-based SCAS relies on dynamic user-centric sensing of the surgical context. The analyzed context-aware information is then augmented directly into a user's field of view via augmented reality (AR) to directly improve their task and decision-making capability. This stateof-the-art review complements previous reviews by exploring the advancement of HMD-based SCAS, including their development and impact on enhancing situational awareness and surgical outcomes in the operating room. The survey demonstrates that this technology can mitigate risks associated with gaps in surgical expertise, increase procedural efficiency, and improve patient outcomes. We also highlight key limitations still to be addressed by the research community, including improving prediction accuracy, robustly handling data heterogeneity, and reducing system latency.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The annotation of cell types based on single-cell RNA sequencing (scRNA-seq) data is a critical downstream task in single-cell analysis, with significant implications for a deeper understanding of biological processes. Most analytical methods cluster cells by unsupervised clustering, which requires manual annotation for cell type determination. This procedure is time-overwhelming and non-repeatable. To accommodate the exponential growth of sequencing cells, reduce the impact of data bias, and integrate large-scale datasets for further improvement of type annotation accuracy, we proposed scSwinTNet. It is a pre-trained tool for annotating cell types in scRNA-seq data, which uses self-attention based on shifted windows and enables intelligent information extraction from gene data. We demonstrated the effectiveness and robustness of scSwinTNet by using 399 760 cells from human and mouse tissues. To the best of our knowledge, scSwinTNet is the first model to annotate cell types in scRNA-seq data using a pre-trained shifted window attention-based model. It does not require a priori knowledge and accurately annotates cell types without manual annotation.
{"title":"scSwinTNet: A Cell Type Annotation Method for Large-Scale Single-Cell RNA-Seq Data Based on Shifted Window Attention.","authors":"Huanhuan Dai, Xiangyu Meng, Zhiyi Pan, Qing Yang, Haonan Song, Yuan Gao, Xun Wang","doi":"10.1109/JBHI.2024.3487174","DOIUrl":"10.1109/JBHI.2024.3487174","url":null,"abstract":"<p><p>The annotation of cell types based on single-cell RNA sequencing (scRNA-seq) data is a critical downstream task in single-cell analysis, with significant implications for a deeper understanding of biological processes. Most analytical methods cluster cells by unsupervised clustering, which requires manual annotation for cell type determination. This procedure is time-overwhelming and non-repeatable. To accommodate the exponential growth of sequencing cells, reduce the impact of data bias, and integrate large-scale datasets for further improvement of type annotation accuracy, we proposed scSwinTNet. It is a pre-trained tool for annotating cell types in scRNA-seq data, which uses self-attention based on shifted windows and enables intelligent information extraction from gene data. We demonstrated the effectiveness and robustness of scSwinTNet by using 399 760 cells from human and mouse tissues. To the best of our knowledge, scSwinTNet is the first model to annotate cell types in scRNA-seq data using a pre-trained shifted window attention-based model. It does not require a priori knowledge and accurately annotates cell types without manual annotation.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1109/JBHI.2024.3485871
Long-Hao Yang, Fei-Fei Ye, Chris Nugent, Jun Liu, Ying-Ming Wang
Smart environment is an efficient and cost- effective way to afford intelligent supports for the elderly people. Human activity recognition (HAR) is a crucial aspect of the research field of smart environments, and it has attracted widespread attention lately. The goal of this study is to develop an effective sensor-based HAR model based on the belief-rule-based system (BRBS), which is one of representative rule-based expert systems. Specially, a new belief rule base (BRB) modeling approach is proposed by taking into account the self- organizing rule generation method and the multi-temporal rule representation scheme, in order to address the problem of combination explosion that existed in the traditional BRB modelling procedure and the time correlation found in continuous sensor data in chronological order. The new BRB modeling approach is so called self-organizing and multi-temporal BRB (SOMT-BRB) modeling procedure. A case study is further deducted to validate the effectiveness of the SOMT-BRB modeling procedure. By comparing with some conventional BRBSs and classical activity recognition models, the results show a significant improvement of the BRBS in terms of the number of belief rules, modelling efficiency, and activity recognition accuracy.
{"title":"Belief-Rule-Based System with Self-organizing and Multi-temporal Modeling for Sensor-based Human Activity Recognition.","authors":"Long-Hao Yang, Fei-Fei Ye, Chris Nugent, Jun Liu, Ying-Ming Wang","doi":"10.1109/JBHI.2024.3485871","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3485871","url":null,"abstract":"<p><p>Smart environment is an efficient and cost- effective way to afford intelligent supports for the elderly people. Human activity recognition (HAR) is a crucial aspect of the research field of smart environments, and it has attracted widespread attention lately. The goal of this study is to develop an effective sensor-based HAR model based on the belief-rule-based system (BRBS), which is one of representative rule-based expert systems. Specially, a new belief rule base (BRB) modeling approach is proposed by taking into account the self- organizing rule generation method and the multi-temporal rule representation scheme, in order to address the problem of combination explosion that existed in the traditional BRB modelling procedure and the time correlation found in continuous sensor data in chronological order. The new BRB modeling approach is so called self-organizing and multi-temporal BRB (SOMT-BRB) modeling procedure. A case study is further deducted to validate the effectiveness of the SOMT-BRB modeling procedure. By comparing with some conventional BRBSs and classical activity recognition models, the results show a significant improvement of the BRBS in terms of the number of belief rules, modelling efficiency, and activity recognition accuracy.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1109/JBHI.2024.3485767
Yuhao Du, Yuncheng Jiang, Shuangyi Tan, Si-Qi Liu, Zhen Li, Guanbin Li, Xiang Wan
Automated polyp segmentation from colonoscopy images is crucial for colorectal cancer diagnosis. The accuracy of such segmentation, however, is challenged by two main factors. First, the variability in polyps' size, shape, and color, coupled with the scarcity of well-annotated data due to the need for specialized manual annotation, hampers the efficacy of existing deep learning methods. Second, concealed polyps often blend with adjacent intestinal tissues, leading to poor contrast that challenges segmentation models. Recently, diffusion models have been explored and adapted for polyp segmentation tasks. However, the significant domain gap between RGB-colonoscopy images and grayscale segmentation masks, along with the low efficiency of the diffusion generation process, hinders the practical implementation of these models. To mitigate these challenges, we introduce the Highlighted Diffusion Model Plus (HDM+), a two-stage polyp segmentation framework. This framework incorporates the Highlighted Diffusion Model (HDM) to provide explicit semantic guidance, thereby enhancing segmentation accuracy. In the initial stage, the HDM is trained using highlighted ground-truth data, which emphasizes polyp regions while suppressing the background in the images. This approach reduces the domain gap by focusing on the image itself rather than on the segmentation mask. In the subsequent second stage, we employ the highlighted features from the trained HDM's U-Net model as plug-in priors for polyp segmentation, rather than generating highlighted images, thereby increasing efficiency. Extensive experiments conducted on six polyp segmentation benchmarks demonstrate the effectiveness of our approach.
{"title":"Highlighted Diffusion Model as Plug-in Priors for Polyp Segmentation.","authors":"Yuhao Du, Yuncheng Jiang, Shuangyi Tan, Si-Qi Liu, Zhen Li, Guanbin Li, Xiang Wan","doi":"10.1109/JBHI.2024.3485767","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3485767","url":null,"abstract":"<p><p>Automated polyp segmentation from colonoscopy images is crucial for colorectal cancer diagnosis. The accuracy of such segmentation, however, is challenged by two main factors. First, the variability in polyps' size, shape, and color, coupled with the scarcity of well-annotated data due to the need for specialized manual annotation, hampers the efficacy of existing deep learning methods. Second, concealed polyps often blend with adjacent intestinal tissues, leading to poor contrast that challenges segmentation models. Recently, diffusion models have been explored and adapted for polyp segmentation tasks. However, the significant domain gap between RGB-colonoscopy images and grayscale segmentation masks, along with the low efficiency of the diffusion generation process, hinders the practical implementation of these models. To mitigate these challenges, we introduce the Highlighted Diffusion Model Plus (HDM+), a two-stage polyp segmentation framework. This framework incorporates the Highlighted Diffusion Model (HDM) to provide explicit semantic guidance, thereby enhancing segmentation accuracy. In the initial stage, the HDM is trained using highlighted ground-truth data, which emphasizes polyp regions while suppressing the background in the images. This approach reduces the domain gap by focusing on the image itself rather than on the segmentation mask. In the subsequent second stage, we employ the highlighted features from the trained HDM's U-Net model as plug-in priors for polyp segmentation, rather than generating highlighted images, thereby increasing efficiency. Extensive experiments conducted on six polyp segmentation benchmarks demonstrate the effectiveness of our approach.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1109/JBHI.2024.3483997
Tao Bai, Junxi Xie, Yumeng Liu, Bin Liu
Identifying subcellular localization of microRNAs (miRNAs) is essential for comprehensive understanding of cellular function and has significant implications for drug design. In the past, several computational methods for miRNA subcellular localization is being used for uncovering multiple facets of RNA function to facilitate the biological applications. Unfortunately, most existing classification methods rely on a single sequencebased view, making the effective fusion of data from multiple heterogeneous networks a primary challenge. Inspired by multi-view multi-label learning strategy, we propose a computational method, named MMLmiRLocNet, for predicting the subcellular localizations of miRNAs. The MMLmiRLocNet predictor extracts multi-perspective sequence representations by analyzing lexical, syntactic, and semantic aspects of biological sequences. Specifically, it integrates lexical attributes derived from k-mer physicochemical profiles, syntactic characteristics obtained via word2vec embeddings, and semantic representations generated by pre-trained feature embeddings. Finally, module for extracting multi-view consensus-level features and specific-level features was constructed to capture consensus and specific features from various perspectives. The full connection networks are utilized as the output module to predict the miRNA subcellular localization. Experimental results suggest that MMLmiRLocNet outperforms existing methods in terms of F1, subACC, and Accuracy, and achieves best performance with the help of multi-view consensus features and specific features extract network.
{"title":"MMLmiRLocNet: miRNA Subcellular Localization Prediction based on Multi-view Multi-label Learning for Drug Design.","authors":"Tao Bai, Junxi Xie, Yumeng Liu, Bin Liu","doi":"10.1109/JBHI.2024.3483997","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3483997","url":null,"abstract":"<p><p>Identifying subcellular localization of microRNAs (miRNAs) is essential for comprehensive understanding of cellular function and has significant implications for drug design. In the past, several computational methods for miRNA subcellular localization is being used for uncovering multiple facets of RNA function to facilitate the biological applications. Unfortunately, most existing classification methods rely on a single sequencebased view, making the effective fusion of data from multiple heterogeneous networks a primary challenge. Inspired by multi-view multi-label learning strategy, we propose a computational method, named MMLmiRLocNet, for predicting the subcellular localizations of miRNAs. The MMLmiRLocNet predictor extracts multi-perspective sequence representations by analyzing lexical, syntactic, and semantic aspects of biological sequences. Specifically, it integrates lexical attributes derived from k-mer physicochemical profiles, syntactic characteristics obtained via word2vec embeddings, and semantic representations generated by pre-trained feature embeddings. Finally, module for extracting multi-view consensus-level features and specific-level features was constructed to capture consensus and specific features from various perspectives. The full connection networks are utilized as the output module to predict the miRNA subcellular localization. Experimental results suggest that MMLmiRLocNet outperforms existing methods in terms of F1, subACC, and Accuracy, and achieves best performance with the help of multi-view consensus features and specific features extract network.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Automated detection of lymph node metastasis (LNM) holds great potential to alleviate the workload of doctors and reduce misinterpretations. Despite the practical successes achieved, effectively addressing the highly complex and heterogeneous tumor microenvironment remains an open and challenging problem, especially when tumor subtypes intermingle and are difficult to delineate. In this paper, we propose a multi-task adaptive resolution network, named MAR-Net, for LNM detection and subtyping in complex mixed-type cancers. Specifically, we construct a resolution-aware module to mine heterogeneous diagnostic information, which exploits the multi-scale pyramid information and adaptively combines multi-resolution structured features for comprehensive representation. Additionally, we adopt a multi-task learning approach that simultaneously addresses LNM detection and subtyping, reducing model instability during optimization and improving performance across both tasks. More importantly, to rectify the potential misclassification of tumor subtypes, we elaborately design a hierarchical subtying refinement (HSR) algorithm that leverages a generic segmentation model informed by pathologists' prior knowledge. Evaluations have been conducted on three private and one public cancer datasets (554 WSIs, 4.8 million patches). Our experimental results demonstrate that the proposed method consistently achieves superior performance compared to the state-of-the-art methods, achieving 0.5% to 3.2% higher AUC in LNM detection and 3.8% to 4.4% higher AUC in LNM subtyping.
{"title":"Multi-task Adaptive Resolution Network for Lymph Node Metastasis Diagnosis from Whole Slide Images of Colorectal Cancer.","authors":"Tong Wang, Su-Jin Shin, Mingkang Wang, Qi Xu, Guiyang Jiang, Fengyu Cong, Jeonghyun Kang, Hongming Xu","doi":"10.1109/JBHI.2024.3485703","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3485703","url":null,"abstract":"<p><p>Automated detection of lymph node metastasis (LNM) holds great potential to alleviate the workload of doctors and reduce misinterpretations. Despite the practical successes achieved, effectively addressing the highly complex and heterogeneous tumor microenvironment remains an open and challenging problem, especially when tumor subtypes intermingle and are difficult to delineate. In this paper, we propose a multi-task adaptive resolution network, named MAR-Net, for LNM detection and subtyping in complex mixed-type cancers. Specifically, we construct a resolution-aware module to mine heterogeneous diagnostic information, which exploits the multi-scale pyramid information and adaptively combines multi-resolution structured features for comprehensive representation. Additionally, we adopt a multi-task learning approach that simultaneously addresses LNM detection and subtyping, reducing model instability during optimization and improving performance across both tasks. More importantly, to rectify the potential misclassification of tumor subtypes, we elaborately design a hierarchical subtying refinement (HSR) algorithm that leverages a generic segmentation model informed by pathologists' prior knowledge. Evaluations have been conducted on three private and one public cancer datasets (554 WSIs, 4.8 million patches). Our experimental results demonstrate that the proposed method consistently achieves superior performance compared to the state-of-the-art methods, achieving 0.5% to 3.2% higher AUC in LNM detection and 3.8% to 4.4% higher AUC in LNM subtyping.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1109/JBHI.2024.3482180
Yishan Jiang, Hyung-Jeong Yang, Jahae Kim, Zhenzhou Tang, Xiukai Ruan
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The increasing demand for high-accuracy forecasts of disease progression has led to a surge in research employing multi-modality variables for prediction. In this review, we selected articles published from 2016 through June 2024, adhering strictly to our exclusion-inclusion criteria. These articles employed a minimum of two types of variables, including clinical, genetic, biomarker, and neuroimaging modalities. We conducted a comprehensive review and discussion on the application of multi-modality approaches in predicting PD progression. The predictive mechanisms, advantages, and shortcomings of relevant key modalities in predicting PD progression are discussed in the paper. The findings suggest that integrating multiple modalities resulted in more accurate predictions compared to those of fewer modalities in similar conditions. Furthermore, we identified some limitations in the existing field. Future studies that harness advancements in multi-modality variables and machine learning algorithms can mitigate these limitations and enhance predictive accuracy in PD progression.
{"title":"Power of Multi-Modality Variables in Predicting Parkinson's Disease Progression.","authors":"Yishan Jiang, Hyung-Jeong Yang, Jahae Kim, Zhenzhou Tang, Xiukai Ruan","doi":"10.1109/JBHI.2024.3482180","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3482180","url":null,"abstract":"<p><p>Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The increasing demand for high-accuracy forecasts of disease progression has led to a surge in research employing multi-modality variables for prediction. In this review, we selected articles published from 2016 through June 2024, adhering strictly to our exclusion-inclusion criteria. These articles employed a minimum of two types of variables, including clinical, genetic, biomarker, and neuroimaging modalities. We conducted a comprehensive review and discussion on the application of multi-modality approaches in predicting PD progression. The predictive mechanisms, advantages, and shortcomings of relevant key modalities in predicting PD progression are discussed in the paper. The findings suggest that integrating multiple modalities resulted in more accurate predictions compared to those of fewer modalities in similar conditions. Furthermore, we identified some limitations in the existing field. Future studies that harness advancements in multi-modality variables and machine learning algorithms can mitigate these limitations and enhance predictive accuracy in PD progression.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1109/JBHI.2024.3484994
Zijun Wei, Meiju Li, Zhi-Qiang Zhang, Sheng Quan Xie
Post-stroke upper limb dysfunction severely impacts patients' daily life quality. Utilizing sEMG signals to predict patients' motion intentions enables more effective rehabilitation by precisely adjusting the assistance level of rehabilitation robots. Employing the muscle synergy (MS) features can establish more accurate and robust mappings between sEMG and motion intentions. However, traditional matrix factorization algorithms based on blind source separation still exhibit certain limitations in extracting MS features. This paper proposes four deep learning models to extract MS features from four distinct perspectives: spatiotemporal convolutional kernels, compression and reconstruction of sEMG, graph topological structure, and the anatomy of target muscles. Among these models, the one based on 3DCNN predicts motion intentions from the muscle anatomy perspective for the first time. It reconstructs 1D sEMG samples collected at each time point into 2D sEMG frames based on the anatomical distribution of target muscles and sEMG electrode placement. These 2D frames are then stacked as video segments and input into 3DCNN for MS feature extraction. Experimental results on both our wrist motion dataset and public Ninapro DB2 dataset demonstrate that the proposed 3DCNN model outperforms other models in terms of prediction accuracy, robustness, training efficiency, and MS feature extraction for continuous prediction of wrist flexion/extension angles. Specifically, the average nRMSE and R2 values of 3DCNN on these two datasets are (0.14/0.93) and (0.04/0.95), respectively. Furthermore, compared to existing studies, the 3DCNN outperforms musculoskeletal models based on direct collocation optimization, physics-informed GANs, and CNN-LSTM-based deep Kalman filter models when evaluated on our dataset.
中风后上肢功能障碍严重影响患者的日常生活质量。利用 sEMG 信号来预测患者的运动意图,可以精确调整康复机器人的辅助水平,从而实现更有效的康复。利用肌肉协同(MS)特征可以在 sEMG 和运动意图之间建立更准确、更稳健的映射。然而,基于盲源分离的传统矩阵因式分解算法在提取 MS 特征时仍存在一定的局限性。本文提出了四种深度学习模型,分别从时空卷积核、sEMG 压缩与重构、图拓扑结构和目标肌肉解剖四个不同角度提取 MS 特征。在这些模型中,基于 3DCNN 的模型首次从肌肉解剖学角度预测了运动意图。它根据目标肌肉的解剖分布和 sEMG 电极位置,将每个时间点采集的 1D sEMG 样本重构为 2D sEMG 帧。然后将这些 2D 帧堆叠为视频片段,输入 3DCNN 进行 MS 特征提取。在我们的手腕运动数据集和公开的 Ninapro DB2 数据集上的实验结果表明,在连续预测手腕屈伸角度方面,所提出的 3DCNN 模型在预测准确性、鲁棒性、训练效率和 MS 特征提取方面都优于其他模型。具体来说,3DCNN 在这两个数据集上的平均 nRMSE 和 R2 值分别为 (0.14/0.93) 和 (0.04/0.95)。此外,与现有研究相比,在我们的数据集上评估时,3DCNN 优于基于直接定位优化的肌肉骨骼模型、物理信息 GAN 和基于 CNN-LSTM 的深度卡尔曼滤波模型。
{"title":"Continuous Prediction of Wrist Joint Kinematics Using Surface Electromyography from the Perspective of Muscle Anatomy and Muscle Synergy Feature Extraction.","authors":"Zijun Wei, Meiju Li, Zhi-Qiang Zhang, Sheng Quan Xie","doi":"10.1109/JBHI.2024.3484994","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3484994","url":null,"abstract":"<p><p>Post-stroke upper limb dysfunction severely impacts patients' daily life quality. Utilizing sEMG signals to predict patients' motion intentions enables more effective rehabilitation by precisely adjusting the assistance level of rehabilitation robots. Employing the muscle synergy (MS) features can establish more accurate and robust mappings between sEMG and motion intentions. However, traditional matrix factorization algorithms based on blind source separation still exhibit certain limitations in extracting MS features. This paper proposes four deep learning models to extract MS features from four distinct perspectives: spatiotemporal convolutional kernels, compression and reconstruction of sEMG, graph topological structure, and the anatomy of target muscles. Among these models, the one based on 3DCNN predicts motion intentions from the muscle anatomy perspective for the first time. It reconstructs 1D sEMG samples collected at each time point into 2D sEMG frames based on the anatomical distribution of target muscles and sEMG electrode placement. These 2D frames are then stacked as video segments and input into 3DCNN for MS feature extraction. Experimental results on both our wrist motion dataset and public Ninapro DB2 dataset demonstrate that the proposed 3DCNN model outperforms other models in terms of prediction accuracy, robustness, training efficiency, and MS feature extraction for continuous prediction of wrist flexion/extension angles. Specifically, the average nRMSE and R2 values of 3DCNN on these two datasets are (0.14/0.93) and (0.04/0.95), respectively. Furthermore, compared to existing studies, the 3DCNN outperforms musculoskeletal models based on direct collocation optimization, physics-informed GANs, and CNN-LSTM-based deep Kalman filter models when evaluated on our dataset.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1109/JBHI.2024.3484991
Hailin Li, Di Dong, Mengjie Fang, Bingxi He, Shengyuan Liu, Chaoen Hu, Zaiyi Liu, Hexiang Wang, Linglong Tang, Jie Tian
Prognostic assessment remains a critical challenge in medical research, often limited by the lack of well-labeled data. In this work, we introduce ContraSurv, a weakly-supervised learning framework based on contrastive learning, designed to enhance prognostic predictions in 3D medical images. ContraSurv utilizes both the self-supervised information inherent in unlabeled data and the weakly-supervised cues present in censored data, refining its capacity to extract prognostic representations. For this purpose, we establish a Vision Transformer architecture optimized for our medical image datasets and introduce novel methodologies for both self-supervised and supervised contrastive learning for prognostic assessment. Additionally, we propose a specialized supervised contrastive loss function and introduce SurvMix, a novel data augmentation technique for survival analysis. Evaluations were conducted across three cancer types and two imaging modalities on three real-world datasets. The results confirmed the enhanced performance of ContraSurv over competing methods, particularly in data with a high censoring rate.
{"title":"ContraSurv: Enhancing Prognostic Assessment of Medical Images via Data-Efficient Weakly Supervised Contrastive Learning.","authors":"Hailin Li, Di Dong, Mengjie Fang, Bingxi He, Shengyuan Liu, Chaoen Hu, Zaiyi Liu, Hexiang Wang, Linglong Tang, Jie Tian","doi":"10.1109/JBHI.2024.3484991","DOIUrl":"10.1109/JBHI.2024.3484991","url":null,"abstract":"<p><p>Prognostic assessment remains a critical challenge in medical research, often limited by the lack of well-labeled data. In this work, we introduce ContraSurv, a weakly-supervised learning framework based on contrastive learning, designed to enhance prognostic predictions in 3D medical images. ContraSurv utilizes both the self-supervised information inherent in unlabeled data and the weakly-supervised cues present in censored data, refining its capacity to extract prognostic representations. For this purpose, we establish a Vision Transformer architecture optimized for our medical image datasets and introduce novel methodologies for both self-supervised and supervised contrastive learning for prognostic assessment. Additionally, we propose a specialized supervised contrastive loss function and introduce SurvMix, a novel data augmentation technique for survival analysis. Evaluations were conducted across three cancer types and two imaging modalities on three real-world datasets. The results confirmed the enhanced performance of ContraSurv over competing methods, particularly in data with a high censoring rate.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}